Skip to main content

Transitions Between Combined and Separate Sexes in Flowering Plants

  • Chapter
  • First Online:
Transitions Between Sexual Systems

Abstract

Most flowering plants have combined sexes and are functionally hermaphroditic. However, dioecy has evolved frequently and occurs in about half of flowering plant families. In this chapter, I consider reasons for the high frequency of hermaphroditism in flowering plants, drawing particularly on economic arguments that relate investment toward male and female function to the fitness gained through each function, separately or together. I then summarize two leading hypotheses for the evolution of dioecy from hermaphroditism: the potential advantages of sexual specialization and to the role that separation of the sexes may play in avoiding inbreeding. Finally, I review the major evolutionary paths that have likely been followed in transitions from hermaphroditism to dioecy and back again.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bailey MF, Delph LF, Lively CA (2003) Modeling gynodioecy: novel scenarios for maintaining polymorphism. Am Nat 161:762–776

    Article  PubMed  Google Scholar 

  • Baker HG (1955) Self-compatibility and establishment after “long-distance” dispersal. Evolution 9:347–348

    Google Scholar 

  • Baker HG (1958) Studies of the reproductive biology of West African Rubiaceae. J West Afr Sci Assoc 4:9–24

    Google Scholar 

  • Baker HG, Cox PA (1984) Further thoughts on dioecism and islands. Ann Mo Bot Gard 71:244–253

    Article  Google Scholar 

  • Barrett SCH (1996) The reproductive biology and genetics of island plants. Philos Trans R Soc Lond B 351:725–733

    Article  Google Scholar 

  • Barrett SCH (2002) The evolution of plant sexual diversity. Nat Rev Genet 3:274–284

    Article  CAS  PubMed  Google Scholar 

  • Barrett SCH (2013) The evolution of plant reproductive systems: how often are transitions irreversible? Proc R Soc Lond Ser B 280:20130913

    Article  PubMed  PubMed Central  Google Scholar 

  • Barrett SCH, Harder LD (1996) Ecology and evolution of plant mating. Trends Ecol Evol 11:73–79

    Article  CAS  PubMed  Google Scholar 

  • Barrett SCH, Hough J (2013) Sexual dimorphism in flowering plants. J Exp Bot 64:67–82

    Article  CAS  PubMed  Google Scholar 

  • Barrett SCH, Arunkumar R, Wright SI (2014) The demography and population genomics of evolutionary transitions to self-fertilization in plants. Philos Trans R Soc Lond Ser B 369:20130344

    Article  Google Scholar 

  • Billiard S, Husse L, Lepercq P, Godé C, Bourceaux A, Lepart J, Vernet P, Saumitou-Laprade P (2015) Selfish male-determining element favors the transition from hermaphroditism to androdioecy. Evolution 69(3):683–693. https://doi.org/10.1111/evo.12613

    Article  PubMed  Google Scholar 

  • Case AL, Graham SW, Macfarlane TD, Barrett SCH (2008) A phylogenetic study of transitions in sexual system in Australasian Wurmbea (Colchicaceae). Int J Plant Sci 169:141–156

    Google Scholar 

  • Charlesworth D (1984) Androdioecy and the evolution of dioecy. Biol J Linn Soc 23:333–348

    Article  Google Scholar 

  • Charlesworth D (1999) Theories of the evolution of dioecy. In: Geber MA, Dawson TE, Delph LF (eds) Gender and sexual dimorphism in flowering plants. Springer, Heidelberg, pp 33–60

    Chapter  Google Scholar 

  • Charlesworth D (2006) Evolution of plant breeding systems. Curr Biol 16:R726–R735

    Article  CAS  PubMed  Google Scholar 

  • Charlesworth D, Charlesworth B (1978) A model for the evolution of dioecy and gynodioecy. Am Nat 112:975–997

    Article  Google Scholar 

  • Charlesworth D, Charlesworth B (1981) Allocation of resources to male and female functions in hermaphrodites. Biol J Linn Soc 15:57–74

