Skip to main content
Log in

Pyrene actin: documentation of the validity of a sensitive assay for actin polymerization

  • Papers
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Summary

The fluorescence of pyrene-labelled actin is much higher after polymerization. We have characterized in detail the polymerization properties of pyrene actin and report that native and pyrene actin are identical using the following criteria: (1) the time course of polymerization; (2) the elongation rate constants; (3) the intrinsic viscosity; and (4) the critical concentration. Native and pyrene actin copolymerize. Fluorescence of polymerized pyrene actin is 7–10 times higher than monomer. The fluorescent signal is proportional to polymer weight concentration and is insensitive to filament length distribution. Bleaching can be minimized by appropriate filters to allow continuous monitoring of signal. Measurements do not influence polymerization kinetics. This establishes that pyrene actin fluorescence is a valid assay for actin polymerization that is more sensitive than any other current assay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • BONDER, E. M. & MOOSEKER, M. S. (1981) The acrosomal process: a new tool in studying actin assembly and structure.J. Cell Biol. 91, 306a.

    Google Scholar 

  • BRADFORD, M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Analyt. Biochem. 72, 248–54.

    Google Scholar 

  • COOPER, J. A. & POLLARD, T. D. (1982) Methods to measure actin polymerization.Meth. Enzymol. 85, 182–210.

    Google Scholar 

  • CRAIG, S. W. & POWELL, L. D. (1980) Regulation of actin polymerization by villin, a 95 000 dalton cytoskeleton component of intestinal brush border.Cell 22, 739–46.

    Google Scholar 

  • DETMERS, P., WEBER, A. ELZINGA, M. & STEPHENS, R. E. (1981) 7-Chloro-4-nitrobenzeno-2-oxa-1,3-diazole actin as a probe for actin polymerization.J. biol. Chem. 256, 99–105.

    Google Scholar 

  • HIGASHI, S. & OOSAWA, F. (1965) Conformational changes associated with polymerization and nucleotide binding in actin molecules.J. molec. Biol. 12, 843–65.

    Google Scholar 

  • HOUK, T. W., JR & UE, K. (1974) The measurement of actin concentration in solution: a comparison of methods.Analyt. Biochem. 62, 66–74.

    Google Scholar 

  • KOUYAMA, T. & MIHASHI, K. (1981) Fluorimetry study ofN-(1-pyrenyl)iodoacetamide-labelled F-actin.Eur. J. Biochem. 114, 33–8.

    Google Scholar 

  • KORN, E. D. (1982) Actin polymerization and its regulation by proteins from non-muscle cells.Physiol. Rev. 62, 672–737.

    Google Scholar 

  • LEE, S., COOPER, J. A. & POLLARD, T. D. (1982) Fluorescence measurement of Acanthamoeba profilin binding to pyrene-labeled actin monomers.J. Cell Biol. 95, 297a.

    Google Scholar 

  • LOWRY, O. H., ROSENBROUGH, N. J., FARR, A. L. & RANDALL, R. J. (1951) Protein measurement with the Folin phenol reagent.J. biol. Chem. 193, 265–75.

    Google Scholar 

  • OOSAWA, F. & ASAKURA, S. (1975)Thermodynamics of the Polymerization of Protein. New York: Academic Press.

    Google Scholar 

  • POLLARD, T. D. & CRAIG, S. W. (1982) Mechanism of actin polymerization.TIBS 7, 55–8.

    Google Scholar 

  • POLLARD, T. D. & MOOSEKER, M. S. (1981) Direct measurement of actin polymerization rate constants by electron microscopy of actin filaments nucleated by isolated microvillus cores.J. Cell Biol. 88, 654–9.

    Google Scholar 

  • TAYLOR, D. L., REIDLER, J. SPUDICH, J. & STRYER, L. (1981) Detection of actin assembly by fluorescence energy transfer.J. Cell Biol. 89, 362–7.

    Google Scholar 

  • TELLAM, R. & FRIEDEN, C. (1982) Cytochalasin D and platelet gelsolin accelerate actin polymer formation. A model for regulation of the extent of actin polymer formationin vivo.Biochemistry 21, 3207–14.

    Google Scholar 

  • TILNEY, L. G., BONDER, E. M. & DEROSIER, D. J. (1981) Actin filaments elongate from their membrane-associated ends.J. Cell Biol. 90, 485–94.

    Google Scholar 

  • TSENG, P. & POLLARD, T. D. (1982) Mechanism of action ofAcanthamoeba profilin.J. Cell Biol. 94, 213–8.

    Google Scholar 

  • WALSH, T. P. & WEGNER, A. (1980) Effect of the state of oxidation of cysteine 190 of tropomyosin on the assembly of the actin-tropomyosin complex.Biochim. Biophys. Acta 626, 79–87.

    Google Scholar 

  • WEGNER, A. (1976) Head to tail polymerization of actin.J. molec. Biol. 108, 139–50.

    Google Scholar 

  • WEGNER, A. & ENGEL, J. (1975) Kinetics of the cooperative association of actin to actin filaments.Biophys. Chem. 3, 215–25.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cooper, J.A., Walker, S.B. & Pollard, T.D. Pyrene actin: documentation of the validity of a sensitive assay for actin polymerization. J Muscle Res Cell Motil 4, 253–262 (1983). https://doi.org/10.1007/BF00712034

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00712034

Keywords

Navigation