Skip to main content

Molecular Detection and Characterization of Carbapenem-Resistant Enterobacteriaceae

  • Chapter
  • First Online:
Advanced Techniques in Diagnostic Microbiology
  • 1772 Accesses

Abstract

Carbapenem-resistant Enterobacteriaceae (CRE), especially carbapenemase-producing CRE (CP-CRE), have emerged as a major class of bacterial pathogens. They are frequently associated with high mortality and morbidity due to their unprecedented multi- or pan-drug resistance, in addition to the absence of standardized, clinically effective detection methods for early identification. Consequently, there is an urgent need for rapid and accurate detection of carbapenem resistance in clinical laboratories, as it is imperative for patient treatment, infection control, and epidemiological studies aimed at limiting further spread of CRE. A number of nucleic acid- and non-nucleic acid-based methods for rapid molecular detection of CRE are currently available or in development. Molecular detection of CP-CRE, in comparison with conventional culture-based phenotypic tests, offers several advantages, including the rapid turnaround time, the definitive identification of specific carbapenemase types, and, in some cases, the ability to test directly from clinical specimens without the need for culture. In this chapter, we will discuss the performance characteristics of these molecular technologies achieved to date on molecular detection for CRE and particularly CP-CRE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. CDC. Facility guidance for control of carbapenem-resistant Enterobacteriaceae (CRE) – November 2015 update CRE toolkit. 2015. http://www.cdc.gov/hai/organisms/cre/cre-toolkit/.

  2. Chen L, et al. Carbapenemase-producing Klebsiella pneumoniae: molecular and genetic decoding. Trends Microbiol. 2014;22:686–96. https://doi.org/10.1016/j.tim.2014.09.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Queenan AM, Bush K. Carbapenemases: the versatile beta-lactamases. Clin Microbiol Rev. 2007;20:440–58, table of contents. https://doi.org/10.1128/cmr.00001-07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nordmann P, Poirel L. The difficult-to-control spread of carbapenemase producers among Enterobacteriaceae worldwide. Clin Microbiol Infect. 2014;20:821–30. https://doi.org/10.1111/1469-0691.12719.

    Article  CAS  PubMed  Google Scholar 

  5. Bialvaei AZ, Kafil HS, Asgharzadeh M, Yousef Memar M, Yousefi M. Current methods for the identification of carbapenemases. J Chemother. 2016;28:1–19. https://doi.org/10.1179/1973947815Y.0000000063.

    Article  CAS  PubMed  Google Scholar 

  6. Miller S, Humphries RM. Clinical laboratory detection of carbapenem-resistant and carbapenemase-producing Enterobacteriaceae. Expert Rev Anti Infect Ther. 2016;14:705–17. https://doi.org/10.1080/14787210.2016.1206815.

    Article  CAS  PubMed  Google Scholar 

  7. Osei Sekyere J, Govinden U, Essack SY. Review of established and innovative detection methods for carbapenemase-producing Gram-negative bacteria. J Appl Microbiol. 2015;119:1219–33. https://doi.org/10.1111/jam.12918.

    Article  CAS  PubMed  Google Scholar 

  8. Lutgring JD, Limbago BM. The problem of carbapenemase-producing-carbapenem-resistant-Enterobacteriaceae detection. J Clin Microbiol. 2016;54:529–34. https://doi.org/10.1128/jcm.02771-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Banerjee R, Humphries R. Clinical and laboratory considerations for the rapid detection of carbapenem-resistant Enterobacteriaceae. Virulence. 2017;8:427–39. https://doi.org/10.1080/21505594.2016.1185577.

    Article  CAS  PubMed  Google Scholar 

  10. Monteiro J, Widen RH, Pignatari AC, Kubasek C, Silbert S. Rapid detection of carbapenemase genes by multiplex real-time PCR. J Antimicrob Chemother. 2012;67:906–9. https://doi.org/10.1093/jac/dkr563.

    Article  CAS  PubMed  Google Scholar 

  11. Ellington MJ, Kistler J, Livermore DM, Woodford N. Multiplex PCR for rapid detection of genes encoding acquired metallo-beta-lactamases. J Antimicrob Chemother. 2007;59:321–2. https://doi.org/10.1093/jac/dkl481.

