Skip to main content

Virtual System Using Haptic Device for Real-Time Tele-Rehabilitation of Upper Limbs

  • Conference paper
  • First Online:
Augmented Reality, Virtual Reality, and Computer Graphics (AVR 2018)

Abstract

This paper proposes a tool to support the rehabilitation of upper limbs assisted remotely, which makes it possible for the physiotherapist to be able to assist and supervise the therapy to patients who can not go to rehabilitation centers. This virtual system for real-time tele-rehabilitation is non-invasive and focuses on involving the patient with mild or moderate mobility alterations within a dynamic therapy based on virtual games; Haptics Devices are used to reeducate and stimulate the movement of the upper extremities, at the same time that both motor skills and Visual-Motor Integration skills are developed. The system contains a virtual interface that emulates real-world environments and activities. The functionality of the Novint Falcon device is exploited to send a feedback response that corrects and stimulates the patient to perform the therapy session correctly. In addition, the therapy session can vary in intensity through the levels presented by the application, and the amount of time, successes and mistakes made by the patient are registered in a database. The first results show the acceptance of the virtual system designed for real-time tele-rehabilitation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ingram, T.T.S.: A historical review of the definition of cerebral palsy, the epidemiology of the cerebral palsies. In: Stanley, F.A.E. (ed.) The Epidemiology of the Cerebral Palsies, pp. 1–11. Lippincott, Philadelphia (1984)

    Google Scholar 

  2. Jones, M.W., Morgan, E., Shelton, J.E., Thorogood, C.: Cerebral palsy: introduction and diagnosis (part I). J. Pediatr. Health Care 21(3), 146–152 (2007)

    Article  Google Scholar 

  3. Aicardi, J.: Disease of the Nervous System in Childhood. MacKeith Press, London (1992)

    Google Scholar 

  4. Feldman, H.M., Chaves-Gnecco, D., Hofkosh, D.: Developmental-behavioral pediatrics. In: Zitelli, B.J., McIntire, S.C., Norwalk, A.J. (eds.) Atlas of Pediatric Diagnosis, Chap. 3, 6th edn. Elsevier Saunders, Philadelphia (2012)

    Google Scholar 

  5. Ketelaar, M., Vermeer, A., Hart, H., et al.: Effects of a functional therapy program on motor abilities of children with cerebral palsy. Phys. Ther. 81, 1534–1545 (2001)

    Article  Google Scholar 

  6. Taub, E., Ramey, S., DeLuca, S., Echols, K.: Efficacy of constraint-induced movement therapy for children with cerebral palsy with asymmetric motor impairment. Pediatrics 113, 305–312 (2004)

    Article  Google Scholar 

  7. Sakzewski, L., Ziviani, J., Boyd, R.N.: Efficacy of upper limb therapies for unilateral cerebral palsy: a meta-analysis. Pediatrics 133(1), e175–e204 (2014)

    Article  Google Scholar 

  8. Galil, A., Carmel, S., Lubetzky, H., Heiman, N.: Compliance with home rehabilitation therapy by parents of children with disabilities in Jews and Bedouin in Israel. Dev. Med. Child Neurol. 43(4), 261–268 (2001)

    Article  Google Scholar 

  9. De Campos, A.C., da Costa, C.S., Rocha, N.A.: Measuring changes in functional mobility in children with mild cerebral palsy. Dev. Neurorehabil. 14, 140–144 (2011)

    Article  Google Scholar 

  10. Prosser, L.A., Lee, S.C., Barbe, M.F., VanSant, A.F., Lauer, R.T.: Trunk and hip muscle activity in early walkers with and without cerebral palsy – a frequency analysis. J. Electromyogr. Kinesiol. 20, 851–859 (2010)

    Article  Google Scholar 

  11. Weiss, P.L.T., Tirosh, E., Fehlings, D.: Role of virtual reality for cerebral palsy management. J. Child Neurol. 29(8), 1119–1124 (2014). 0883073814533007

    Article  Google Scholar 

  12. Mitchell, L., Ziviani, J., Oftedal, S., Boyd, R.: The effect of virtual reality interventions on physical activity in children and adolescents with early brain injuries including cerebral palsy. Dev. Med. Child Neurol. 54, 667–671 (2012)

    Article  Google Scholar 

  13. Snider, L., Majnemer, A., Darsaklis, V.: Virtual reality as a therapeutic modality for children with cerebral palsy. Dev. Neurorehabil. 13, 120–128 (2010)

    Article  Google Scholar 

  14. Chen, Y.P., Lee, S.Y., Howard, A.M.: Effect of virtual reality on upper extremity function in children with cerebral palsy: a meta-analysis. Pediatric Phys. Therapy 26(3), 289–300 (2014)

    Article  Google Scholar 

  15. Golomb, M.R., McDonald, B.C., Warden, S.J., Yonkman, J., Saykin, A.J., Shirley, B., et al.: In-home virtual reality videogame telerehabilitation in adolescents with hemiplegic cerebral palsy. Arch. Phys. Med. Rehabil. 91, 1–8 (2010)

    Article  Google Scholar 

  16. Shin, J., Song, G., Hwangbo, G.: Effects of conventional neurological treatment and a virtual reality training program on eye-hand coordination in children with cerebral palsy. J. Phys. Therapy Sci. 27(7), 2151–2154 (2015). https://doi.org/10.1589/jpts.27.2151

    Article  Google Scholar 

  17. Chen, Y.P., Kang, L.J., Chuang, T.Y., Doong, J.L., Lee, S.J., Tsai, M.W., Sung, W.H.: Use of virtual reality to improve upper-extremity control in children with cerebral palsy: a single-subject design. Phys. Therapy 87(11), 1441–1457 (2007)

    Article  Google Scholar 

  18. Bortone, I., Leonardis, D., Solazzi, M., Procopio, C., Crecchi, A., Bonfiglio, L., Frisoli, A.: Integration of serious games and wearable haptic interfaces for Neuro Rehabilitation of children with movement disorders: a feasibility study. In: 2017 International Conference on Rehabilitation Robotics (ICORR), pp. 1094–1099. IEEE, July 2017

    Google Scholar 

  19. Gupta, A., O’Malley, M.K.: Design of a haptic arm exoskeleton for training and rehabilitation. IEEE/ASME Trans. Mechatron. 11(3), 280–289 (2006)

    Article  Google Scholar 

  20. Kozhaeva, T., Zhestkov, S., Bulakh, D., Houlden, N.: Programmable gesture manipulator for hand injuries rehabilitation. In: Internet Technologies and Applications (ITA), pp. 134–136. IEEE, September 2017

    Google Scholar 

  21. Pruna, E., et al.: 3D virtual system using a haptic device for fine motor rehabilitation. In: Rocha, Á., Correia, A.M., Adeli, H., Reis, L.P., Costanzo, S. (eds.) WorldCIST 2017. AISC, vol. 570, pp. 648–656. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56538-5_66

    Chapter  Google Scholar 

  22. Bortone, I., Leonardis, D., Solazzi, M., Procopio, C., Crecchi, A., Briscese, L., Andre, P., Bonfiglio, L., Frisoli, A.: Serious game and wearable haptic devices for neuro motor rehabilitation of children with cerebral palsy. In: Converging Clinical and Engineering Research on Neurorehabilitation II, pp. 443–447. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-46669-9_74

    Google Scholar 

  23. Khor, K.X., Chin, P.J.H., Hisyam, A.R., Yeong, C.F., Narayanan, A.L.T., Su, E.L.M.: Development of CR2-Haptic: a compact and portable rehabilitation robot for wrist and forearm training. In: IEEEIECBES International Conference on Biomedical Engineering and Sciences, pp. 424–429 (2014)

    Google Scholar 

  24. Maciejasz, P., Eschweiler, J., Gerlach-Hahn, K., Jansen-Troy, A., Leonhardt, S.: A survey on robotic devices for upper limb rehabilitation. J. Neuroeng. Rehabil. 11, 3 (2014)

    Article  Google Scholar 

  25. Lum, P.S., Burgar, C.G., Shor, P.C., Majmundar, M., Van der Loos, M.: Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch. Phys. Med. Rehabil. 83, 952–959 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

We thank the “Universidad de las Fuerzas Armadas ESPE” for financing the investigation project number 2016-PIC-0017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edwin Pruna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Escobar, I., Gálvez, C., Corrales, G., Pruna, E., Pilatasig, M., Montaluisa, J. (2018). Virtual System Using Haptic Device for Real-Time Tele-Rehabilitation of Upper Limbs. In: De Paolis, L., Bourdot, P. (eds) Augmented Reality, Virtual Reality, and Computer Graphics. AVR 2018. Lecture Notes in Computer Science(), vol 10851. Springer, Cham. https://doi.org/10.1007/978-3-319-95282-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95282-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95281-9

  • Online ISBN: 978-3-319-95282-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics