Skip to main content

Cytoplasmic Genome

  • Chapter
  • First Online:
The Allium Genomes

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

The chloroplasts and mitochondria are the organelles essential for normal growth and development of plants. They have their original genomes, and genes encoded in these organelles are expressed in concordance with factors originating from the nuclear genome. Researchers have analyzed cytoplasmic genomes to understand this complicated mechanism. The sizes of the chloroplast genome and the mitochondrial genome are relatively small, with the former being approximately 150 kbp and the latter being several hundred kbp to several Mbps. The widespread use of next-generation sequencing (NGS) in recent years has enabled sequencing of the entire genome of chloroplasts and mitochondria with relative ease and affordability. For example, several chloroplast and mitochondrial genomes have been sequenced for onions. Onions carry several different types of cytoplasms characterized by distinct cytoplasmic genomes. In particular, male sterility induced by certain types of cytoplasms is a trait that is crucial to F1 hybrid breeding, and male sterility phenotypes are determined by their compatibility with the nuclear genome. This chapter explains the cytoplasmic form of these onion cultivars and lays out the characteristics of the cytoplasmic genome of each one of them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bohra A, Jha UC, Adhimoolam P, Bisht D, Singh NP (2016) Cytoplasmic male sterility (CMS) in hybrid breeding in field crops. Plant Cell Rep 35:967–993

    Article  CAS  PubMed  Google Scholar 

  • Borner T, Aleynikova AY, Zubo YO, Kusnetsov VV (2015) Chloroplast RNA polymerases: role in chloroplast biogenesis. Biochim Biophys Acta 1847:761–769

    Article  PubMed  Google Scholar 

  • de Courcel AGL, Vedel F, Boussac JM (1989) DNA polymorphism in Allium cepa cytoplasms and its implications concerning the origin of onions. Theor Appl Genet 77:793–798

    Article  PubMed  Google Scholar 

  • Dunning Hotopp JC (2011) Horizontal gene transfer between bacteria and animals. Trends Genet 27:157–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dyall SD, Brown MT, Johnson PJ (2004) Ancient invasions: from endosymbionts to organelles. Science 304:253–257

    Article  CAS  PubMed  Google Scholar 

  • Engelke T, Tatlioglu T (2002) A PCR-marker for the CMS1 inducing cytoplasm in chives derived from recombination events affecting the mitochondrial gene atp9. Theor Appl Genet 104:698–702

    Article  CAS  PubMed  Google Scholar 

  • Forner J, Weber B, Thuss S, Wildum S, Binder S (2007) Mapping of mitochondrial mRNA termini in Arabidopsis thaliana: t-elements contribute to 5′ and 3′ end formation. Nucleic Acids Res 35:3676–3692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • FAOSTAT, 2014. Agriculture Organization of the United Nations

    Google Scholar 

  • Gurushidze M, Mashayekhi S, Blattner FR, Friesen N, Fritsch RM (2007) Phylogenetic relationships of wild and cultivated species of Allium section Cepa inferred by nuclear rDNA ITS sequence analysis. Plant Syst Evol 269(3):259–269

    Article  CAS  Google Scholar 

  • Hammani K, Giege P (2014) RNA metabolism in plant mitochondria. Trends Plant Sci 19:380–389

    Article  CAS  PubMed  Google Scholar 

  • Hanson MR, Bentolila S (2004) Interactions of mitochondrial and nuclear genes that affect male gametophyte development. Plant Cell 16(Suppl):S154–S169. https://doi.org/10.1105/tpc.015966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Havey MJ (1999) Seed yield, floral morphology, and lack of male-fertile restoration of male sterile onion (Allium cepa) population possessing the cytoplasm of Allium galanthum. J Am Soc Hort Sci 124:626–629

    Google Scholar 

  • Havey MJ (2000) Diversity among male-sterility-inducing and male-fertile cytoplasms of onion. Theor Appl Genet 101:778–782

    Article  CAS  Google Scholar 

  • Holford P, Croft J, Newbury HJ (1991a) Structural studies of microsporogenesis in fertile and male-sterile onions (Allium cepa L.) containing the cms-S cytoplasm. Theor Appl Genet 82:745–755

    CAS  PubMed  Google Scholar 

  • Holford P, Croft JH, Newbury HJ (1991b) Differences between, and possible origins of, the cytoplasms found in fertile and male-sterile onions (Allium cepa L.). Theor Appl Genet 82:737–744

    CAS  PubMed  Google Scholar 

  • Jones HA, Clarke AE (1943) Inheritance of male sterility in the onion and the production of hybrid seed. Proc Am Soc Hortic Sci 43:189–194

    Google Scholar 

  • Jones HA, Davis G (1944) Inbreeding and heterosis and their relation to the development of new varieties of onions. USDA Tech Bull 874:1–28