    Article  CAS  PubMed  Google Scholar 

  12. Poirel L, Walsh TR, Cuvillier V, Nordmann P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn Microbiol Infect Dis. 2011;70:119–23. https://doi.org/10.1016/j.diagmicrobio.2010.12.002.

    Article  CAS  PubMed  Google Scholar 

  13. Dallenne C, Da Costa A, Decre D, Favier C, Arlet G. Development of a set of multiplex PCR assays for the detection of genes encoding important beta-lactamases in Enterobacteriaceae. J Antimicrob Chemother. 2010;65:490–5. https://doi.org/10.1093/jac/dkp498.

    Article  CAS  PubMed  Google Scholar 

  14. Voets GM, Fluit AC, Scharringa J, Cohen Stuart J, Leverstein-van Hall MA. A set of multiplex PCRs for genotypic detection of extended-spectrum beta-lactamases, carbapenemases, plasmid-mediated AmpC beta-lactamases and OXA beta-lactamases. Int J Antimicrob Agents. 2011;37:356–9. https://doi.org/10.1016/j.ijantimicag.2011.01.005.

    Article  CAS  PubMed  Google Scholar 

  15. Lee JJ, et al. Fast and accurate large-scale detection of beta-lactamase genes conferring antibiotic resistance. Antimicrob Agents Chemother. 2015;59:5967–75. https://doi.org/10.1128/aac.04634-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang L, Gu H, Lu X. A rapid low-cost real-time PCR for the detection of Klebsiella pneumonia carbapenemase genes. Ann Clin Microbiol Antimicrob. 2012;11:9. https://doi.org/10.1186/1476-0711-11-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. van der Zee A, et al. Multi-centre evaluation of real-time multiplex PCR for detection of carbapenemase genes OXA-48, VIM, IMP, NDM and KPC. BMC Infect Dis. 2014;14:27. https://doi.org/10.1186/1471-2334-14-27.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Teo JW, La MV, Lin RT. Development and evaluation of a multiplex real-time PCR for the detection of IMP, VIM, and OXA-23 carbapenemase gene families on the BD MAX open system. Diagn Microbiol Infect Dis. 2016;86:358–61. https://doi.org/10.1016/j.diagmicrobio.2016.08.019.

    Article  CAS  PubMed  Google Scholar 

  19. Swayne RL, Ludlam HA, Shet VG, Woodford N, Curran MD. Real-time TaqMan PCR for rapid detection of genes encoding five types of non-metallo- (class A and D) carbapenemases in Enterobacteriaceae. Int J Antimicrob Agents. 2011;38:35–8. https://doi.org/10.1016/j.ijantimicag.2011.03.010.

    Article  CAS  PubMed  Google Scholar 

  20. Subirats J, Royo E, Balcazar JL, Borrego CM. Real-time PCR assays for the detection and quantification of carbapenemase genes (bla KPC, bla NDM, and bla OXA-48) in environmental samples. Environ Sci Pollut Res Int. 2017;24:6710–4. https://doi.org/10.1007/s11356-017-8426-6.

    Article  CAS  PubMed  Google Scholar 

  21. Smith M, et al. Rapid and accurate detection of carbapenemase genes in Enterobacteriaceae with the Cepheid Xpert Carba-R assay. J Med Microbiol. 2016;65:951–3. https://doi.org/10.1099/jmm.0.000310.

    Article  CAS  PubMed  Google Scholar 

  22. Singh P, Pfeifer Y, Mustapha A. Multiplex real-time PCR assay for the detection of extended-spectrum beta-lactamase and carbapenemase genes using melting curve analysis. J Microbiol Methods. 2016;124:72–8. https://doi.org/10.1016/j.mimet.2016.03.014.

    Article  CAS  PubMed  Google Scholar 

  23. Roth AL, Hanson ND. Rapid detection and statistical differentiation of KPC gene variants in Gram-negative pathogens by use of high-resolution melting and ScreenClust analyses. J Clin Microbiol. 2013;51:61–5. https://doi.org/10.1128/jcm.02193-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nijhuis R, Samuelsen O, Savelkoul P, van Zwet A. Evaluation of a new real-time PCR assay (Check-Direct CPE) for rapid detection of KPC, OXA-48, VIM, and NDM carbapenemases using spiked rectal swabs. Diagn Microbiol Infect Dis. 2013;77:316–20. https://doi.org/10.1016/j.diagmicrobio.2013.09.007.

