Skip to main content

Bioanalytical Chemistry of Selenium

  • Chapter
  • First Online:
Selenium

Part of the book series: Molecular and Integrative Toxicology ((MOLECUL))

  • 1456 Accesses

Abstract

Selenium (Se) is an interesting element for bioanalytical chemists. Se forms Se-containing compounds having Se-carbon covalent bond(s), i.e., selenometabolites in its metabolic pathway. In this chapter, the analytical techniques for the speciation and identification of unique selenometabolites in animals are highlighted. First, the instruments required for analyses are overviewed. In particular, hyphenated techniques consisting of high-performance liquid chromatography and inductively coupled plasma (tandem) mass spectrometry (ICP-MS) or electrospray ionization (tandem) mass spectrometry are focused on. Second, laser ablation hyphenated with ICP-MS for Se imaging is briefly overviewed. Then, advanced techniques of nuclear magnetic resonance (NMR) spectroscopy for Se analysis are mentioned with an application to a biological sample.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akesson B, Martensson B. Heparin interacts with a selenoprotein in human plasma. J Inorg Biochem. 1988;33(4):257–61.

    Article  CAS  Google Scholar 

  • Anan Y, Hatakeyama Y, Tokumoto M, Ogra Y. Chromatographic behavior of selenoproteins in rat serum detected by inductively coupled plasma mass spectrometry. Anal Sci. 2013;29(8):787–92.

    Article  CAS  Google Scholar 

  • Anan Y, Kimura M, Hayashi M, Koike R, Ogra Y. Detoxification of selenite to form selenocyanate in mammalian cells. Chem Res Toxicol. 2015a;28(9):1803–14. https://doi.org/10.1021/acs.chemrestox.5b00254.

    Article  CAS  PubMed  Google Scholar 

  • Anan Y, Nakajima G, Ogra Y. Complementary use of LC-ICP-MS and LC-ESI-Q-TOF-MS for selenium speciation. Anal Sci. 2015b;31(6):561–4. https://doi.org/10.2116/analsci.31.561.

    Article  CAS  PubMed  Google Scholar 

  • Becker JS, Jakubowski N. The synergy of elemental and biomolecular mass spectrometry: new analytical strategies in life sciences. Chem Soc Rev. 2009;38:1969–83.

    Article  CAS  Google Scholar 

  • Block E, Glass RS, Jacobsen NE, Johnson S, Kahakachchi C, Kaminski R, Skowronska A, Boakye HT, Tyson JF, Uden PC. Identification and synthesis of a novel selenium-sulfur amino acid found in selenized yeast: rapid indirect detection NMR methods for characterizing low-level organoselenium compounds in complex matrices. J Agric Food Chem. 2004;52:3761–71.

    Article  CAS  Google Scholar 

  • Borglund M, Akesson A, Akesson B. Distribution of selenium and glutathione peroxidase in plasma compared in healthy subjects and rheumatoid arthritis patients. Scand J Clin Lab Invest. 1988;48(1):27–32. https://doi.org/10.3109/00365518809085390.

    Article  CAS  PubMed  Google Scholar 

  • Byard JL. Trimethyl selenide. A urinary metabolite of selenite. Arch Biochem Biophys. 1969;130:556–60.

    Article  CAS  Google Scholar 

  • Cruz ECS, Susanne Becker J, Sabine Becker J, Sussulini A. Imaging of selenium by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) in 2-D electrophoresis gels and biological tissues. Methods Mol Biol. 2018;1661:219–27. https://doi.org/10.1007/978-1-4939-7258-6_16.

    Article  CAS  PubMed  Google Scholar 

  • Daniels LA. Selenium metabolism and bioavailability. Biol Trace Elem Res. 1996;54(3):185–99. https://doi.org/10.1007/bf02784430.

    Article  CAS  PubMed  Google Scholar 

  • Darrouzès J, Bueno M, Lespès G, Portin-Gautier M. Operational optimisation of ICP - octopole collision/reaction cell - MS for applications to ultratrace selenium total and speciation determination. J Anal At Spectrom. 2005;20:88–94.

    Article  Google Scholar 

  • Francesconi KA, Pannier F. Selenium metabolites in urine: a critical overview of past work and current status. Clin Chem. 2004;50:2240–53.

    Article  CAS  Google Scholar 

  • Galano E, Mangiapane E, Bianga J, Palmese A, Pessione E, Szpunar J, Lobinski R, Amoresano A. Privileged incorporation of selenium as selenocysteine in Lactobacillus reuteri proteins demonstrated by selenium-specific imaging and proteomics. Mol Cell Proteomics. 2013;12(8):2196–204. https://doi.org/10.1074/mcp.M113.027607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gammelgaard B, Grimstrup Madsen K, Bjerrum J, Bendahl L, Jøns O, Olsen J, Sidenius U. Separation, purification and identification of the major selenium metabolite from human urine by multi-dimensional HPLC-ICP-MS and APCI-MS. J Anal At Spectrom. 2003;18:65–70.

    Article  CAS  Google Scholar 

  • Guo W, Hu S, Wang Y, Zhang L, Hu Z, Zhang J. Trace determination of selenium in biological samples by CH4-Ar mixed gas plasma DRC-ICP-MS. Microchem J. 2013;108:106–12.

    Article  CAS  Google Scholar 

  • Jager T, Drexler H, Goen T. Human metabolism and renal excretion of selenium compounds after oral ingestion of sodium selenite and selenized yeast dependent on the trimethylselenium ion (TMSe) status. Arch Toxicol. 2016;90(5):1069–80. https://doi.org/10.1007/s00204-015-1548-z.

    Article  CAS  PubMed  Google Scholar 

  • Janghorbani M, Xia Y, Ha P, Whanger PD, Butler JA, Olesik JW, Daniels L. Quantitative significance of measuring trimethylselenonium in urine for assessing chronically high intakes of selenium in human subjects. Br J Nutr. 1999;82(4):291–7.

    CAS  PubMed  Google Scholar 

  • Jitaru P, Goenaga-Infante H, Vaslin-Reimann S, Fisicaro P. A systematic approach to the accurate quantification of selenium in serum selenoalbumin by HPLC-ICP-MS. Anal Chim Acta. 2010;657(2):100–7. https://doi.org/10.1016/j.aca.2009.10.037.

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi Y, Ogra Y, Ishiwata K, Takayama H, Aimi N, Suzuki KT. Selenosugars are key and urinary metabolites for selenium excretion within the required to low-toxic range. Proc Natl Acad Sci U S A. 2002;99(25):15932–6.

    Article  CAS  Google Scholar 

  • Kobayashi Y, Ogra Y, Suzuki KT. Speciation and metabolism of selenium injected with 82Se-enriched selenite and selenate in rats. J Chromatogr B Biomed Sci Appl. 2001;760(1):73–81.

    Article  CAS  Google Scholar 

  • Kövér KE, Kumar AA, Rusakov YY, Krivdin LB, Illyés T-Z, Szilágyi L. Experimental and computational studies of nJ(77Se, 1H) selenium-proton couplings in selenoglycosides. Magn Reson Chem. 2011;49:190–4.

    Article  Google Scholar 

  • Koyama H, Kasanuma Y, Kim CY, Ejima A, Watanabe C, Nakatsuka H, Satoh H. Distribution of selenium in human plasma detected by high performance liquid chromatography-plasma ion source mass spectrometry. Tohoku J Exp Med. 1996;178(1):17–25.

    Article  CAS  Google Scholar 

  • Kraus RJ, Foster SJ, Ganther HE. Analysis of trimethylselenonium ion in urine by high-performance liquid chromatography. Anal Biochem. 1985;147(2):432–6.

    Article  CAS  Google Scholar 

  • Kuehnelt D, Engstrom K, Skroder H, Kokarnig S, Schlebusch C, Kippler M, Alhamdow A, Nermell B, Francesconi K, Broberg K, Vahter M. Selenium metabolism to the trimethylselenonium ion (TMSe) varies markedly because of polymorphisms in the indolethylamine N-methyltransferase gene. Am J Clin Nutr. 2015;102(6):1406–15. https://doi.org/10.3945/ajcn.115.114157.

    Article  CAS  PubMed  Google Scholar 

  • Kuehnelt D, Juresa D, Kienzl N, Francesconi KA. Marked individual variability in the levels of trimethylselenonium ion in human urine determined by HPLC/ICPMS and HPLC/vapor generation/ICPMS. Anal Bioanal Chem. 2006;386:2207–12.

    Article  CAS  Google Scholar 

  • Lardon M. Selenium and proton nuclear magnetic resonance measurements on organic selenium compounds. J Am Chem Soc. 1970;92:5063–6.

    Article  CAS  Google Scholar 

  • Letsiou S, Nischwitz V, Traar P, Francesconi KA, Pergantis SA. Determination of selenosugars in crude human urine using high-performance liquid chromatography/atmospheric pressure chemical ionization tandem mass spectrometry. Rapid Commun Mass Spectrom. 2007;21:343–51.

    Article  CAS  Google Scholar 

  • Luthra NP, Dunlap RB, Odom JD. The use of dimethyl selenide as a chemical shift reference in 77Se NMR spectroscopy. J Magn Reson. 1983;52:318–22.

    CAS  Google Scholar 

  • Maciel BC, Barbosa HS, Pessoa GS, Salazar MM, Pereira GA, Goncalves DC, Ramos CH, Arruda MA. Comparative proteomics and metallomics studies in Arabidopsis thaliana leaf tissues: evaluation of the selenium addition in transgenic and nontransgenic plants using two-dimensional difference gel electrophoresis and laser ablation imaging. Proteomics. 2014;14(7-8):904–12. https://doi.org/10.1002/pmic.201300427.