    Article  Google Scholar 

  • Charlesworth D, Charlesworth B (2005) Sex chromosomes: evolution of the weird and wonderful. Curr Biol 15:R129–R131

    Article  CAS  PubMed  Google Scholar 

  • Charlesworth D, Charlesworth B, Marais G (2005) Steps in the evolution of heteromorphic sex chromosomes. Heredity 95:118–128

    Article  CAS  PubMed  Google Scholar 

  • Charnov EL (1982) The theory of sex allocation. Princeton University Press, Princeton

    Google Scholar 

  • Charnov EL, Maynard Smith J, Bull JJ (1976) Why be an hermaphrodite? Nature 263:125–126

    Article  Google Scholar 

  • Clark AB (1978) Sex ratio and local resource competition in a prosimian primate. Science 201:163–165

    Article  CAS  PubMed  Google Scholar 

  • Crossman A, Charlesworth D (2014) Breakdown of dioecy: models where males acquire cosexual functions. Evolution 68:426–440

    Article  PubMed  Google Scholar 

  • Darwin C (1877) The different forms of flowers on plants of the same species. Appleton, New York

    Book  Google Scholar 

  • de Jong TJ, Klinkhamer GL (2005) Evolutionary ecology of plant reproductive strategies. Cambridge University Press, Cambridge

    Google Scholar 

  • Delph LF, Wolf DE (2005) Evolutionary consequences of gender plasticity in genetically dimorphic breeding systems. New Phytol 166:119–128

    Article  PubMed  Google Scholar 

  • Diggle PK, Di Stilio VS, Gschwend AR, Golenberg EM, Moore RC, Russell JRW, Sinclair JP (2011) Multiple developmental processes underlie sex differentiation in angiosperms. Trends Genet 27:368–376

    Article  CAS  PubMed  Google Scholar 

  • Dorken ME, Pannell JR (2009) Hermaphroditic sex allocation evolves when mating opportunities change. Curr Biol 19:514–517

    Article  CAS  PubMed  Google Scholar 

  • Dufay M, Billard E (2012) How much better are females? The occurrence of female advantage, its proximal causes and its variation within and among gynodioecious species. Ann Bot 109:505–519

    Article  PubMed  Google Scholar 

  • Dufay M, Touzet P, Maurice S, Cuguen J (2007) Modelling the maintenance of male-fertile cytoplasm in a gynodioecious population. Heredity 99:349–356

    Article  CAS  PubMed  Google Scholar 

  • Dufay M, Champelovier P, Kafer J, Henry JP, Mousset S, Marais GAB (2014) An angiosperm-wide analysis of the gynodioecy-dioecy pathway. Ann Bot 114:539–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehlers BK, Bataillon T (2007) ‘Inconstant males’ and the maintenance of labile sex expression in subdioecious plants. New Phytol 174:194–211

    Article  PubMed  Google Scholar 

  • Emlen DJ (2008) The evolution of animal Weapons. Annu Rev Ecol Evol Syst 39:387–413

    Article  Google Scholar 

  • Frank SA (1989) The evolutionary dynamics of cytoplasmic male sterility. Am Nat 133:345–376

    Article  Google Scholar 

  • Friedman J (2011) Gone with the wind: understanding evolutionary transitions between wind and animal pollination in the angiosperms. New Phytol 191:911–913

    Article  PubMed  Google Scholar 

  • Geber MA, Dawson TE, Delph LF (eds) (1999) Gender and sexual dimorphism in flowering plants. Springer, Heidelberg

    Google Scholar 

  • Gleiser G, Verdú M (2005) Repeated evolution of dioecy from androdioecy in Acer. New Phytol 165:633–640

    Article  PubMed  Google Scholar 

  • Hamilton WD (1967) Extraordinary sex ratios. Science 156:477–488

    Article  CAS  PubMed  Google Scholar 

  • Harder LD, Barclay RMR (1994) The functional significance of poricidal anthers and buzz pollination: controlled pollen removal from Dodecatheon. Funct Ecol 8:509–517