    Article  CAS  PubMed  Google Scholar 

  25. Naas T, Ergani A, Carrer A, Nordmann P. Real-time PCR for detection of NDM-1 carbapenemase genes from spiked stool samples. Antimicrob Agents Chemother. 2011;55:4038–43. https://doi.org/10.1128/aac.01734-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Naas T, Cotellon G, Ergani A, Nordmann P. Real-time PCR for detection of blaOXA-48 genes from stools. J Antimicrob Chemother. 2013;68:101–4. https://doi.org/10.1093/jac/dks340.

    Article  CAS  PubMed  Google Scholar 

  27. Mosca A, et al. Rapid and sensitive detection of bla KPC gene in clinical isolates of Klebsiella pneumoniae by a molecular real-time assay. SpringerPlus. 2013;2:31. https://doi.org/10.1186/2193-1801-2-31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Milillo M, et al. Rapid and simultaneous detection of blaKPC and blaNDM by use of multiplex real-time PCR. J Clin Microbiol. 2013;51:1247–9. https://doi.org/10.1128/jcm.03316-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mangold KA, et al. Real-time detection of blaKPC in clinical samples and surveillance specimens. J Clin Microbiol. 2011;49:3338–9. https://doi.org/10.1128/jcm.00268-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kruttgen A, Razavi S, Imohl M, Ritter K. Real-time PCR assay and a synthetic positive control for the rapid and sensitive detection of the emerging resistance gene New Delhi Metallo-beta-lactamase-1 (bla(NDM-1)). Med Microbiol Immunol. 2011;200:137–41. https://doi.org/10.1007/s00430-011-0189-y.

    Article  CAS  PubMed  Google Scholar 

  31. Hindiyeh M, et al. Rapid detection of blaKPC carbapenemase genes by real-time PCR. J Clin Microbiol. 2008;46:2879–83. https://doi.org/10.1128/jcm.00661-08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hindiyeh M, et al. Rapid detection of blaKPC carbapenemase genes by internally controlled real-time PCR assay using bactec blood culture bottles. J Clin Microbiol. 2011;49:2480–4. https://doi.org/10.1128/jcm.00149-11.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hemarajata P, Yang S, Hindler JA, Humphries RM. Development of a novel real-time PCR assay with high-resolution melt analysis to detect and differentiate OXA-48-Like beta-lactamases in carbapenem-resistant Enterobacteriaceae. Antimicrob Agents Chemother. 2015;59:5574–80. https://doi.org/10.1128/aac.00425-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Frasson I, et al. Rapid detection of blaVIM-1-37 and blaKPC1/2-12 alleles from clinical samples by multiplex PCR-based assays. Int J Antimicrob Agents. 2013;42:68–71. https://doi.org/10.1016/j.ijantimicag.2013.03.006.

    Article  CAS  PubMed  Google Scholar 

  35. Francis RO, Wu F, Della-Latta P, Shi J, Whittier S. Rapid detection of Klebsiella pneumoniae carbapenemase genes in Enterobacteriaceae directly from blood culture bottles by real-time PCR. Am J Clin Pathol. 2012;137:627–32. https://doi.org/10.1309/ajcp9snhjg2qglwu.

    Article  PubMed  Google Scholar 

  36. Favaro M, Sarti M, Fontana C. Multiplex real-time PCR probe-based for identification of strains producing: OXA48, VIM, KPC and NDM. World J Microbiol Biotechnol. 2014;30:2995–3001. https://doi.org/10.1007/s11274-014-1727-8.

    Article  CAS  PubMed  Google Scholar 

  37. Cuzon G, Naas T, Bogaerts P, Glupczynski Y, Nordmann P. Probe ligation and real-time detection of KPC, OXA-48, VIM, IMP, and NDM carbapenemase genes. Diagn Microbiol Infect Dis. 2013;76:502–5. https://doi.org/10.1016/j.diagmicrobio.2013.05.004.

    Article  CAS  PubMed  Google Scholar 

  38. Cheng C, Zheng F, Rui Y. Rapid detection of blaNDM, blaKPC, blaIMP, and blaVIM carbapenemase genes in bacteria by loop-mediated isothermal amplification. Microb Drug Resist. 2014;20:533–8. https://doi.org/10.1089/mdr.2014.0040.