    Article  CAS  PubMed  Google Scholar 

  • Mobli M, Morgenstern D, King GF, Alewood PF, Muttenthaler M. Site-specific pKa determination of selenocysteine residues in selenovasopressin by using 77Se NMR spectroscopy. Angew Chem Int Ed. 2011;50:11952–5.

    Article  CAS  Google Scholar 

  • Ogra Y. Integrated strategies for identification of selenometabolites in animal and plant samples. Anal Bioanal Chem. 2008;390:1685–9.

    Article  CAS  Google Scholar 

  • Ogra Y, Ishiwata K, Suzuki KT. Effects of deuterium in octopole reaction and collision cell ICP-MS on detection of selenium in extracellular fluids. Anal Chim Acta. 2005;554:123–9.

    Article  CAS  Google Scholar 

  • Òscar P, Łobiński R. Investigation of the stability of selenoproteins during storage of human serum by size-exclusion LC–ICP-MS. Talanta. 2007;71:1813–6.

    Article  Google Scholar 

  • Persson-Moschos M, Huang W, Srikumar TS, Akesson B, Lindeberg S. Selenoprotein P in serum as a biochemical marker of selenium status. Analyst. 1995;120(3):833–6.

    Article  CAS  Google Scholar 

  • Prange A, Pröfrock D. Application of CE–ICP–MS and CE–ESI–MS in metalloproteomics: challenges, developments, and limitations. Anal Bioanal Chem. 2005;383:372–89.

    Article  CAS  Google Scholar 

  • Schaefer SA, Dong M, Rubenstein RP, Wilkie WA, Bahnson BJ, Thorpe C, Rozovsky S. 77Se erichment of poteins expands the biological NMR toolbox. J Mol Biol. 2013;425:222–31.

    Article  CAS  Google Scholar 

  • Schroeder TB, Job C, Brown MF, Glass RS. Indirect detection of selenium-77 in nuclear magnetic resonance spectra of organoselenium compounds. Magn Reson Chem. 1995;33:191–5.

    Article  CAS  Google Scholar 

  • Sloth JJ, Larsen EH. The application of inductively coupled plasma dynamic reaction cell mass spectrometry for measurement of selenium isotopes, isotope ratios and chromatographic detection of selenoamino acids. J Anal At Spectrom. 2000;15:669–72.

    Article  CAS  Google Scholar 

  • Sloth JJ, Larsen EH, Bügel SH, Moesgaard S. Determination of total selenium and 77Se in isotopically enriched human sample by ICP-dynamic reaction cell-MS. J Anal At Spectrom. 2003;18:317–22.

    Article  CAS  Google Scholar 

  • Sonet J, Mounicou S, Chavatte L. Detection of selenoproteins by laser ablation inductively coupled plasma mass spectrometry (LA-ICP MS) in immobilized pH gradient (IPG) strips. Methods Mol Biol. 2018;1661:205–17. https://doi.org/10.1007/978-1-4939-7258-6_15.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki N, Ogra Y. 77Se NMR Spectroscopy for speciation analysis of selenium. In: Ogra Y, Hirata T, editors. Metallomics -recent analytical techniques and applications. New York: Springer; 2017. p. 147–56.

    Google Scholar 

  • Szpunar J, Łobiński R. Multidimensional approaches in biochemical speciation analysis. Anal Bioanal Chem. 2002;373:404–11.

    Article  CAS  Google Scholar 

  • Takahashi K, Suzuki N, Ogra Y. Bioavailability comparison of nine bioselenocompounds in vitro and in vivo. Int J Mol Sci. 2017;18(3):506. https://doi.org/10.3390/ijms18030506.

    Article  CAS  PubMed Central  Google Scholar 

  • Tan K-S, Arnold AP, Rabenstein DL. Selenium-77 nuclear magnetic resonance studies of selenols, diselenides, and selenenyl sulfides. Can J Chem. 1988;66:54–60.

    Article  CAS  Google Scholar 

  • Templeton DM, Ariese F, Cornelis R, Danielsson L-G, Muntau H, van Leeuwen HP, Łobiński R. Guidelines for terms related to chemical speciation and fractionation of elements. Definitions, structural aspects, and methodological approaches (IUPAC Recommendations 2000). Pure Appl Chem. 2000;72:1453–70.

    Article  CAS  Google Scholar 

  • Zhang M, Vogel HJ. Two-dimensional NMR studies of selenomethionyl calmodulin. J Mol Biol. 1994;239:545–54.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by JSPS KAKENHI Grant Numbers 24659022, 26293030, 15K14991, and 16H05812, and a grant from the Food Safety Commission, Cabinet Office, Government of Japan (Research Program for Risk Assessment Study on Food Safety, No 1601).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasumitsu Ogra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ogra, Y., Anan, Y., Suzuki, N. (2018). Bioanalytical Chemistry of Selenium. In: Michalke, B. (eds) Selenium. Molecular and Integrative Toxicology. Springer, Cham. https://doi.org/10.1007/978-3-319-95390-8_25

Download citation

Publish with us

Policies and ethics