Skip to main content

Topological Realisations of Absolute Galois Groups

  • Conference paper
  • First Online:
Cohomology of Arithmetic Groups (JS66 2016)

Abstract

Let F be a field of characteristic 0 containing all roots of unity. We construct a functorial compact Hausdorff space \(X_F\) whose profinite fundamental group agrees with the absolute Galois group of F, i.e. the category of finite covering spaces of \(X_F\) is equivalent to the category of finite extensions of F. The construction is based on the ring of rational Witt vectors of F. In the case of the cyclotomic extension of \(\mathbb {Q}\), the classical fundamental group of \(X_F\) is a (proper) dense subgroup of the absolute Galois group of F. We also discuss a variant of this construction when the field is not required to contain all roots of unity, in which case there are natural Frobenius-type automorphisms which encode the descent along the cyclotomic extension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    It is this connection, as well as the observation that the Dennis trace map from K-theory to topological Hochschild homology factors canonically over the K-theory of endomorphisms, that led the second author to consider the rational Witt vectors.

  2. 2.

    An instance is the definition of a \(\Lambda \)-ring, which can be regarded as a commutative ring A with a map \(A\rightarrow \mathrm {W}(A)\) satisfying certain properties. In most natural examples, including \(\mathrm {K}_0\) of a commutative ring, the map \(A\rightarrow \mathrm {W}(A)\) actually factors through a map \(A\rightarrow \mathrm {W}_{\mathrm {rat}}(A)\).

  3. 3.

    The induced action on \(2\pi \mathrm {i}\mathbb {Z}\subset \mathbb {C}\) is trivial, as we are working over the cyclotomic extension. In fact, there can not be an action (except for complex conjugation) on \(2\pi \mathrm {i}\mathbb {Z}\), which presents an obstruction to extending this action beyond the cyclotomic extension.

  4. 4.

    In fact, one can combine the first and second observation, which leads to the observation that \(\mathrm {W}_{\mathrm {rat}}(F)\) is a \(\Lambda \)-ring; in fact, (almost tautologically) one for which the map \(\mathrm {W}_{\mathrm {rat}}(F)\rightarrow \mathrm {W}(\mathrm {W}_{\mathrm {rat}}(F))\) factors over \(\mathrm {W}_{\mathrm {rat}}(F)\rightarrow \mathrm {W}_{\mathrm {rat}}(\mathrm {W}_{\mathrm {rat}}(F))\).

  5. 5.

    In fancy language, the ‘dynamical system’ of the connected components of \({\text {Spec }}(\mathrm {W}_{\mathrm {rat}}(\mathbb {Q}(\zeta _\infty ))\otimes \mathbb {C})\) with its Frobenius operators is one form of the Bost–Connes system, [6].

  6. 6.

    Note that this convention is reverse to that prevalent in algebraic topology, but it is common in algebraic geometry and is more convenient when working with categories of covering spaces. Of course, these two conventions yield groups which are opposite groups of one another, hence related by a canonical isomorphism \([\gamma ]\mapsto [\gamma ]^{-1}\).

  7. 7.

    Note, however, the misprint there: the two inclusions \(\ker u\subset {\text {im}}u'\) and \(\ker u\supset {\text {im}}u'\) must be exchanged.

  8. 8.

    Here is the construction. Let \(\varphi \in {\text {End}}(\mathbb {Q}/\mathbb {Z})\cong {\text {End}}(\hat{\mathbb {Z}})\cong \hat{\mathbb {Z}}\cong \prod _{p\text { prime}}\mathbb {Z}_p\) be such that the component \(\varphi _p\in \mathbb {Z}_p\) at each p is transcendental over \(\mathbb {Q}\). Then we set \(A=\{ (a,b)\in \mathbb {Q}^2\mid \varphi (a\bmod \mathbb {Z})=b\bmod z \}\).

  9. 9.

    Note that inverting \([\zeta _\ell ]-1\) in particular inverts \(\ell \), so the condition that \(\varphi _\ell ^\sharp \) lifts Frobenius is vacuous.

References

  1. Fontaine, J.-M., Wintenberger, J.-P.: Extensions algébrique et corps des normes des extensions APF des corps locaux. C. R. Acad. Sci. Paris Sér. A-B 288(8), A441–A444 (1979). MR 527692

    MATH  Google Scholar 

  2. Weinstein, J.: \(\text{Gal}(\bar{\mathbb{Q}}_p/{\mathbb{Q}}_p)\) as a geometric fundamental group (2014). arXiv:1404.7192

  3. Scholze, P.: Perfectoid spaces. Publ. Math. Inst. Hautes Études Sci. 116, 245–313 (2012). MR 3090258

    Article  MathSciNet  Google Scholar 

  4. Almkvist, G.: Endomorphisms of finitely generated projective modules over a commutative ring. Ark. Mat. 11, 263–301 (1973). MR 0424786

    Article  MathSciNet  Google Scholar 

  5. Voevodsky, V.: On motivic cohomology with \(\varvec {Z}/l\) -coefficients. Ann. Math. 174(1), 401–438 (2011). MR 2811603

    Article  MathSciNet  Google Scholar 

  6. Bost, J.-B., Connes, A.: Hecke algebras, type III factors and phase transitions with spontaneous symmetry breaking in number theory. Selecta Math. (N.S.) 1(3), 411–457 (1995). MR 1366621

    Article  MathSciNet  Google Scholar 

  7. Steen, L.A., Arthur Seebach, J.: Counterexamples in Topology, 2nd edn. Springer, New York, Heidelberg (1978). MR 507446

    Book  Google Scholar 

  8. Fabel, P.: Multiplication is discontinuous in the Hawaiian earring group (with the quotient topology). Bull. Pol. Acad. Sci. Math. 59(1), 77–83 (2011). MR 2810974

    Article  MathSciNet  Google Scholar 

  9. Brazas, J.: The fundamental group as a topological group. Topol. Appl. 160(1), 170–188 (2013). MR 2995090

    Article  MathSciNet  Google Scholar 

  10. Brazas, J.: Semicoverings: a generalization of covering space theory. Homol. Homotopy Appl. 14(1), 33–63 (2012). MR 2954666

    Article  MathSciNet  Google Scholar 

  11. Bhatt, B., Scholze, P.: The pro-étale topology for schemes. Astérisque (369), 99–201 (2015). MR 3379634

    Google Scholar 

  12. Klevdal, C.: A correspondence, Galois, with generalized covering spaces. Undergraduate honors Thesis. University of Colorado, Boulder (2015)

    Google Scholar 

  13. Revêtements étales et groupe fondamental (SGA 1), Documents Mathématiques (Paris) [Mathematical Documents (Paris)], 3, Société Mathématique de France, Paris, 2003, Séminaire de géométrie algébrique du Bois Marie 1960–61. [Algebraic geometry seminar of Bois Marie 1960–61], Directed by Grothendieck, A. With two papers by Raynaud, M. Updated and annotated reprint of the 1971 original. Lecture Notes in Mathematics, vol. 224, Springer, Berlin; MR0354651 (50 #7129). MR 2017446

    Google Scholar 

  14. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002). MR 1867354

    MATH  Google Scholar 

  15. Munkres, J.R.: Topology, 2nd edn. Prentice Hall, Upper Saddle River (2000)

    MATH  Google Scholar 

  16. Rudin, W.: Fourier Analysis on Groups. Interscience tracts in pure and applied mathematics, vol. 12. Interscience Publishers (a division of John Wiley and Sons), New York, London (1962). MR 0152834

    Google Scholar 

  17. Stein, K.: Analytische Funktionen mehrerer komplexer Veränderlichen zu vorgegebenen Periodizitätsmoduln und das zweite Cousinsche Problem. Math. Ann. 123, 201–222 (1951). MR 0043219

    Article  MathSciNet  Google Scholar 

  18. Shelah, S.: Infinite abelian groups, whitehead problem and some constructions. Isr. J. Math. 18, 243–256 (1974). MR 0357114

    Article  MathSciNet  Google Scholar 

  19. Shelah, S.: A compactness theorem for singular cardinals, free algebras, whitehead problem and transversals. Isr. J. Math. 21(4), 319–349 (1975). MR 0389579

    Article  MathSciNet  Google Scholar 

  20. Godement, R.: Topologie algébrique et théorie des faisceaux. Hermann, Paris (1973). Troisième édition revue et corrigée, Publications de l’Institut de Mathématique de l’Université de Strasbourg, XIII, Actualités Scientifiques et Industrielles, vol. 1252. MR 0345092

    Google Scholar 

  21. Eilenberg, S., Steenrod, N.: Foundations of Algebraic Topology. Princeton University Press, Princeton, New Jersey(1952). MR 0050886

    Google Scholar 

  22. The stacks project, website, available at http://stacks.math.columbia.edu/

  23. Hazewinkel, M.: Witt vectors. I. In: Handbook of Algebra, vol. 6, pp. 319–472. Elsevier/North-Holland, Amsterdam (2009). MR 2553661

    Google Scholar 

  24. Almkvist, G.: \(K\)-theory of endomorphisms. J. Algebra 55(2), 308–340 (1978). MR 523461

    Article  MathSciNet  Google Scholar 

  25. Kelley, J.L., Spanier, E.H.: Euler characteristics. Pac. J. Math. 26, 317–339 (1968). MR 0260842

    Article  MathSciNet  Google Scholar 

  26. Grothendieck, A.: Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV. Inst. Hautes Études Sci. Publ. Math. 32, 5–361 (1967). MR 0238860

    Article  Google Scholar 

  27. Hilbert, D.: Die Theorie der algebraischen Zahlkörper. Jahresber. Deutsch. Math.-Verein. 4, 175–546 (1897)

    MATH  Google Scholar 

  28. Neukirch, J.: Algebraic Number Theory. Grundlehren der Mathematischen Wissenschaften [Fundamental principles of mathematical sciences], vol. 322, Springer, Berlin (1999): Translated from the 1992 German original and with a note by Schappacher, N. With a foreword by Harder, G. MR 1697859