    Article  CAS  PubMed  Google Scholar 

  39. Chen L, et al. Multiplex real-time PCR assay for detection and classification of Klebsiella pneumoniae carbapenemase gene (bla KPC) variants. J Clin Microbiol. 2011;49:579–85. https://doi.org/10.1128/jcm.01588-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bogaerts P, et al. Analytical validation of a novel high multiplexing real-time PCR array for the identification of key pathogens causative of bacterial ventilator-associated pneumonia and their associated resistance genes. J Antimicrob Chemother. 2013;68:340–7. https://doi.org/10.1093/jac/dks392.

    Article  CAS  PubMed  Google Scholar 

  41. Mendes RE, et al. Rapid detection and identification of metallo-beta-lactamase-encoding genes by multiplex real-time PCR assay and melt curve analysis. J Clin Microbiol. 2007;45:544–7. https://doi.org/10.1128/jcm.01728-06.

    Article  CAS  PubMed  Google Scholar 

  42. Bisiklis A, Papageorgiou F, Frantzidou F, Alexiou-Daniel S. Specific detection of blaVIM and blaIMP metallo-beta-lactamase genes in a single real-time PCR. Clin Microbiol Infect. 2007;13:1201–3. https://doi.org/10.1111/j.1469-0691.2007.01832.x.

    Article  CAS  PubMed  Google Scholar 

  43. Chen L, et al. Multiplex real-time PCR for detection of an epidemic KPC-producing Klebsiella pneumoniae ST258 clone. Antimicrob Agents Chemother. 2012;56:3444–7. https://doi.org/10.1128/AAC.00316-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chavda KD, et al. Evaluation of a multiplex PCR assay to rapidly detect Enterobacteriaceae with a broad range of beta-lactamases directly from perianal swabs. Antimicrob Agents Chemother. 2016;60:6957–61. https://doi.org/10.1128/AAC.01458-16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Poritz MA, et al. FilmArray, an automated nested multiplex PCR system for multi-pathogen detection: development and application to respiratory tract infection. PLoS One. 2011;6:e26047. https://doi.org/10.1371/journal.pone.0026047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Blaschke AJ, et al. Rapid identification of pathogens from positive blood cultures by multiplex polymerase chain reaction using the FilmArray system. Diagn Microbiol Infect Dis. 2012;74:349–55. https://doi.org/10.1016/j.diagmicrobio.2012.08.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Salimnia H, et al. Evaluation of the FilmArray blood culture identification panel: results of a multicenter controlled trial. J Clin Microbiol. 2016;54:687–98. https://doi.org/10.1128/jcm.01679-15.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Montgomery J, Draper N, Hemmert A, Crisp R. Rapid detection and genotyping of antimicrobial resistance determinants with the BioFire FilmArray® System. Open Forum Infect Dis. 2016;3:1999. https://doi.org/10.1093/ofid/ofw172.1547.

    Article  Google Scholar 

  49. Tenover FC, et al. Detection of colonization by carbapenemase-producing Gram-negative Bacilli in patients by use of the Xpert MDRO assay. J Clin Microbiol. 2013;51:3780–7. https://doi.org/10.1128/jcm.01092-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Decousser JW, et al. Failure to detect carbapenem-resistant Escherichia coli producing OXA-48-like using the Xpert Carba-R assay(R). Clin Microbiol Infect. 2015;21:e9–10. https://doi.org/10.1016/j.cmi.2014.09.006.

    Article  PubMed  Google Scholar 

  51. Dortet L, Fusaro M, Naas T. Improvement of the Xpert Carba-R Kit for the detection of carbapenemase-producing Enterobacteriaceae. Antimicrob Agents Chemother. 2016;60:3832–7. https://doi.org/10.1128/aac.00517-16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hoyos-Mallecot Y, Ouzani S, Dortet L, Fortineau N, Naas T. Performance of the Xpert((R)) Carba-R v2 in the daily workflow of a hygiene unit in a country with a low prevalence of carbapenemase-producing Enterobacteriaceae. Int J Antimicrob Agents. 2017;49:774–7. https://doi.org/10.1016/j.ijantimicag.2017.01.025.

