Skip to main content
Log in

Current research in multirobot systems

  • Plenary Talk
  • Published:
Artificial Life and Robotics Aims and scope Submit manuscript

Abstract

As research progresses in distributed robotic systems, more and more aspects of multirobot systems are being explored. This article describes advances in multirobot systems, and surveys the current state of the art. The focus is principally on research that has been demonstrated in physical robot implementations. I have identified eight primary research topics within multirobot systems—biological inspirations, communication, architectures, localization/mapping/exploration, object transport and manipulation, motion coordination, reconfigurable robots, and learning—and discuss the current state of research in these areas. As I describe each research area, I identify some key open issues in multirobot team research, and conclude by identifying several additional open research issues in distributed mobile robotic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fukuda T, Nakagawa S (1987) A dynamically reconfigurable robotic system (concept of a system and optimal configurations).

  2. Beni G (1988) The concept of a cellular robot. Proceedings of the 3rd IEEE Symposium on Intelligent Control, Arlington. IEEE, Los Alamitos, CA, pp 57–61

    Google Scholar 

  3. Premvuti S, Yuta S (1990) Consideration on the cooperation of multiple autonomous mobile robots. Proceedings of the IEEE International Workshop of Intelligent Robots and Systems (IROS '90), Tsuchiura, Japan. IEEE p 59–61

  4. Arai T, Ogata H, Suzuki T (1989) Collision avoidance among multiple robots using virtual impedance. In: Proceedings of Intelligent Robots and Systems (IROS). IEEE p 479–485

  5. Wang PKC (1989) Navigation strategies for multiple autonomous mobile robots. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'89). IEEE pp 486–493

  6. Asama H, Matsumoto A, Ishida Y (1989) Design of an autonomous and distributed robot system: ACTRESS. Proceedings of the IEEE/RSJ International Workshop on Intelligent Robots and Systems, Tsukuba, Japan. IEEE pp 283–290

  7. Dudek G, Jenkin M, Milios E, et al. (1993) A taxonomy for swarm robots. Proceedings of the 1993 IEEE International Conference on Intelligent Robots and Systems (IROS '93). Yokahama, Japan, IEEE pp 441–447

    Book  Google Scholar 

  8. Cao Y, Fukunaga A, Kahng A, et al. (1995) Cooperative mobile robotics: antecedents and directions. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '95). Pittsburgh, PA, IEEE, pp 226–234

    Google Scholar 

  9. Brooks RA (1986) A robust layered control system for a mobile robot. IEEE J Robotics Autom RA-2(1):14–23

    Google Scholar 

  10. Arkin RC (1990) Integrating behavioral, perceptual, and world knowledge in reactive navigation. Robotics Auton Syst 6:105–122

    Article  Google Scholar 

  11. Mataric M (1992) Designing emergent behaviors: from local interactions to collective intelligence. In: Meyer J, Roitblat H, Wilson S (eds) Proceedings of the 2nd International Conference on Simulation of Adaptive Behavior. MIT Press, Cambridge, pp 432–441

    Google Scholar 

  12. Deneubourg J, Goss S, Sandini G, et al. (1990) Self-organizing collection and transport of objects in unpredictable environments. Japan-USA Symposium on Flexible Automation, pp 1093–1098

  13. Drogoul A, Ferber J (1992) From Tom Thumb to the dockers: some experiments with foraging robots. Proceedings of the 2nd International Conference on Simulation of Adaptive Behavior. pp 451–459

  14. McFarland D (1994) Towards robot cooperation. In: Cliff D, Husbands P, Meyer J, et al. (eds) Proceedings of the 3rd International Conference on Simulation of Adaptive Behavior, MIT Press, Cambridge, pp 440–444

    Google Scholar 

  15. Benda M, Jagannathan V, Dodhiawalla R (1985) On optimal cooperation of knowledge sources. Technical Report BCS-G2010-28, Boeing AI Center, August

  16. Haynes T, Sen S (1986) Evolving behavioral strategies in predators and prey. In: Weiss G, Sen S (eds) Adaptation and learning in multi-agent systems. Springer, Berlin, pp 113–126

    Google Scholar 

  17. Stone P, Veloso M (1998) A layered approach to learning client behaviors in the robocup soccer server. Appl Artif Intell 12:165–188

    Article  Google Scholar 

  18. Marsella S, Adibi J, Al-Onaizan Y, et al. (1999) On being a team-mate: experiences acquired in the design of RoboCup teams. In: Etzioni O, Muller J, Bradshaw J (eds) Proceedings of the 3rd Annual Conference on Autonomous Agents Seattle, ACM Press. pp 221–227

  19. MacLennan B (1991) Synthetic ethology: an approach to the study of communication. In: Proceedings of the 2nd Interdisciplinary Workshop on Synthesis and Simulation of Living Systems. Los Alamos, Addison-Wesky. pp 631–658

    Google Scholar 

  20. Balch T, Arkin RC (1994) Communication in reactive multiagent robotic systems. Auton Robots 1:1–25

    Google Scholar 

  21. Hugues L (2000) Collective grounded representations for robots. In: Parker L, Bekey G, Barhen J (eds) Distributed autonomous robotic systems, vol 4. Springer-Verlag, Tokyo, pp 79–88

    Google Scholar 

  22. Jung D, Zelinsky A (2000) Grounded symbolic communication between heterogeneous cooperating robots, Auton Robots 8(3): 269–292

    Article  Google Scholar 

  23. Winfield A (2000) Distributed sensing and data collection via broken ad hoc wireless connected networks of mobile robots. In: Parker L, Bekey G, Barhen J (eds) Distributed autonomous robotic systems, vol. 4, Springer-Verlag, Tokyo, pp 273–282

    Google Scholar 

  24. Molnar P, Starke J (2000) Communication fault tolerance in distributed robotic systems. In: Parker L, Bekey G, Barhen J (eds) Distributed autonomous robotic systems, vol 4. Springer-Verlag, Tokyo, pp 99–108

    Google Scholar 

  25. Alami R, Fleury S, Herrb M, et al. (1998) Multi-robot cooperation in the Martha project. IEEE Robotics Autom Mag 5(1):36–47

    Article  Google Scholar 

  26. Parker LE (1998) ALLIANCE: an architecture for fault-tolerant multi-robot cooperation. IEEE Trans Robotics Autom 14:220–240

    Article  Google Scholar 

  27. Mataric M (1994) Interaction and intelligent behavior. PhD Thesis, Massachusetts Institute of Technology

  28. MacKenzie D, Arkin R, Cameron J (1997) Multiagent mission specification and execution. Auton Robots 4(1):29–52

    Article  Google Scholar 

  29. Roumeliotis S, Bekey G (2000) Distributed multi-robot localization. In: Parker L, Bekey G, Barhen J (eds) Distributed autonomous robotic systems, vol 4. Springer-Verlag, Tokyo, pp 179–188

    Google Scholar 

  30. Fox D, Burgard W, Kruppa H, et al. (2000) Collaborative multirobot exploration. Auton Robots 8 (3):325–344

    Article  Google Scholar 

  31. Dedeoglu G, Sukhatme G (2000) Landmark-based matching algorithm for cooperative mapping by autonomous robots. In: Parker L, Bekey G, Barhen J (eds) Distributed autonomous robotic systems, vol 4. Springer-Verlag, Tokyo, pp 251–260

    Google Scholar 

  32. Burgard W, Moors M, Fox D, et al. (2000) Collaborative multirobot exploration. Proceedings of the IEEE International Conference on Robotics and Automation. IEEE, San Francisco, pp 476–481

    Google Scholar 

  33. Rekleitis I, Dudek G, Milios E (2000) Graph-based exploration using multiple robots. In: Parker L, Bekey G, Barhen J (eds) Distributed autonomous robotic systems, vol 4. Springer-Verlag, Tokyo, pp 241–250

    Google Scholar 

  34. Rus D, Donald B, Jennings J (1995) Moving furniture with teams of autonomous robots. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '95). Pittsburgh, IEEE, pp 235–242

    Google Scholar 

  35. Stilwell D, Bay J (1993) Toward the development of a material transport system using swarms of ant-like robots. Proceedings of the IEEE International Conference on Robotics and Automation (ICRA '93). Atlanta, IEEE, pp 766–771

    Google Scholar 

  36. Wang Z, Kimura Y, Takahashi T, et al. (2000) A control method of a multiple non-holonomic robot system for cooperative object transportation. In: Parker L, Bekey G, Barhen J (eds) Distributed autonomous robotic systems, vol 4. Springer-Verlag, Tokyo, pp 447–456