    Book  Google Scholar 

  29. Serre, J.-P.: Géométrie algébrique et géométrie analytique. Ann. Inst. Fourier 6, 1–42 (1955–1956). MR 0082175 (18,511a)

    Article  MathSciNet  Google Scholar 

  30. Lang, S.: Algebra, 3rd edn., Graduate Texts in Mathematics, vol. 211, Springer, New York (2002). MR 1878556

    Book  Google Scholar 

  31. Grothendieck, A.: Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents I. Inst. Hautes Études Sci. Publ. Math. 11, 5–167 (1961). MR0217085

    Article  Google Scholar 

  32. Pontrjagin, L.: The theory of topological commutative groups. Ann. Math. 35(2), 361–388 (1934). MR 1503168

    Article  MathSciNet  Google Scholar 

  33. Fuchs, L., Loonstra, F.: On the cancellation of modules in direct sums over Dedekind domains. Nederl. Akad. Wetensch. Proc. Ser. A 74 = Indag. Math. 33, 163–169 (1971). MR 0289476

    Article  MathSciNet  Google Scholar 

  34. May, W.: Unit groups of infinite abelian extensions. Proc. Am. Math. Soc. 25, 680–683 (1970). MR 0258786

    Article  MathSciNet  Google Scholar 

  35. Cohen, J.M.: Homotopy groups of inverse limits. Proceedings of the advanced study institute on algebraic topology (Aarhus Univ., Aarhus, 1970), vol. I, Mat. Inst., Aarhus Univ., Aarhus, 1970, pp. 29–43. Various Publ. Ser., No. 13. MR 0346781

    Google Scholar 

  36. Hirschhorn, P.S.: The homotopy groups of the inverse limit of a tower of fibrations (2015), preprint. http://www-math.mit.edu/~psh/notes/limfibrations.pdf

  37. Serre, J-P.: Cohomologie galoisienne, Cours au Collège de France, vol. 1962, Springer, Berlin, Heidelberg, New York (1962/1963). MR 0180551 (31#4785)

    Google Scholar 

  38. Schneider, P.: Equivariant homology for totally disconnected groups. J. Algebra 203(1), 50–68 (1998). MR 1620705

    Article  MathSciNet  Google Scholar 

  39. Milne, J.S.: Étale Cohomology. Princeton mathematical series. Princeton University Press, Princeton (1980). MR 559531

    MATH  Google Scholar 

  40. Milnor, J.: Algebraic \(K\) -theory and quadratic forms. Invent. Math. 9, 318–344 (1969/1970). MR 0260844

    Google Scholar 

  41. Matsumoto, H.: Sur les sous-groupes arithmétiques des groupes semi-simples déployés. Ann. Sci. École Norm. Sup. 2(4), 1–62 (1969). MR 0240214

    Article  MathSciNet  Google Scholar 

  42. Bloch, S., Kato, K.: \(p\)-adic étale cohomology. Inst. Hautes Études Sci. Publ. Math. (63), 107–152 (1986). MR 849653

    Google Scholar 

  43. Adem, A., James Milgram, R.: Cohomology of finite groups, 2nd edn., Grundlehren der Mathematischen Wissenschaften [Fundamental principles of mathematical sciences], vol. 309, Springer, Berlin (2004). MR 2035696

    Book  Google Scholar 

  44. Artin, E., Schreier, O.: Algebraische Konstruktion reeller Körper. Abh. Math. Sem. Univ. Hambg. 5(1), 85–99 (1927). MR 3069467

    Article  Google Scholar 

  45. Jacobson, N.: Basic Algebra II, 2nd edn. W. H. Freeman and Company, New York (1989). MR 1009787

    MATH  Google Scholar 

  46. Borger, J.: The basic geometry of Witt vectors, I: the affine case. Algebra Number Theory 5(2), 231–285 (2011). MR 2833791

    Article  MathSciNet  Google Scholar 

  47. Deligne, P.: Cohomologie étale. Lecture Notes in Mathematics, vol. 569. Springer, Berlin, New York (1977)

    Google Scholar 

  48. Borger, J.: \(\Lambda \)-rings and the field with one element, (2009). arXiv:0906.3146

Download references

Acknowledgements

Part of this work was done while the second author was a Clay Research Fellow. All of it was done while the first author was supported by the Swiss National Science Foundation. The authors wish to thank Lennart Meier for asking a very helpful question, Markus Land and Thomas Nikolaus for a discussion about Proposition 7.10, and Eric Leichtnam for pointing out some typographical errors in an earlier version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Scholze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kucharczyk, R.A., Scholze, P. (2018). Topological Realisations of Absolute Galois Groups. In: Cogdell, J., Harder, G., Kudla, S., Shahidi, F. (eds) Cohomology of Arithmetic Groups. JS66 2016. Springer Proceedings in Mathematics & Statistics, vol 245. Springer, Cham. https://doi.org/10.1007/978-3-319-95549-0_8

Download citation

Publish with us

Policies and ethics