    Article  CAS  PubMed  Google Scholar 

  53. Findlay J, Hopkins KL, Meunier D, Woodford N. Evaluation of three commercial assays for rapid detection of genes encoding clinically relevant carbapenemases in cultured bacteria. J Antimicrob Chemother. 2015;70:1338–42. https://doi.org/10.1093/jac/dku571.

    Article  CAS  PubMed  Google Scholar 

  54. Huang TD, et al. Multicentre evaluation of the Check-Direct CPE(R) assay for direct screening of carbapenemase-producing Enterobacteriaceae from rectal swabs. J Antimicrob Chemother. 2015;70:1669–73. https://doi.org/10.1093/jac/dkv009.

    Article  CAS  PubMed  Google Scholar 

  55. Lau AF, et al. Clinical performance of Check-Direct CPE, a multiplex PCR for direct detection of bla(KPC), bla(NDM) and/or bla(VIM), and bla(OXA)-48 from perirectal swabs. J Clin Microbiol. 2015;53:3729–37. https://doi.org/10.1128/jcm.01921-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Endimiani A, et al. Rapid identification of bla KPC-possessing Enterobacteriaceae by PCR/electrospray ionization-mass spectrometry. J Antimicrob Chemother. 2010;65:1833–4. https://doi.org/10.1093/jac/dkq207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Liu W, et al. Sensitive and rapid detection of the new Delhi metallo-beta-lactamase gene by loop-mediated isothermal amplification. J Clin Microbiol. 2012;50:1580–5. https://doi.org/10.1128/jcm.06647-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Solanki R, et al. Evaluation of LAMP assay using phenotypic tests and conventional PCR for detection of blaNDM-1 and blaKPC genes among carbapenem-resistant clinical Gram-negative isolates. J Med Microbiol. 2013;62:1540–4. https://doi.org/10.1099/jmm.0.059907-0.

    Article  CAS  PubMed  Google Scholar 

  59. Srisrattakarn A, et al. Rapid and simple identification of carbapenemase genes, bla NDM, bla OXA-48, bla VIM, bla IMP-14 and bla KPC groups, in Gram-negative bacilli by in-house loop-mediated isothermal amplification with hydroxynaphthol blue dye. World J Microbiol Biotechnol. 2017;33:130. https://doi.org/10.1007/s11274-017-2295-5.

    Article  CAS  PubMed  Google Scholar 

  60. Nakano R, et al. Rapid detection of the Klebsiella pneumoniae carbapenemase (KPC) gene by loop-mediated isothermal amplification (LAMP). J Infect Chemother. 2015;21:202–6. https://doi.org/10.1016/j.jiac.2014.11.010.

    Article  CAS  PubMed  Google Scholar 

  61. Garcia-Fernandez S, et al. Evaluation of the eazyplex(R) SuperBug CRE system for rapid detection of carbapenemases and ESBLs in clinical Enterobacteriaceae isolates recovered at two Spanish hospitals. J Antimicrob Chemother. 2015;70:1047–50. https://doi.org/10.1093/jac/dku476.

    Article  CAS  PubMed  Google Scholar 

  62. Cunningham SA, Vasoo S, Patel R. Evaluation of the check-points check MDR CT103 and CT103 XL microarray kits by use of preparatory rapid cell lysis. J Clin Microbiol. 2016;54:1368–71. https://doi.org/10.1128/jcm.03302-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bogaerts P, et al. Evaluation of a DNA microarray for rapid detection of the most prevalent extended-spectrum beta-lactamases, plasmid-mediated cephalosporinases and carbapenemases in Enterobacteriaceae, Pseudomonas and Acinetobacter. Int J Antimicrob Agents. 2016;48:189–93. https://doi.org/10.1016/j.ijantimicag.2016.05.006.

    Article  CAS  PubMed  Google Scholar 

  64. Walker T, et al. Clinical impact of laboratory implementation of Verigene BC-GN Microarray-based assay for detection of Gram-negative bacteria in positive blood cultures. J Clin Microbiol. 2016;54:1789–96. https://doi.org/10.1128/jcm.00376-16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hill JT, Tran KD, Barton KL, Labreche MJ, Sharp SE. Evaluation of the nanosphere Verigene BC-GN assay for direct identification of gram-negative bacilli and antibiotic resistance markers from positive blood cultures and potential impact for more-rapid antibiotic interventions. J Clin Microbiol. 2014;52:3805–7. https://doi.org/10.1128/jcm.01537-14.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Siu GK, et al. Performance evaluation of the Verigene Gram-positive and Gram-negative blood culture test for direct identification of bacteria and their resistance determinants from positive blood cultures in Hong Kong. PLoS One. 2015;10:e0139728. https://doi.org/10.1371/journal.pone.0139728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Braun SD, et al. Surveillance of extended-spectrum beta-lactamase-producing Escherichia coli in dairy cattle farms in the Nile Delta, Egypt. Front Microbiol. 2016;7:1020. https://doi.org/10.3389/fmicb.2016.01020.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Braun SD, et al. Rapid identification of carbapenemase genes in gram-negative bacteria with an oligonucleotide microarray-based assay. PLoS One. 2014;9:e102232. https://doi.org/10.1371/journal.pone.0102232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Margulies M, et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 2005;15:376–80.

    Google Scholar 

  70. Deurenberg RH, et al. Application of next generation sequencing in clinical microbiology and infection prevention. J Biotechnol. 2017;243:16–24. https://doi.org/10.1016/j.jbiotec.2016.12.022.

    Article  CAS  PubMed  Google Scholar 

  71. Chan KG. Whole-genome sequencing in the prediction of antimicrobial resistance. Expert Rev Anti Infect Ther. 2016;14:617–9. https://doi.org/10.1080/14787210.2016.1193005.

    Article  CAS  PubMed  Google Scholar 

  72. Bootsma HJ, Schouls LM. Next-generation sequencing of carbapenem-resistant Gram-negative microorganisms: a key tool for surveillance and infection control. Future Microbiol. 2015;10:299–302. https://doi.org/10.2217/fmb.14.134.

    Article  CAS  PubMed  Google Scholar 

  73. Gargis AS, Kalman L, Lubin IM. assuring the quality of next-generation sequencing in clinical microbiology and public health laboratories. J Clin Microbiol. 2016;54:2857–65. https://doi.org/10.1128/jcm.00949-16.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Hrabak J, Walkova R, Studentova V, Chudackova E, Bergerova T. Carbapenemase activity detection by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2011;49:3222–7. https://doi.org/10.1128/jcm.00984-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Burckhardt I, Zimmermann S. Using matrix-assisted laser desorption ionization-time of flight mass spectrometry to detect carbapenem resistance within 1 to 2.5 hours. J Clin Microbiol. 2011;49:3321–4. https://doi.org/10.1128/jcm.00287-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hrabak J, et al. Detection of NDM-1, VIM-1, KPC, OXA-48, and OXA-162 carbapenemases by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2012;50:2441–3. https://doi.org/10.1128/jcm.01002-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sparbier K, Schubert S, Weller U, Boogen C, Kostrzewa M. Matrix-assisted laser desorption ionization-time of flight mass spectrometry-based functional assay for rapid detection of resistance against beta-lactam antibiotics. J Clin Microbiol. 2012;50:927–37. https://doi.org/10.1128/jcm.05737-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lee W, et al. Comparison of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry assay with conventional methods for detection of IMP-6, VIM-2, NDM-1, SIM-1, KPC-1, OXA-23, and OXA-51 carbapenemase-producing Acinetobacter spp., Pseudomonas aeruginosa, and Klebsiella pneumoniae. Diagn Microbiol Infect Dis. 2013;77:227–30. https://doi.org/10.1016/j.diagmicrobio.2013.07.005.

    Article  CAS  PubMed  Google Scholar 

  79. Hoyos-Mallecot Y, et al. MALDI-TOF MS, a useful instrument for differentiating metallo-beta-lactamases in Enterobacteriaceae and Pseudomonas spp. Lett Appl Microbiol. 2014;58:325–9. https://doi.org/10.1111/lam.12203.

    Article  CAS  PubMed  Google Scholar 

  80. Johansson A, Ekelof J, Giske CG, Sundqvist M. The detection and verification of carbapenemases using ertapenem and Matrix Assisted Laser Desorption Ionization-Time of Flight. BMC Microbiol. 2014;14:89. https://doi.org/10.1186/1471-2180-14-89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Mirande C, et al. Rapid detection of carbapenemase activity: benefits and weaknesses of MALDI-TOF MS. Eur J Clin Microbiol Infect Dis. 2015;34:2225–34. https://doi.org/10.1007/s10096-015-2473-z.