    Google Scholar 

  37. Khatib O, Yokoi K, Chang K, et al. (1996) Vehicle/arm coordination and mobile manipulator decentralized cooperation. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '96). Osaka, IEEE, pp 546–553

    Google Scholar 

  38. Donald B, Gariepy L, Rus D (2000) Distributed manipulation of multiple objects using ropes. Proceedings of the IEEE International Conference on Robotics and Automation (ICRA '00). San Francisco, IEEE, pp 450–457

    Google Scholar 

  39. Yamashita A, Fukuchi M, Ota J, et al. (2000) Motion planning for cooperative transportation of a large object by multiple mobile robots in a 3D environment. Proceedings of the IEEE International Conference on Robotics and Automation (ICRA '00). San Francisco, IEEE, pp 3144–3151

    Google Scholar 

  40. Balch T, Arkin RC (1998) Behavior-based formation control for multi-robot teams. IEEE Trans Robotics Autom 14(6):926–939

    Article  Google Scholar 

  41. Parker LE (2002) Distributed algorithms for multi-robot observation of multiple moving targets. Auton Robots 12:231–255

    Article  MATH  Google Scholar 

  42. LaValle SM, Lin D, Guibas LJ, et al. (1997) Finding an unpredictable target in a workspace with obstacles. Proceedings of the International Conference on Robots and Automation (ICRA '97). IEEE, pp 737–742

  43. Minten B, Murphy R, Hyams J, et al. (2000) A communication-free behavior for docking mobile robots. In: Parker L, Bekey G, Barhen J (eds) Distributed autonomous robotic systems, vol 4. Springer-Verlag, Tokyo, pp 357–367

    Google Scholar 

  44. Yim M, Duff DG, Roufas KD (2000) Polybot: a modular reconfigurable robot. Proceedings of the IEEE International Conference on Robotics and Automation (ICRA '00). San Francisco, IEEE, pp 514–520

    Google Scholar 

  45. Castano A, Chokkalingam R, Will P (2000) Autonomous and self-sufficient conro modules for reconfigurable robots. In: Parker L, Bekey G, Barhen J (eds) Distributed autonomous robotic systems, vol 4. Springer-Verlag, Tokyo, pp 155–164

    Google Scholar 

  46. Bojinov H, Casal A, Hogg T (2000) Emergent structures in modular self-reconfigurable robots. Proceedings of the IEEE International Conference on Robotics and Automation. San Francisco, IEEE, pp 1734–1741

    Google Scholar 

  47. Yoshida E, Murata S, Kokaji S, et al. (2000) Micro selfreconfigurable robotic system using shape memory alloy. In: Parker L, Bekey G, Barhen J (eds) Distributed autonomous robotic systems, vol 4. Springer-Verlag, Tokyo, pp 145–154

    Google Scholar 

  48. Rus D, Vona M (2000) A physical implementation of the self-reconfiguring crystalline robot. Proceedings of the IEEE International Conference on Robotics and Automation (ICRA '00). San Francisco, IEEE, pp 1726–1733

    Google Scholar 

  49. Unsal C, Khosla PK (2000) Mechatronic design of a modular selfreconfiguring robotic system. Proceedings of the IEEE International Conference on Robotics and Automation (ICRA '00). San Francisco, IEEE, pp 1742–1747

    Google Scholar 

  50. Weiss G, Sen S (eds) (1996) Adaptation and learning in multiagent systems. Springer-Verlag, Berlin

    Google Scholar 

  51. Mahadevan S, Connell J (1991) Automatic programming of behavior-based robots using reinforcement learning. In: Proceedings of AAAI '91. AAAI Press, Anaheim, pp 8–14

    Google Scholar 

  52. Riley P, Veloso M (2000) On behavior classification in adversarial environments. In: Parker L, Bekey G, Barhen J (eds) Distributed autonomous robotic systems, vol 4. Springer-Verlag, Tokyo, pp 371–380

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. E. Parker.

About this article

Cite this article

Parker, L.E. Current research in multirobot systems. Artif Life Robotics 7, 1–5 (2003). https://doi.org/10.1007/BF02480877

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02480877

Key words

Navigation