Skip to main content

The Maize Methylome

  • Chapter
  • First Online:
The Maize Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

DNA methylation is a chromatin modification that has generally been associated with gene silencing or heterochromatin. Plants have mechanisms to allow for the stable inheritance of DNA methylation through mitosis or meiosis. This creates the potential for DNA methylation to provide epigenetic inheritance for traits in maize and other crops. Epigenetics refers to heritable transmission of information that is not solely attributable to DNA sequence. Several examples of epigenetic inheritance were first described in maize including paramutation, imprinting, and transposable element inactivation. There is evidence that DNA methylation is associated with each of these epigenetic phenomena. In addition, natural variation for epigenetic states may contribute substantially to variation among maize inbreds and could be an important source of variation for crop improvement. Advances in our understanding of the molecular mechanisms controlling DNA methylation in Arabidopsis have provided clues to the genes and pathways likely to be important in maize. Recent technological developments have provided the opportunity to characterize the genome-wide distribution of DNA methylation in the maize genome. This has provided insights into the patterns of DNA methylation in plant species with large, complex genomes and has led to the identification of potential cryptic genomic information that is silenced by DNA methylation. We will summarize current understanding of the mechanisms that regulate methylation and factors that influence variation and stability of the maize methylome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alleman M et al (2006) An RNA-dependent RNA polymerase is required for paramutation in maize. Nature 442(7100):295–298

    Article  CAS  PubMed  Google Scholar 

  • Anderson SN et al (2018) Subtle perturbations of the maize methylome reveal genes and transposons silenced by chromomethylase or RNA-directed DNA methylation pathways

    Google Scholar 

  • Barber WT et al (2012) Repeat associated small RNAs vary among parents and following hybridization in maize. Proc Natl Acad Sci USA 109(26):10444–10449

    Article  PubMed  PubMed Central  Google Scholar 

  • Baucom RS et al (2009) Exceptional diversity, non-random distribution, and rapid evolution of retroelements in the B73 maize genome. PLoS Genet 5(11):e1000732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bauer MJ, Fischer RL (2011) Genome demethylation and imprinting in the endosperm. Curr Opin Plant Biol 14(2):162–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becker C et al (2011) Spontaneous epigenetic variation in the Arabidopsis thaliana methylome. Nature 480(7376):245–249

    Article  CAS  PubMed  Google Scholar 

  • Bewick AJ et al (2016) On the origin and evolutionary consequences of gene body DNA methylation. Proc Natl Acad Sci USA 113(32):9111–9116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brink RA (1956) A genetic change associated with the R locus in maize which is directed and potentially reversible. Genetics 41(6):872–889

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chandler VL (2007) Paramutation: from maize to mice. Cell 128(4):641–645

    Article  CAS  PubMed  Google Scholar 

  • Coe EH (1959) A regular and continuing conversion-type phenomenon at the B locus in maize. Proc Natl Acad Sci USA 45(6):828–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coe EH (2001) The origins of maize genetics. Nat Rev Genet 2(11):898–905

    Article  CAS  PubMed  Google Scholar 

  • Crisp PA et al (2016) Reconsidering plant memory: intersections between stress recovery, RNA turnover, and epigenetics. Sci Adv 2(2):e1501340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du J et al (2014) Mechanism of DNA methylation-directed histone methylation by KRYPTONITE. Mol Cell 55(3):495–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du J et al (2015) DNA methylation pathways and their crosstalk with histone methylation. 33(4):395–401

    Google Scholar 

  • Du J et al (2012) Dual binding of chromomethylase domains to H3K9me2-containing nucleosomes directs DNA methylation in plants. Cell 151(1):167–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eggleston WB, Alleman M, Kermicle JL (1995) Molecular organization and germinal instability of R-stippled maize. Genetics 141(1):347–360

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eichten SR et al (2011) Heritable epigenetic variation among maize inbreds. PLoS Genet 7(11)

    Google Scholar 

  • Eichten SR et al (2013) Epigenetic and genetic influences on DNA methylation variation in maize populations. Plant Cell 25(8):2783–2797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eichten SR et al (2012) Spreading of heterochromatin is limited to specific families of maize retrotransposons. PLoS Genet 8(12)

    Google Scholar 

  • Eichten SR, Springer NM (2015) Minimal evidence for consistent changes in maize DNA methylation patterns following environmental stress. Front Plant Sci 6:308

    Article  PubMed  PubMed Central  Google Scholar 

  • Feng S, Jacobsen SE, Reik W (2010) Epigenetic reprogramming in plant and animal development. Science 330(6004):622–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forestan C, Farinati S, Aiese Cigliano R, Lunardon A, Sanseverino W, Varotto S (2017) Maize RNA PolIV affects the expression of genes with nearby TE insertions and has a genome-wide repressive impact on transcription. BMC Plant Biol 17:161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gehring M (2013) Genomic imprinting: insights from plants. Annu Rev Genet 47:187–208

    Article  CAS  PubMed  Google Scholar 

  • Gehring M, Missirian V, Henikoff S (2011) Genomic analysis of parent-of-origin allelic expression in arabidopsis thaliana seeds. PLoS ONE 6(8):e23687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gehring M, Bubb KL, Henikoff S (2009) Extensive demethylation of repetitive elements during seed development underlies gene imprinting. Science 324(5933):1447–1451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gent JI et al (2013) CHH islands: De novo DNA methylation in near-gene chromatin regulation in maize. Genome Res 23(4):628–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gouil Q, Baulcombe DC (2016) DNA methylation signatures of the plant chromomethyltransferases. PLoS Genet 12(12):e1006526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenberg MVC et al (2013) Interplay between active chromatin marks and RNA-directed DNA methylation in arabidopsis thaliana. PLoS Genet 9(11)

    Google Scholar 

  • Haag JR et al (2014) Functional diversification of maize RNA polymerase IV and V subtypes via alternative catalytic subunits. 9(1), 378–390

    Google Scholar 

  • Hale CJ et al (2007) A novel Snf2 protein maintains trans-generational regulatory states established by paramutation in maize. PLoS Biol 5(10):2156–2165

    Article  CAS  Google Scholar 

  • Haring M et al (2010) The role of DNA methylation, nucleosome occupancy and histone modifications in paramutation. Plant J Cell Mol Biol 63(3):366–378

    Article  CAS  Google Scholar 

  • Haun WJ et al (2007) Genomic imprinting, methylation and molecular evolution of maize enhancer of zeste (Mez) homologs. Plant J Cell Mol Biol 49(2):325–337

    Article  CAS  Google Scholar 

  • Haun WJ, Springer NM (2008) Maternal and paternal alleles exhibit differential histone methylation and acetylation at maize imprinted genes. Plant J Cell Mol Biol

    Google Scholar 

  • Heard E, Martienssen RA (2014) Transgenerational epigenetic inheritance: myths and mechanisms. Cell 157(1):95–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henderson IR et al (2010) The De novo cytosine methyltransferase DRM2 requires intact UBA domains and a catalytically mutated paralog DRM3 during RNA-directed DNA methylation in arabidopsis thaliana. PLoS Genet 6(10):1–11

    Article  CAS  Google Scholar 

  • Hermon P et al (2007) Activation of the imprinted Polycomb Group Fie1 gene in maize endosperm requires demethylation of the maternal allele. Plant Mol Biol 64(4):387–395

    Article  CAS  PubMed  Google Scholar 

  • Hollick JB (2017) Paramutation and related phenomena in diverse species. Nat Rev Genet 18(1):5–23

    Article  CAS  PubMed  Google Scholar 

  • Hsieh T-F et al (2009) Genome-wide demethylation of arabidopsis endosperm. Science 324(5933):1451–1454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia Y et al (2009) Loss of RNA-dependent RNA polymerase 2 (RDR2) function causes widespread and unexpected changes in the expression of transposons, genes, and 24-nt small RNAs. PLoS Genet 5(11):e1000737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiao Y et al (2017) Improved maize reference genome with single-molecule technologies. Nature 546(7659):524–527

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johannes F et al (2009) Assessing the impact of transgenerational epigenetic variation on complex traits. PLoS Genet 5(6):e1000530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson LM et al (2014) SRA- and SET-domain-containing proteins link RNA polymerase V occupancy to DNA methylation. Nature 507(7490):124–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jullien PE et al (2012) DNA methylation dynamics during sexual reproduction in Arabidopsis thaliana. Curr Biol CB 22(19):1825–1830

    Article  CAS  PubMed  Google Scholar 

  • Kaeppler SM, Phillips RL (1993) Tissue culture-induced DNA methylation variation in maize. Proc Natl Acad Sci USA 90(19):8773–8776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaeppler SM, Kaeppler HF, Rhee Y (2000) Epigenetic aspects of somaclonal variation in plants. Plant Mol Biol 43(2–3):179–188

    Article  CAS  PubMed  Google Scholar 

  • Kawakatsu T et al (2016) Unique cell-type-specific patterns of DNA methylation in the root meristem. Nat Plants 2:16058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kermicle JL (1970) Dependence of the R-mottled aleurone phenotype in maize on mode of sexual transmission. Genetics 66(1):69–85

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lauria M et al (2004) Extensive maternal DNA hypomethylation in the endosperm of Zea mays. Plant Cell 16(2):510–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11(3):204–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Law JA et al (2013) Polymerase IV occupancy at RNA-directed DNA methylation sites requires SHH1. Nature 498(7454):385–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Q et al (2014a) Genetic perturbation of the maize methylome. Plant Cell 26(12):4602–4616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Q et al (2014b) Inheritance patterns and stability of DNA methylation variation in maize near-isogenic lines. Genetics 196(3):667–676

    Article  CAS  PubMed  Google Scholar 

  • Li Q et al (2015a) RNA-directed DNA methylation enforces boundaries between heterochromatin and euchromatin in the maize genome. In: Proceedings of the National Academy of Sciences of the United States of America, p 1514680112

    Google Scholar 

  • Li Q et al (2015b) Examining the causes and consequences of context-specific differential DNA methylation in maize. Plant Physiol 168(4):1262–1274

    Google Scholar 

  • Li Q et al (2015c) Post-conversion targeted capture of modified cytosines in mammalian and plant genomes. Nucleic Acids Res 43(12):1–16

    Google Scholar 

  • Lisch D et al (2002) A mutation that prevents paramutation in maize also reverses mutator transposon methylation and silencing. Proc Natl Acad Sci USA 99(9):6130–6135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lister R et al (2008) Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133(3):523–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu R et al (2015) A DEMETER-like DNA demethylase governs tomato fruit ripening. Proc Natl Acad Sci USA 112(34):10804–10809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loenen WAM, Raleigh EA (2014) The other face of restriction: modification-dependent enzymes. Nucleic Acids Res 42(1):56–69

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Rong T, Cao M (2008) Analysis of DNA methylation in different maize tissues. J Genet Genomics 35(1):41–48

    Article  PubMed  Google Scholar 

  • Makarevitch I et al (2013) Genomic distribution of maize facultative heterochromatin marked by trimethylation of H3K27. Plant Cell 25(3):780–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makarevitch I et al (2007) Natural variation for alleles under epigenetic control by the maize chromomethylase Zmet2. Genetics 177(2):749–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matzke MA, Mosher RA (2014) RNA-directed DNA methylation : an epigenetic pathway of increasing complexity

    Google Scholar 

  • McClintock B (1956) Controlling elements and the gene. Cold Spring Harb Symp Quant Biol 21:197–216

    Article  CAS  PubMed  Google Scholar 

  • McClintock B (1964) Aspects of gene regulation in maize. Carnegie Inst Wash Year Book 63:592–602