    Article  CAS  PubMed  Google Scholar 

  82. Vogne C, Prod'hom G, Jaton K, Decosterd LA, Greub G. A simple, robust and rapid approach to detect carbapenemases in Gram-negative isolates by MALDI-TOF mass spectrometry: validation with triple quadripole tandem mass spectrometry, microarray and PCR. Clin Microbiol Infect. 2014;20:O1106–12. https://doi.org/10.1111/1469-0691.12715.

    Article  CAS  PubMed  Google Scholar 

  83. Papagiannitsis CC, et al. Matrix-assisted laser desorption ionization-time of flight mass spectrometry meropenem hydrolysis assay with NH4HCO3, a reliable tool for direct detection of carbapenemase activity. J Clin Microbiol. 2015;53:1731–5. https://doi.org/10.1128/jcm.03094-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Oviano M, Sparbier K, Barba MJ, Kostrzewa M, Bou G. Universal protocol for the rapid automated detection of carbapenem-resistant Gram-negative bacilli directly from blood cultures by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF/MS). Int J Antimicrob Agents. 2016;48:655–60. https://doi.org/10.1016/j.ijantimicag.2016.08.024.

    Article  CAS  PubMed  Google Scholar 

  85. Hrabak J, Chudackova E, Walkova R. Matrix-assisted laser desorption ionization-time of flight (maldi-tof) mass spectrometry for detection of antibiotic resistance mechanisms: from research to routine diagnosis. Clin Microbiol Rev. 2013;26:103–14. https://doi.org/10.1128/cmr.00058-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sakarikou C, Ciotti M, Dolfa C, Angeletti S, Favalli C. Rapid detection of carbapenemase-producing Klebsiella pneumoniae strains derived from blood cultures by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS). BMC Microbiol. 2017;17:54. https://doi.org/10.1186/s12866-017-0952-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Johansson A, Nagy E, Soki J. Instant screening and verification of carbapenemase activity in Bacteroides fragilis in positive blood culture, using matrix-assisted laser desorption ionization--time of flight mass spectrometry. J Med Microbiol. 2014;63:1105–10. https://doi.org/10.1099/jmm.0.075465-0.

    Article  CAS  PubMed  Google Scholar 

  88. Hoyos-Mallecot Y, et al. Rapid detection and identification of strains carrying carbapenemases directly from positive blood cultures using MALDI-TOF MS. J Microbiol Methods. 2014;105:98–101. https://doi.org/10.1016/j.mimet.2014.07.016.

    Article  CAS  PubMed  Google Scholar 

  89. Foschi C, et al. Ease-of-use protocol for the rapid detection of third-generation cephalosporin resistance in Enterobacteriaceae isolated from blood cultures using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry. J Hosp Infect. 2016;93:206–10. https://doi.org/10.1016/j.jhin.2016.02.020.

    Article  CAS  PubMed  Google Scholar 

  90. Fernandez J, Rodriguez-Lucas C, Fernandez-Suarez J, Vazquez F, Rodicio MR. Identification of Enterobacteriaceae and detection of carbapenemases from positive blood cultures by combination of MALDI-TOF MS and Carba NP performed after four hour subculture in Mueller Hinton. J Microbiol Methods. 2016;129:133–5. https://doi.org/10.1016/j.mimet.2016.08.014.

    Article  CAS  PubMed  Google Scholar 

  91. Oviano M, Ramirez CL, Barbeyto LP, Bou G. Rapid direct detection of carbapenemase-producing Enterobacteriaceae in clinical urine samples by MALDI-TOF MS analysis. J Antimicrob Chemother. 2017;72:1350–4. https://doi.org/10.1093/jac/dkw579.

    Article  CAS  PubMed  Google Scholar 

  92. Hu YY, Cai JC, Zhou HW, Zhang R, Chen GX. Rapid detection of porins by matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Front Microbiol. 2015;6:784. https://doi.org/10.3389/fmicb.2015.00784.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Niu, S., Chen, L. (2018). Molecular Detection and Characterization of Carbapenem-Resistant Enterobacteriaceae. In: Tang, YW., Stratton, C. (eds) Advanced Techniques in Diagnostic Microbiology. Springer, Cham. https://doi.org/10.1007/978-3-319-95111-9_6

Download citation

Publish with us

Policies and ethics