    Google Scholar 

  • Jones HA, Emsweller SL (1936) A male-sterile onion. Proc Am Soc Hortic Sci 34:582–585

    Google Scholar 

  • Keeling PJ (2010) The endosymbiotic origin, diversification and fate of plastids. Philos Trans R Soc Lond B Biol Sci 365:729–748. https://doi.org/10.1098/rstb.2009.0103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khosa JS, McCallum J, Dhatt AS, Macknight RC (2016) Enhancing onion breeding using molecular tools. Plant Breed 135:9–20. https://doi.org/10.1111/pbr.12330

    Article  Google Scholar 

  • Kik C (2002) Exploitation of wild relatives for the breeding of cultivated Allium species. CABI Publishing, pp 81–100. https://doi.org/10.1079/9780851995106.0081

  • Kim B, Kim K, Yang TJ, Kim S (2016) Completion of the mitochondrial genome sequence of onion (Allium cepa L.) containing the CMS-S male-sterile cytoplasm and identification of an independent event of the ccmFN gene split. Curr Genet 62:873–885. https://doi.org/10.1007/s00294-016-0595-1

    Article  CAS  PubMed  Google Scholar 

  • Kim S (2014) A codominant molecular marker in linkage disequilibrium with a restorer-of-fertility gene (Ms) and its application in reevaluation of inheritance of fertility restoration in onions. Mol Breed 34:769–778. https://doi.org/10.1007/s11032-014-0073-8

    Article  CAS  Google Scholar 

  • Kim S, Lee ET, Cho DY, Han T, Bang H, Patil BS, Ahn YK, Yoon M-K (2009) Identification of a novel chimeric gene, orf725, and its use in development of a molecular marker for distinguishing among three cytoplasm types in onion (Allium cepa L.). Theor Appl Genet 118:433–441. https://doi.org/10.1007/s00122-008-0909-x

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Park JY, Yang T (2015) Comparative analysis of the complete chloroplast genome sequences of a normal male-fertile cytoplasm and two different cytoplasms conferring cytoplasmic male sterility in onion (Allium cepa L.). J Hortic Sci Biotechnol 90:459–468. https://doi.org/10.1080/14620316.2015.11513210

    Article  CAS  Google Scholar 

  • Ng S, De Clercq I, Van Aken O, Law SR, Ivanova A, Willems P, Giraud E, Van Breusegem F, Whelan J (2014) Anterograde and retrograde regulation of nuclear genes encoding mitochondrial proteins during growth, development, and stress. Mol Plant 7:1075–1093. https://doi.org/10.1093/mp/ssu037

    Article  CAS  PubMed  Google Scholar 

  • Raczynska KD, Le Ret M, Rurek M, Bonnard G, Augustyniak H, Gualberto JM (2006) Plant mitochondrial genes can be expressed from mRNAs lacking stop codons. FEBS Lett 580:5641–5646. https://doi.org/10.1016/j.febslet.2006.09.010

    Article  CAS  PubMed  Google Scholar 

  • Rhoads DM (2011) Plant mitochondrial retrograde regulation. In: Kempken F (ed) Plant mitochondria. Springer, New York, pp. 411–437. https://doi.org/10.1007/978-0-387-89781-3_16

    Google Scholar 

  • Schweisguth B (1973) Étude d’un nouveau type de stérilité male chez l’oignon. Allium cepa L. Ann. Amélior Plant 23:221–233

    Google Scholar 

  • Tsujimura M, Kaneko T, Sakamoto T, Kimura S, Shigyo M, Yamagishi H, Terachi T (2018) Multichromosomal structure of the onion mitochondrial genome and a transcript analysis. Mitochondrion (in press). https://doi.org/10.1016/j.mito.2018.05.001

  • von Kohn C, Kielkowska A, Havey MJ (2013) Sequencing and annotation of the chloroplast DNAs and identification of polymorphisms distinguishing normal male-fertile and male-sterile cytoplasms of onion. Genome 56:737–742. https://doi.org/10.1139/gen-2013-0182

    Article  CAS  Google Scholar 

  • Yamashita K-I, Takatori Y, Tashiro Y (2005) Chromosomal location of a pollen fertility-restoring gene, Rf, for CMS in Japanese bunching onion (Allium fistulosum L.) possessing the cytoplasm of A. galanthum Kar. et Kir. revealed by genomic in situ hybridization. Theor Appl Genet 111:15–22. https://doi.org/10.1007/s00122-005-1941-8

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toru Terachi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tsujimura, M., Terachi, T. (2018). Cytoplasmic Genome. In: Shigyo, M., Khar, A., Abdelrahman, M. (eds) The Allium Genomes. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-95825-5_6

Download citation

Publish with us

Policies and ethics