    Google Scholar 

  • McCue AD et al (2014) ARGONAUTE 6 bridges transposable element mRNA-derived siRNAs to the establishment of DNA methylation. EMBO J 34(1):20–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mei W et al (2017) A comprehensive analysis of alternative splicing in paleopolyploid maize. Front Plant Sci 8:1–19

    Google Scholar 

  • Melquist S, Luff B, Bender J (1999) Arabidopsis PAI gene arrangements, cytosine methylation and expression. Genetics 153(1):401–413

    CAS  PubMed  PubMed Central  Google Scholar 

  • Niederhuth CE et al (2016) Widespread natural variation of DNA methylation within angiosperms. bioRxiv 1–19

    Google Scholar 

  • Palmer LE (2003) Maize genome sequencing by methylation filtration. Science 302(5653):2115–2117

    Article  PubMed  Google Scholar 

  • Panda K, Slotkin RK (2013) Proposed mechanism for the initiation of transposable element silencing by the RDR6-directed DNA methylation pathway. Plant Signal Behav 8(8):8–10

    Article  CAS  Google Scholar 

  • Papa CM (2001) Maize chromomethylase zea methyltransferase2 is required for CpNpG methylation. Plant Cell Online 13(8):1919–1928

    Google Scholar 

  • Park M, Keung AJ, Khalil AS (2016) The epigenome: the next substrate for engineering. Genome Biol 17(1):183–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pecinka A, Scheid OM (2012) Stress-induced chromatin changes: a critical view on their heritability. Plant Cell Physiol p.pcs 044

    Google Scholar 

  • Phillips RL, Kaeppler SM, Olhoft P (1994) Genetic instability of plant tissue cultures: breakdown of normal controls. Proc Natl Acad Sci USA 91(12):5222–5226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rabinowicz PD et al (2005) Differential methylation of genes and repeats in land plants. Genome Res 15(10):1431–1440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Regulski M et al (2013) The maize methylome influences mRNA splice sites and reveals widespread paramutation-like switches guided by small RNA. Genome Res 23(10):1651–1662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reinders J et al (2009) Compromised stability of DNA methylation and transposon immobilization in mosaic Arabidopsis epigenomes. Genes Dev 23(8):939–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richards EJ (2006) Inherited epigenetic variation—revisiting soft inheritance. Nat Rev Genet 7(5):395–401

    Article  CAS  PubMed  Google Scholar 

  • Schmitz RJ, Ecker JR (2012) Epigenetic and epigenomic variation in Arabidopsis thaliana. Trends Plant Sci 17:149–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitz RJ et al (2011) Transgenerational epigenetic instability is a source of novel methylation variants. Science 334(6054):369–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schnable PS et al (2009) The B73 maize genome: complexity, diversity, and dynamics. 326

    Google Scholar 

  • Secco D et al (2015) Stress induced gene expression drives transient DNA methylation changes at adjacent repetitive elements. eLife 4. https://doi.org/10.7554/elife.09343

  • Selinger DA, Chandler VL (2001) B-Bolivia, an allele of the maize b1 gene with variable expression, contains a high copy retrotransposon-related sequence immediately upstream. Plant Physiol 125(3):1363–1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sidorenko LV, Peterson T (2001) Transgene-induced silencing identifies sequences involved in the establishment of paramutation of the maize p1 gene. Plant Cell 13(2):319–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith AM, Hansey CN, Kaeppler SM (2012) TCUP: a novel hAT transposon active in maize tissue culture. Front Plant Sci 3:6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Springer NM, Schmitz RJ (2017) Exploiting induced and natural epigenetic variation for crop improvement. Nat Rev Genet. In press

    Google Scholar 

  • Stam M (2009) Paramutation: a heritable change in gene expression by allelic interactions in trans. Mol Plant 2(4):578–588

    Article  CAS  PubMed  Google Scholar 

  • Stelpflug SC et al (2014) Consistent and heritable alterations of DNA methylation are induced by tissue culture in maize. Genetics 198(1):209–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stonaker JL et al (2009) Diversity of Pol IV function is defined by mutations at the maize rmr7 locus. PLoS Genet 5(11)

    Google Scholar 

  • Stroud H et al (2014) Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis. Nat Struct Mol Biol 21(1):64–72

    Article  CAS  PubMed  Google Scholar 

  • Stroud H et al (2013) Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome. Cell 152(1–2):352–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408(6814):796–815

    Article  Google Scholar 

  • To TK, Saze H, Kakutani T (2015) DNA methylation within transcribed regions. Plant Physiol 4(1):00543

    Google Scholar 

  • Underwood CJ, Henderson IR, Martienssen RA (2017) Genetic and epigenetic variation of transposable elements in Arabidopsis. Curr Opin Plant Biol 36:135–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Graaf A et al (2015) Rate, spectrum, and evolutionary dynamics of spontaneous epimutations. Proc Natl Acad Sci USA 112(21):6676–6681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker EL (1998) Paramutation of the r1 locus of maize is associated with increased cytosine methylation. Genetics 148(4):1973–1981

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang P et al (2015) Genome-wide high-resolution mapping of DNA methylation identifies epigenetic variation across embryo and endosperm in Maize (Zea may). BMC Genom 16:21

    Article  CAS  Google Scholar 

  • Waters AJ et al (2011) Parent-of-origin effects on gene expression and DNA methylation in the maize endosperm. Plant Cell 23(12):4221–4233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • West PT et al (2014) Genomic distribution of H3K9me2 and DNA methylation in a maize genome. PLoS ONE 9(8):1–10

    Article  CAS  Google Scholar 

  • Wolff P et al (2011) High-resolution analysis of parent-of-origin allelic expression in the Arabidopsis endosperm. PLoS Genet 7(6):e1002126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woo HR, Dittmer TA, Richards EJ (2008) Three SRA-domain methylcytosine-binding proteins cooperate to maintain global CpG methylation and epigenetic silencing in arabidopsis. PLoS Genet 4(8)

    Google Scholar 

  • Woodhouse MR, Freeling M, Lisch D (2006a) Initiation, establishment, and maintenance of heritable MuDR transposon silencing in maize are mediated by distinct factors. PLoS Biol 4(10):e339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woodhouse MR, Freeling M, Lisch D (2006b) The mop1 (mediator of paramutation1) mutant progressively reactivates one of the two genes encoded by the MuDR transposon in maize. Genetics 172(1):579–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zemach A et al (2013) The arabidopsis nucleosome remodeler DDM1 allows DNA methyltransferases to access H1-containing heterochromatin. Cell 153(1):193–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zemach A et al (2010) Local DNA hypomethylation activates genes in rice endosperm. Proc Natl Acad Sci USA 107(43):18729–18734

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Zhu JK (2012) Active DNA demethylation in plants and animals. Cold Spring Harb Symp Quant Biol 77:161–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang M et al (2014) Genome-wide high resolution parental-specific DNA and histone methylation maps uncover patterns of imprinting regulation in maize. Genome Res 24(1):167–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang M et al (2011) Tissue-specific differences in cytosine methylation and their association with differential gene expression in sorghum. Plant Physiol 156(4):1955–1966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zilberman D et al (2007) Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat Genet 39(1):61–69

    Article  CAS  PubMed  Google Scholar 

  • Zong W et al (2013) Genome-wide profiling of histone H3K4-tri-methylation and gene expression in rice under drought stress. Plant Mol Biol 81(1–2):175–188

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan M. Springer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Noshay, J.M., Crisp, P.A., Springer, N.M. (2018). The Maize Methylome. In: Bennetzen, J., Flint-Garcia, S., Hirsch, C., Tuberosa, R. (eds) The Maize Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-97427-9_6

Download citation

Publish with us

Policies and ethics