    Article  Google Scholar 

  • Harder LD, Wilson WG (1994) Floral evolution and male reproductive success: optimal dispensing schedules for pollen dispersal by animal-pollinated plants. Evol Ecol 8:542–559

    Article  Google Scholar 

  • Heath DJ (1977) Simultaneous hermaphroditism: cost and benefit. J Theor Biol 64:363–373

    Article  CAS  PubMed  Google Scholar 

  • Heilbuth JC (2000) Lower species richness in dioecious clades. Am Nat 156:221–241

    Article  PubMed  Google Scholar 

  • Heilbuth JC, Ilves KL, Otto SP (2001) The consequences of dioecy for seed dispersal: modeling the seed-shadow handicap. Evolution 55:880–888

    Article  CAS  PubMed  Google Scholar 

  • Kafer J, de Boer HJ, Mousset S, Kool A, Dufay M, Marais GAB (2014) Dioecy is associated with higher diversification rates in flowering plants. J Evol Biol 27:1478–1490

    Article  CAS  PubMed  Google Scholar 

  • Kafer J, Marais GAB, Pannell JR (2017) On the rarity of dioecy in flowering plants. Mol Ecol 26:1225–1241

    Article  PubMed  Google Scholar 

  • Kalisz S, Vogler DW, Hanley KM (2004) Context-dependent autonomous self-fertilization yields reproductive assurance and mixed mating. Nature 430:884–887

    Article  CAS  PubMed  Google Scholar 

  • Klinkhamer PGL, Dejong TJ, Metz JAJ (1994) Why plants can be too attractive – a discussion of measures to estimate male fitness. J Ecol 82:191–194

    Article  Google Scholar 

  • Klinkhamer PGL, de Jong TJ, Metz H (1997) Sex and size in cosexual plants. Trends Ecol Evol 12:260–265

    Article  CAS  PubMed  Google Scholar 

  • Kuhn E (1939) Selbstbestäubungen subdiöcischer Blütenpflanzen, ein neuer Beweis für die genetische Theorie der Geschlechtsbestimmung. Planta 30:457–470

    Article  Google Scholar 

  • Lebel-Hardenack S, Hauser E, Law TF, Schmid J, Grant SR (2002) Mapping of sex determination loci on the white campion (Silene latifolia) Y chromosome using amplified fragment length polymorphism. Genetics 160:717–725

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis D (1941) Male sterility in natural populations of hermaphrodite plants. New Phytol 40:56–63

    Article  Google Scholar 

  • Lloyd DG (1974) Female-predominant sex ratios in angiosperms. Heredity 32:35–44

    Article  Google Scholar 

  • Lloyd DG (1975a) Breeding systems in Cotula IV. Reversion from dioecy to monoecy. New Phytol 74:125–145

    Article  Google Scholar 

  • Lloyd DG (1975b) The maintenance of gynodioecy and androdioecy in angiosperms. Genetica 45:325–339

    Article  Google Scholar 

  • Lloyd DG (1980) The distribution of gender in four angiosperm species illustrating two evolutionary pathways to dioecy. Evolution 34:123–134

    Article  PubMed  Google Scholar 

  • Lloyd DG (1982) Selection of combined versus separate sexes in seed plants. Am Nat 120:571–585

    Article  Google Scholar 

  • Lloyd DG, Bawa KS (1984) Modification of the gender of seed plants in varying conditions. Evol Biol 17:255–338

    Article  Google Scholar 

  • Lloyd DG, Webb CJ (1977) Secondary sex characters in plants. Bot Rev 43:177–216

    Article  Google Scholar 

  • Miller JS, Venable DL (2000) Polyploidy and the evolution of gender dimorphism in plants. Science 289:2335–2338

    Article  CAS  PubMed  Google Scholar 

  • Ming R, Wang JP, Moore PH, Paterson AH (2007) Sex chromosomes in flowering plants. Am J Bot 94:141–150

    Article  PubMed  Google Scholar 

  • Moore JC, Pannell JR (2011) Sexual selection in plants. Curr Biol 21:R176–R182

    Article  CAS  PubMed  Google Scholar 

  • Ohashi K, Yahara T (2001) Behavioral responses of pollinators to variation in floral display size and their influences on the evolution of floral traits. In: Chittka L, Thomson JD (eds) Cognitive ecology of pollination. Cambridge University Press, Cambridge, pp 274–296

    Chapter  Google Scholar 

  • Ornduff R (1966) The origin of dioecism from heterostyly in Nymphoides (Menyanthaceae). Evolution 20:309–314

    Article  PubMed  Google Scholar 

  • Pannell JR (2001) A hypothesis for the evolution of androdioecy: the joint influence of reproductive assurance and local mate competition in a metapopulation. Evol Ecol 14:195–211

    Article  Google Scholar 

  • Pannell JR (2002) The evolution and maintenance of androdioecy. Annu Rev Ecol Syst 33:397–425

    Article  Google Scholar 

  • Pannell JR (2008) Consequences of inbreeding depression due to sex-linked loci for the maintenance of males and outcrossing in branchiopod crustaceans. Genet Res 90:73–84

    Article  CAS  Google Scholar 

  • Pannell JR (2015) Evolution of the mating system in colonizing plants. Mol Ecol 24:2018–2037

    Article  PubMed  Google Scholar 

  • Pannell JR, Korbecka G (2010) Mating-system evolution: rise of the irresistible males. Curr Biol 20:482–484

    Article  CAS  Google Scholar 

  • Pannell JR, Verdu M (2006) The evolution of gender specialization from dimorphic hermaphroditism: paths from heterodichogamy to gynodioecy and androdioecy. Evolution 60:660–673

    Article  PubMed  Google Scholar 

  • Pannell JR, Auld JR, Brandvain Y, Burd M, Busch JW, Cheptou PO, Conner JK, Goldberg EE, Grant AG, Grossenbacher DL, Hovick SM, Igic B, Kalisz S, Petanidou T, Randle AM, de Casas RR, Pauw A, Vamosi JC, Winn AA (2015) The scope of Baker’s law. New Phytol 208:656–667

    Article  PubMed  Google Scholar 

  • Pickup M, Barrett SCH (2012) Reversal of height dimorphism promotes pollen and seed dispersal in a wind-pollinated dioecious plant. Biol Lett 8:245–248

    Article  PubMed  Google Scholar 

  • Renner SS (2001) How common is heterodichogamy? Trends Ecol Evol 16:595–597

    Article  Google Scholar 

  • Renner SS (2014) The relative and absolute frequencies of angiosperm sexual systems: dioecy, monoecy, gynodioecy, and an updated online database. Am J Bot 101:1588–1596

    Article  PubMed  Google Scholar 

  • Renner SS (2016) Pathways for making unisexual flowers and unisexual plants: moving beyond the “two mutations linked on one chromosome” model. Am J Bot 103:587–589

    Article  CAS  PubMed  Google Scholar 

  • Renner SS, Ricklefs RE (1995) Dioecy and its correlates in the flowering plants. Am J Bot 82:596–606

    Article  Google Scholar 

  • Rhen T (2000) Sex-limited mutations and the evolution of sexual dimorphism. Evolution 54:37–43

    Article  CAS  PubMed  Google Scholar 

  • Rice WR (1984) Sex-chromosomes and the evolution of sexual dimorphism. Evolution 38:735–742

    Article  PubMed  Google Scholar 

  • Ross MD (1982) Five evolutionary pathways to subdioecy. Am Nat 119:297–318

    Article  Google Scholar 

  • Russell JRW, Pannell JR (2015) Sex determination in dioecious Mercurialis annua and its close diploid and polyploid relatives. Heredity 114:262–271

    Article  CAS  PubMed  Google Scholar 

  • Sakai AK, Wagner WL, Ferguson DM, Herbst DR (1995) Biogeographical and ecological correlates of dioecy in the Hawaiian flora. Ecology 76:2530–2543

    Article  Google Scholar 

  • Saumitou-Laprade P, Vernet P, Vassiliadis C, Hoareau Y, de Magny G, Dommee B, Lepart J (2010) A self-incompatibility system explains high male frequencies in an androdioecious plant. Science 327:1648–1650

    Article  CAS  PubMed  Google Scholar 

  • Schultheiss R, Viitaniemi HM, Leder EH (2015) Spatial dynamics of evolving dosage compensation in a young sex chromosome system. Genome Biol Evol 7:581–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schultz ST (1994) Nucleo-cytoplasmic male sterility and alternative routes to dioecy. Evolution 48:1933–1945

    Article  PubMed  Google Scholar 

  • Shykoff JA, Kolokotronis SO, Collin CL, Lopez-Villavicencio M (2003) Effects of male sterility on reproductive traits in gynodioecious plants: a meta-analysis. Oecologia 135:1–9

    Article  PubMed  Google Scholar 

  • Spigler RB, Ashman TL (2012) Gynodioecy to dioecy: are we there yet? Ann Bot 109:531–543

    Article  PubMed  Google Scholar 

  • Torices R, Méndez M, Gómez AJM (2011) Where do monomorphic sexual systems fit in the evolution of dioecy? Insights from the largest family of Angiosperms. New Phytol 190:238–248

    Article  Google Scholar 

  • Vamosi JC, Vamosi SM (2004) The role of diversification in causing the correlates of dioecy. Evolution 58:723–731

    Article  PubMed  Google Scholar 

  • Vamosi JC, Otto SP, Barrett SCH (2003) Phylogenetic analysis of the ecological correlates of dioecy in angiosperms. J Evol Biol 16:1006–1018

    Article  CAS  PubMed  Google Scholar 

  • Vernet P, Lepercq P, Billiard S, Bourceaux A, Lepart J, Dommee B, Saumitou-Laprade P (2016) Evidence for the long-term maintenance of a rare self-incompatibility system in Oleaceae. New Phytol 210:1408–1417

    Article  PubMed  Google Scholar 

  • Webb CJ (1999) Empirical studies: evolution and maintenance of dimorphic breeding systems. In: Geber MA, Dawson TE, Delph LF (eds) Gender and sexual dimorphism in flowering plants. Springer, Berlin, pp 61–95

    Chapter  Google Scholar 

  • Weeks SC (2012) The role of androdioecy and gynodioecy in mediating evolutionary transitions between dioecy and hermaphroditism in the Animalia. Evolution 66:3670–3686

    Article  PubMed  Google Scholar 

  • Weeks SC, Benvenuto C, Reed SK (2006) When males and hermaphrodites coexist: a review of androdioecy in animals. Integr Comp Biol 46:449–464

    Article  PubMed  Google Scholar 

  • Weiblen GD, Oyama RK, Donoghue MJ (2000) Phylogenetic analysis of dioecy in monocotyledons. Am Nat 155:46–58

    Article  PubMed  Google Scholar 

  • West SA (2009) Sex allocation. Princeton University Press, Princeton

    Book  Google Scholar 

  • Wilson WG, Harder LD (2003) Reproductive uncertainty and the relative competitiveness of simultaneous hermaphroditism versus dioecy. Am Nat 162:220–241

    Article  CAS  PubMed  Google Scholar 

  • Wilson P, Thomson JD, Stanton ML, Rigney LP (1994) Beyond floral Batemania: gender biases in selection for pollination success. Am Nat 143:283–296

    Article  Google Scholar 

  • Yampolsky C (1919) Inheritance of sex in Mercurialis annua. Am J Bot 6:410–442

    Article  Google Scholar 

  • Yampolsky C, Yampolsky H (1922) Distribution of sex forms in the phanerogamic flora. Bibl Genet 3:4–62

    Google Scholar 

Download references

Acknowledgments

I thank R. Torices for helpful discussions and R. Torices, A. Case, and an anonymous referee for comments on the manuscript. The work was supported by grants from the Swiss National Science Foundation and the University of Lausanne.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John R. Pannell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pannell, J.R. (2018). Transitions Between Combined and Separate Sexes in Flowering Plants. In: Leonard, J. (eds) Transitions Between Sexual Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-94139-4_3

Download citation

Publish with us

Policies and ethics