Skip to main content

Abstract

In this chapter, I shall review theoretical models of the evolution of dioecy from hermaphroditism. I hope to show why theoretical ideas have been important, and why we cannot work in a purely ecological context, considering only fertility advantages of phenotypes, but must include genetic aspects of the breeding systems if we are not to be misled in our conclusions. I shall argue that both ecological and genetic factors are of central importance, and that we should not view the reasons for the evolution of unisexuality as having to be either constraints of resource availability or else inbreeding avoidance, but rather should see that both kinds of factors must play a part. To understand this evolutionary process, we should therefore not attempt to rule out one or the other type of factor, but should instead try to get empirical evidence that will help us to assess their relative importance. At the end of the chapter, I will briefly review some of this evidence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arroyo MTK, Squeo F (1990) Relationship between plant breeding systems and pollination. In: Kawano S. (ed) Biological approaches and evolutionary trends in plants. Academic Press, New York, pp 205–227

    Google Scholar 

  • Ashman T-L (1992) The relative importance of inbreeding and maternal sex in determining fitness in Sidalcea oregana ssp. spicata, a gynodioecious plant. Evolution 46: 1862–1874

    Article  Google Scholar 

  • Baker HG (1963) Evolutionary mechanisms in pollination biology. Science 139: 877–883

    Article  PubMed  CAS  Google Scholar 

  • Barrett SCH (1992) Gender variation in Wurmbia dioica (Liliaceae) and the evolution of dioecy. J Evol Biol 5: 423–444

    Article  Google Scholar 

  • Bawa KS (1980). Evolution of dioecy in flowering plants. Ann Rev Ecol Syst 11: 15–39

    Article  Google Scholar 

  • Beach JH, Bawa KS (1980) Role of pollination in the evolution of dioecy from distyly. Evolution 34: 1138–1142

    Article  Google Scholar 

  • Belhassen E, Dommée B, Atlan A, Gouyon P-H, Pomente D, Assouad MW, Couvet D (1991) Complex determination of male sterility in Thymus vulgaris: genetic and molecular analysis. Theoret Appl Genet 82: 137–143

    Article  CAS  Google Scholar 

  • Brunet J, Charlesworth D (1995) Floral sex allocation in sequentially blooming plants. Evolution 49: 70–79

    Article  Google Scholar 

  • Casper BB, Charnov EL (1982) Sex allocation in heterostylous plants. J Theor Bio! 96: 143–149

    Article  Google Scholar 

  • Charlesworth B (1991) The evolution of sex chromosomes. Science 251: 1030–1033

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth B, Charlesworth D (1978) A model for the evolution of dioecy and gynodioecy. Am Nat 112: 975–997

    Article  Google Scholar 

  • Charlesworth D (1981) A further study of the problem of the maintenance of females in gynodioecious species. Heredity 46: 27–39

    Article  Google Scholar 

  • Charlesworth D (1984) Androdioecy and the evolution of dioecy. Biol J Linn Soc 23: 333–348

    Article  Google Scholar 

  • Charlesworth D (1985) Distribution of dioecy and self-incompatibility in angiosperms. In: Greenwood PJ, Slatkin M (eds) Evolution–essays in honour of John Maynard Smith. Cambridge University Press, Cambridge, pp 237–268

    Google Scholar 

  • Charlesworth D (1989) Allocation to male and female functions in sexually polymorphic populations. J Theor Biol 139: 327–342

    Article  Google Scholar 

  • Charlesworth D, Charlesworth B (1978) Population genetics of partial male-sterility and the evolution of monoecy and dioecy. Heredity 41: 137–153

    Article  Google Scholar 

  • Charlesworth D, Charlesworth B (1981) Allocation of resources to male and female functions in hermaphrodites. Biol J Linn Soc 15: 57–74

    Article  Google Scholar 

  • Charlesworth D, Charlesworth B (1987) The effect of investment in attractive structures on allocation to male and female functions in plants. Evolution 41: 948–968

    Article  Google Scholar 

  • Charlesworth D, Ganders FR (1979) The population genetics of gynodioecy with cytoplasmic male-sterility. Heredity 43 213–218

    Article  Google Scholar 

  • Charlesworth D, Morgan, MT (1991) Allocation of resources to sex functions in flowering plants. Philos Trans R Soc Lond B 332: 91–102

    Article  Google Scholar 

  • Charnov EL (1982) The theory of sex allocation. Princeton University Press, Princeton

    Google Scholar 

  • Charnov EL (1987) On sex allocation and selfing in higher plants. Evol Ecol 1: 30–36

    Article  Google Scholar 

  • Charnov EL, Bull JJ (1986) Sex allocation, pollinator attraction and fruit dispersal in cosexual plants. J Theor Biol 118: 321–326

    Article  Google Scholar 

  • Charnov EL, Maynard Smith J, Bull JJ (1976) Why be an hermaphrodite? Nature 263: 125–126

    Article  Google Scholar 

  • Correns C (1908) Die Rolle der männlichen Keimzellen bei der Geschlechtsbestimmung der gynodioezischen Pflanzen. Ber Dtsch Bot Ges 26A: 626–701

    Google Scholar 

  • Costich DE, Meagher TR (1992) Genetic variation in Ecballium elaterium (Cucurbitaceae): breeding system and geographic distribution. J Evol Bio! 5: 589–601

    Article  Google Scholar 

  • Couvet D, Gouyon P-H, Kjellberg F, Valdeyron G (1985) La differénciation nucléocytoplasmique entre populations: une cause de l’existence de mâle-steriles dans les populations naturelles de Thym. CR Acad Sci Paris Ser III 300: 665–668

    Google Scholar 

  • Cruden RW, Lyon DL (1985) Patterns of biomass allocation to male and female functions in plants with different mating systems. Oecologia (Berl) 66: 299–306

    Google Scholar 

  • Darwin CR (1877) The different forms of flowers on plants of the same species. John Murray, London

    Book  Google Scholar 

  • Delannay X, Gouyon P-H, Valdeyron G (1981) Mathematical study of the evolution of gynodioecy with cytoplasmic inheritance under the effect of a nuclear restorer gene. Genetics 99: 169–181

    PubMed  CAS  Google Scholar 

  • Dellaporta SL, Urrea AC (1994) The sex determination process in maize. Science 266: 1501–1505

    Article  PubMed  CAS  Google Scholar 

  • Delph LF (1990) Sex-ratio variation in the gynodioecious shrub Hebe strictissima (Scrophulariaceae). Evolution 44: 134–142

    Article  Google Scholar 

  • Delph LF, Lloyd DG (1996) Inbreeding depression in the gynodioecious shrub Hebe subalpina ( Scrophulariaceae ). N Z J Bot 34: 241–247

    Article  Google Scholar 

  • Denslow JS (1987) Fruit removal rate from aggregated and isolated bushes of the red elderberry, Sambucus pubens. Can J Bot 65: 1229–1235

    Article  Google Scholar 

  • Frank SA (1987) Individual and population sex allocation patterns. Theor Popul Biol 31: 47–74

    Article  PubMed  CAS  Google Scholar 

  • Frank, SA (1989) The evolutionary dynamics of cytoplasmic male sterility. Am Nat 133: 345–576

    Article  Google Scholar 

  • Fritsch P, Rieseberg LH (1992) High outcrossing rates maintain male and hermaphrodite individuals in populations of the flowering plant Datisca glomerata. Nature 359: 633–636

    Article  Google Scholar 

  • Ganders FR (1978) The genetics and evolution of gynodioecy in Nemophila menziesii (Hydrophyllaceae). Can J Bot 56: 1400–1408

    Article  Google Scholar 

  • Givnish TJ (1980) Ecological constraints on the evolution of breeding systems in seed plants: dioecy and dispersal in gymnosperms. Evolution 34: 959–972

    Article  Google Scholar 

  • Gouyon PH, Vichot F, van Damme JMM (1991) Nuclear-cytoplasmic male sterility: single point equilibria versus limit cycles. Am Nat 137: 498–514

    Article  Google Scholar 

  • Horovitz A, Galil J (1972) Gynodioecism in east Mediterranean Hirschfeldia incana. Bot Gaz 133: 127–131

    Article  Google Scholar 

  • Husband BC, Schemske DW (1995) Evolution of the magnitude and timing of inbreeding depression in plants. Evolution 50: 54–70

    Article  Google Scholar 

  • Johnston MO, Schoen DJ (1995) Mutation rates and dominance levels of genes affecting total fitness in two angiosperm species. Science 267: 226–229

    Article  PubMed  CAS  Google Scholar 

  • Karron JD, Thumser NN, Tucker R, Hessenauer AJ (1995) The influence of population density on outcrossing rates in Mimulus ringens. Heredity 75: 175–180

    Article  Google Scholar 

  • Kaul MLH (1987) Male-sterility in higher plants. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Kheyr-Pour A (1980) Nucleo-cytoplasmic polymorphism for male sterility in Origanum vulgare L J Hered 71: 253–260

    Google Scholar 

  • Koelewijn HP, van Damme JMM (1995a) Genetics of male sterility in gynodioecious Plantago coronopus. I. Cytoplasmic variation. Genetics 139: 1749–1758

    PubMed  CAS  Google Scholar 

  • Koelewijn HP, van Damme JMM (1995b) Genetics of male sterility in gynodioecious Plantago coronopus. II. Nuclear genetic variation. Genetics 139: 1759–1775

    PubMed  CAS  Google Scholar 

  • Kohn J (1988) Why be female? Nature 335: 431–433

    Article  Google Scholar 

  • Kohn JR, Biardi JE (1995) Outcrossing rates and inferred levels of inbreeding depression in gynodioecious Cucurbita foetidissima ( Cucurbitaceae ). Heredity 75: 77–83

    Article  Google Scholar 

  • Lewis D (1941) Male sterility in natural populations of hermaphrodite plants. New Phytol 40: 56–63

    Article  Google Scholar 

  • Lewis D (1942) The evolution of sex in flowering plants. Biol Rev 17: 46–67

    Article  Google Scholar 

  • Lloyd DG (1974) Theoretical sex ratios of dioecious and gynodioecious angiosperms. Heredity 32: 11–34

    Article  Google Scholar 

  • Lloyd DG (1975a) Breeding systems in Cotula. III. Dioecious populations. New Phytol 74: 109–123

    Article  Google Scholar 

  • Lloyd DG (1975b) The maintenance of gynodioecy and androdioecy in angiosperms. Genetica 45: 325–339

    Article  Google Scholar 

  • Lloyd DG (1977) Genetic and phenotypic models of natural selection. J Theor Biol 69: 543–560

    Article  PubMed  CAS  Google Scholar 

  • Lloyd DG (1979) Evolution towards dioecy in heterostylous plants. Plant Syst Evol 131: 71–80

    Article  Google Scholar 

  • Lloyd DG (1980) The distributions of gender in four angiosperm species illustrating two evolutionary pathways to dioecy. Evolution 34: 123–134

    Article  Google Scholar 

  • Lloyd DG (1982) Selection of combined versus separate sexes in seed plants. Am Nat 120: 571–585

    Article  Google Scholar 

  • Lloyd DG (1984) Gender allocations in outcrossing cosexual plants. In: Dirzo R, Sarukhan J (eds) Perspectives on plant population ecology. Sinauer, Sunderland, Massachusetts, pp 277–300

    Google Scholar 

  • Lloyd DG (1987) Allocations to pollen, seeds and pollination mechanisms in self-fertilizing plants. Funct Ecol 1: 83–89

    Article  Google Scholar 

  • Lloyd DG, Bawa KS (1984) Modification of the gender of seed plants in varying conditions. Evol Biol 17: 255–338

    Article  Google Scholar 

  • Maki M (1993) Outcrossing and fecundity advantage of females in gynodioecious Chionographis japonica var. kurohimensis (Liliaceae). Am J Bot 80: 629–634

    Article  Google Scholar 

  • Maurice, S, Couvet, D, Charlesworth, D, Gouyon, P-H (1993) The evolution of gender in hermaphrodites of gynodioecious populations: a case in which the successful gamete method fails. Proc R Soc Lond B 251: 253–261

    Article  Google Scholar 

  • Maurice S, Belhassen E, Couvet D, Gouyon P-H (1994) Evolution of dioecy: can nucleo-cytoplasmic interactions select for maleness. Heredity 73: 346–354

    Article  PubMed  Google Scholar 

  • Mayer SS, Charlesworth D (1992) Genetic evidence for multiple origins of dioecy in the Hawaiian shrub Wikstroemia. Evolution 46: 207–215

    Article  Google Scholar 

  • Milligan BG (1992) Is organelle DNA strictly maternally inherited? Power analysis of a binomial distribution. Am J Bot 79: 1325–1328

    Article  CAS  Google Scholar 

  • Morgan MT (1994) Attractive structures and the stability of hermaphroditic sex expression in flowering plants. Am Nat 144: S100–125

    Article  Google Scholar 

  • Muenchow GA (1987) Is dioecy associated with fleshy fruit? Am J Bot 74: 287–293

    Article  Google Scholar 

  • Muenchow GA, Grebus M (1987) The evolution of dioecy from distyly: evaluation of the loss-ofpollinators hypothesis. Am Nat 133: 149–156

    Article  Google Scholar 

  • Murawski DA, Hamrick JL (1991) The effect of the density of flowering individuals on the mating systems of nine tropical tree species. Heredity 67: 167–174

    Article  Google Scholar 

  • Murawski DA, Hamrick JL (1992) The mating systems of Cavanillesia platanifolia under extremes of flowering-tree density: a test of predictions. Biotropica 24: 99–101

    Article  Google Scholar 

  • Pannell J (1996a) Variation in sex ratios and sex allocation in androdioecious Mercurialis annua. J Ecol 85: 57–69

    Google Scholar 

  • Pannell J (1996b) Mixed genetic and environmental sex determination in androdioecious Mercurialis annua. Heredity, 78: 50–56

    Article  Google Scholar 

  • Pannell J (1996c) Widespread functional androdioecy in the ruderal Mercurialis annua L. (Euphorbiaceae). Biol J Linn Soc 61: 95–116

    Google Scholar 

  • Pannell J (1996d) The maintenance of gynodioecy and androdioecy in a metapopulation. PhD Thesis, Oxford University, Oxford, England

    Google Scholar 

  • Pannell J (1997) The maintenance of gynodioecy and androdioecy in a metapopulation. Evolution 51: 10–20

    Article  Google Scholar 

  • Renner SS, Ricklefs RE (1995) Dioecy and its correlates in the flowering plants. Am J Bot 82: 596–606

    Article  Google Scholar 

  • Rieseberg LH, Philbrick CT, Pack PP, Hanson MA, Fritsch P (1993) Inbreeding depression in androdioecious populations of Datisca glomerata ( Datiscaceae ). Am J Bot 80: 757–762

    Article  Google Scholar 

  • Ross MD (1973) Inheritance of self-incompatibility in Plantago lanceolata. Heredity 30: 169–176

    Article  Google Scholar 

  • Ross MD (1978) The evolution of gynodioecy and subdioecy. Evolution 32: 174–188

    Article  Google Scholar 

  • Sakai, AK, Karoly, K, Weller, SG (1989) Inbreeding depression in Schiedia globosa and S. salicaria ( Caryophyllaceae), subdioecious and dioecious Hawaiian species. Amer J Bot 76: 437–444

    Article  Google Scholar 

  • Sakai, AK, Weller, SG, Chen ML, Chou SY, and Tasanont C (1997) Evolution of gynodioecy and maintenance of females: The role of inbreeding depression, outcrossing rates, and resource allocation in Schiedea adamantis ( Caryophyllaceae ). Evolution 51: 724–736

    Article  Google Scholar 

  • Schoen DJ (1982) Male reproductive effort and breeding system in an hermaphroditic plant. Oecologia (Berl) 53: 255–257

    Article  Google Scholar 

  • Schultz S (1994) Nucleo-cytoplasmic male sterility and alternative routes to dioecy. Evolution 48: 1933–1945

    Article  Google Scholar 

  • Seger J, Eckhart VM (1996) Evolution of sexual systems and sex allocation in annual plants when growth and reproduction overlap. Proc R Soc Lond B 263: 833–841

    Article  Google Scholar 

  • Shykoff JA (1988) Maintenance of gynodioecy in Silene acaulis (Caryophyllaceae): stage-specific fecundity and viability selection. Am J Bot 75: 844–850

    Article  Google Scholar 

  • