Skip to main content

3D Virtual System Using a Haptic Device for Fine Motor Rehabilitation

  • Conference paper
  • First Online:
Recent Advances in Information Systems and Technologies (WorldCIST 2017)

Abstract

It is presented a 3D Virtual system with a haptic device that allows the interaction between a user and a virtual environment developed in Unity3D. This System was designed for rehabilitation of paretic hands in adult people with Stroke; the virtual environment was developed considering a daily life’s activity (watering plants in pots). The system was used by five people with mild and moderate Stroke according to ASWRTH 1+ scale, which completed the exercise showed in the virtual application. Patients performed a usability test SUS with outcomes (79, 5 ± 3, 67) this allows to define that the system has a good acceptance for rehabilitation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shiroma, E.J., Ferguson, P.L., Pickelsimer, E.E.: Prevalence of traumatic brain injury in an offender population: a meta-analysis. J. Correctional Health Care 16(2), 147–159 (2010)

    Article  Google Scholar 

  2. Progress in improving stroke care: Department. http://www.nao.org.uk/report/department-of-healthprogress-in-improving-stroke-care/

  3. Fregni, F., Pascual-Leone, A.: Hand motor recovery after stroke: tuning the orchestra to improve hand motor function. Cogn. Behav. 19, 21–33 (2006)

    Article  Google Scholar 

  4. Prabhakaran, S., Zarahn, E., Riley, C., Speizer, A., Chong, J.Y., Lazar, R.M., Marshall, R.S., Krakauer, J.W.: Inter-individual variability in the capacity for motor recovery after ischemic stroke. Neurorehabil. Neural Repair 22, 64–71 (2008)

    Article  Google Scholar 

  5. Kwakkel, G., Kollen, B., Lindeman, E.: Understanding the pattern of functional recovery after stroke: facts and theories. Restor. Neurol. Neurosci. 22, 81–99 (2004)

    Google Scholar 

  6. Nielsen, J.B., Willerslev-Olsen, M., Christiansen, L., Lundbye-Jensen, J., Lorentzen, J.: Science-based neurorehabilitation: recommendations for neurorehabilitation from basic science. J. Mot. Behav. 47(1), 7–17 (2015)

    Article  Google Scholar 

  7. Shaughnessy, M., Resnick, B.M.: Using theory to develop an exercise intervention for patients post stroke. Top. Stroke Rehabil. 16(2), 140–146 (2009)

    Article  Google Scholar 

  8. Subramanian, S.K., Massie, C.L., Malcolm, M.P., Levin, M.F.: Does provision of extrinsic feedback result in improved motor learning in the upper limb post stroke? A systematic review of the evidence. Neurorehabil. Neural Repair 24(2), 113–124 (2010)

    Article  Google Scholar 

  9. Arya, K.N., Verma, R., Garg, R.K., Sharma, V.P., Agarwal, M., Aggarwal, G.G.: Meaningful task-specific training (MTST) for stroke rehabilitation: a randomized controlled trial. Top. Stroke Rehabil. 19(3), 193–211 (2012)

    Article  Google Scholar 

  10. Ohtake, P.J.: Physical therapy-key component of the rehabilitation team. International Encyclopedia of Rehabilitation (2010)

    Google Scholar 

  11. Levin, M.F., Weiss, P.L., Keshner, E.A.: Emergence of virtual reality as a tool for upper limb rehabilitation: incorporation of motor control and motor learning principles. Phys. Ther. 95(3), 415–425 (2015)

    Article  Google Scholar 

  12. Kumar, D., et al.: Engagement-sensitive interactive neuromuscular electrical therapy system for post-stroke balance rehabilitation-a concept study. In: Neural Engineering (2015)

    Google Scholar 

  13. Kumar, D., Das, A., Lahiri, U., Dutta, A.: A human-machine interface integrating low-cost sensors with a neuromuscular electrical stimulation system for post-stroke balance rehabilitation (2016)

    Google Scholar 

  14. Sucar, L.E., et al.: Gesture therapy: an upper limb virtual reality-based motor rehabilitation platform. Trans. Neural Syst. Rehabil. 22, 634–643 (2014)

    Article  Google Scholar 

  15. Laver, K.E., George, S., Thomas, S., Deutsch, J.E., Crotty, M.: Virtual reality for stroke rehabilitation. Cochrane Database Syst. Rev. (2015)

    Google Scholar 

  16. Tatla, S.K., Shirzad, N., Lohse, K.R., Virji-Babul, N., Hoens, A.M., Holsti, L., et al.: Therapists’ perceptions of social media and video game technologies in upper limb rehabilitation. JMIR Serious Games 3, e2 (2015)

    Article  Google Scholar 

  17. Colomer, C., Llorens, R., Noé, E., Alcañiz, M.: Effect of a mixed reality-based intervention on arm, hand, and finger function on chronic stroke. J. NeuroEng. Rehabil. 13, 45 (2016)

    Article  Google Scholar 

  18. Albiol-Pérez, S., et al.: Acceptance and suitability of a novel virtual system in chronic acquired brain injury patients. In: Rocha, Á., Correia, A., Adeli, H., Reis, L., Mendonça, T.M. (eds.) New Advances in Information Systems and Technologies. AISC, vol. 444, pp. 1065–1071. Springer, Cham (2016)

    Google Scholar 

  19. Dhiman, A., Solanki, D., Bhasin, A., Bhise, A., Das, A., Lahiri, U.: Design of adaptive haptic-enabled virtual reality based system for upper limb movement disorders: a usability study. In: 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob 2016), Singapore, pp. 1254–1259 (2016)

    Google Scholar 

  20. Li, S., Zhang, X.: Eye-movement-based objective real-time quantification of patient’s mental engagement in rehabilitation: a preliminary study. In: 2014 IEEE International Conference on Mechatronics and Automation, Tianjin, pp. 180–185 (2014)

    Google Scholar 

  21. Shah, N., Basteris, A., Amirabdollahian, F.: Design parameters in multimodal games for rehabilitation. Games Health Res. Dev. Clin. Appl. 3(1), 13–20 (2014)

    Article  Google Scholar 

  22. Geomagic Touch. http://www.geomagic.com/en/products/phantom-omni/overview

  23. Jarillo-Silva, A., Domínguez-Ramírez, O., Parra-Vega, V., Ordaz-Oliver, J.: Phantom omni haptic device: kinematic and manipulability. In: 2009 Electronics, Robotics and Automotive Mechanics Conference, pp. 193–198 (2009)

    Google Scholar 

  24. Mutlu, A., Livanelioglu, A., Gunel, M.K.: Reliability of Ashworth and modified Ashworth scales in children with spastic cerebral palsy. BMC Musculoskelet. Disord. 9, 44 (2008)

    Article  Google Scholar 

  25. Bangor, A., Kortum, P., Miller, J.: Determining what individual SUS scores mean: adding an adjective rating scale. J. Usability Stud. 4(3), 114–123 (2009)

    Google Scholar 

Download references

Acknowledgment

Acknowledgments to Universidad de las Fuerzas Armadas ESPE by the financing of research project number 2015-PIC-006; To Jefatura de Investigación, Innovación y transferencia de tecnología from extention Latacunga and the Electrical and Electronics Department for all the support provided in the development of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edwin Pruna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Pruna, E. et al. (2017). 3D Virtual System Using a Haptic Device for Fine Motor Rehabilitation. In: Rocha, Á., Correia, A., Adeli, H., Reis, L., Costanzo, S. (eds) Recent Advances in Information Systems and Technologies. WorldCIST 2017. Advances in Intelligent Systems and Computing, vol 570. Springer, Cham. https://doi.org/10.1007/978-3-319-56538-5_66

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56538-5_66

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56537-8

  • Online ISBN: 978-3-319-56538-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics