Skip to main content

SO-MRS: A Multi-robot System Architecture Based on the SOA Paradigm and Ontology

  • Conference paper
  • First Online:
Towards Autonomous Robotic Systems (TAROS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10965))

Included in the following conference series:

Abstract

A generic architecture for a class of distributed robotic systems is presented. The architecture supports openness and heterogeneity, i.e. heterogeneous components may be joined and removed from the systems without affecting its basic functionality. The architecture is based on the paradigm of Service Oriented Architecture (SOA), and a generic representation (ontology) of the environment. A device (e.g. robot) is seen as a collection of its capabilities exposed as services. Generic protocols for publishing, discovering, arranging services are proposed for creating composite services that can accomplish complex tasks in an automatic way. Also generic protocols for execution of composite services are proposed along with simple protocols for monitoring the executions, and for recovery from failures. The proposed architecture and generic protocols were implemented as a software platform, and tested for several multi-robot systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Di Ciccio, C., Mecella, M., Caruso, M., Forte, V., Iacomussi, E., Rasch, K., Querzoni, L., Santucci, G., Tino, G.: The homes of tomorrow: service composition and advanced user interfaces. EAI Endorsed Trans. Ambient Syst. 1(1) (2011)

    Google Scholar 

  2. Helal, S., Mann, W., El-Zabadani, H., King, J., Kaddoura, Y., Jansen, E.: The gator tech smart house: a programmable pervasive space. Computer 38(3), 50–60 (2005)

    Article  Google Scholar 

  3. Khaldi, B., Cherif, F.: An overview of swarm robotics: swarm intelligence applied to multi-robotics. Int. J. Comput. Appl. 126(2) (2015)

    Google Scholar 

  4. Zhang, Y., Parker, L.E.: IQ-ASyMTRe: forming executable coalitions for tightly coupled multirobot tasks. IEEE Trans. Robot. 29(2), 400–416 (2013)

    Article  Google Scholar 

  5. Simmons, R., Singh, S., Hershberger, D., Ramos, J., Smith, T.: First results in the coordination of heterogeneous robots for large-scale assembly. In: Rus, D., Singh, S. (eds.) Experimental Robotics VII, vol. 271, pp. 323–332. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45118-8_33

    Chapter  Google Scholar 

  6. de Oliveira, L.B.R.: Architectural design of service-oriented robotic systems. Ph.D. thesis, Université de Bretagne Sud (2015)

    Google Scholar 

  7. Parker, L.E.: Current research in multirobot systems. Artif. Life Robot. 7(1–2), 1–5 (2003)

    Article  Google Scholar 

  8. Gerkey, B., Vaughan, R.T., Howard, A.: The player/stage project: tools for multi-robot and distributed sensor systems. In: Proceedings of the 11th International Conference on Advanced Robotics, vol. 1, pp. 317–323 (2003)

    Google Scholar 

  9. Kramer, J., Magee, J.: Self-managed systems: an architectural challenge. In: Future of Software Engineering, 2007. FOSE 2007, pp. 259–268. IEEE (2007)

    Google Scholar 

  10. Jung, D., Zelinsky, A.: Grounded symbolic communication between heterogeneous cooperating robots. Auton. Robots 8(3), 269–292 (2000)

    Article  Google Scholar 

  11. Hugues, L.: Collective grounded representations for robots. In: Parker, L.E., Bekey, G., Barhen, J. (eds.) Distributed autonomous robotic systems 4, pp. 79–88. Springer, Tokyo (2000). https://doi.org/10.1007/978-4-431-67919-6_8

    Chapter  Google Scholar 

  12. Zhong, C., DeLoach, S.A.: Runtime models for automatic reorganization of multi-robot systems. In: Proceedings of the 6th International Symposium on Software Engineering for Adaptive and Self-Managing Systems, pp. 20–29. ACM (2011)

    Google Scholar 

  13. Chitic, S.-G., Ponge, J., Simonin, O.: Are middlewares ready for multi-robots systems? In: Brugali, D., Broenink, J.F., Kroeger, T., MacDonald, B.A. (eds.) SIMPAR 2014. LNCS (LNAI), vol. 8810, pp. 279–290. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11900-7_24

    Chapter  Google Scholar 

  14. Thrun, S., et al.: Robotic mapping: a survey. Explor. Artif. Intell. New Millennium 1, 1–35 (2002)

    Google Scholar 

  15. Kuipers, B.: The spatial semantic hierarchy. Artif. Intell. 119(1), 191–233 (2000)

    Article  MathSciNet  Google Scholar 

  16. Vasudevan, S., Gächter, S., Nguyen, V., Siegwart, R.: Cognitive maps for mobile robots - an object based approach. Robot. Auton. Syst. 55(5), 359–371 (2007)

    Article  Google Scholar 

  17. Anguelov, D., Biswas, R., Koller, D., Limketkai, B., Thrun, S.: Learning hierarchical object maps of non-stationary environments with mobile robots. In: Proceedings of the Eighteenth Conference on Uncertainty in Artificial Intelligence, pp. 10–17. Morgan Kaufmann Publishers Inc. (2002)

    Google Scholar 

  18. Pronobis, A., Jensfelt, P.: Large-scale semantic mapping and reasoning with heterogeneous modalities. In: 2012 IEEE International Conference on Robotics and Automation (ICRA), pp. 3515–3522. IEEE (2012)

    Google Scholar 

  19. Kostavelis, I., Gasteratos, A.: Semantic mapping for mobile robotics tasks: a survey. Robot. Auton. Syst. 66, 86–103 (2015)

    Article  Google Scholar 

  20. Tenorth, M., Beetz, M.: KnowRob - a knowledge processing infrastructure for cognition-enabled robots. Part 1: the KnowRob system. Int. J. Robot. Res. (IJRR) 32(5), 566–590 (2013)

    Article  Google Scholar 

  21. Ambroszkiewicz, S.: Entish: a language for describing data processing in open distributed systems. Fundam. Informaticae 60(1–4), 41–66 (2004)

    MATH  Google Scholar 

  22. Hanheide, M., Göbelbecker, M., Horn, G.S., Pronobis, A., Sjöö, K., Aydemir, A., Jensfelt, P., Gretton, C., Dearden, R., Janicek, M., et al.: Robot task planning and explanation in open and uncertain worlds. Artif. Intell. 247, 119–150 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanislaw Ambroszkiewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Skarzynski, K., Stepniak, M., Bartyna, W., Ambroszkiewicz, S. (2018). SO-MRS: A Multi-robot System Architecture Based on the SOA Paradigm and Ontology. In: Giuliani, M., Assaf, T., Giannaccini, M. (eds) Towards Autonomous Robotic Systems. TAROS 2018. Lecture Notes in Computer Science(), vol 10965. Springer, Cham. https://doi.org/10.1007/978-3-319-96728-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96728-8_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96727-1

  • Online ISBN: 978-3-319-96728-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics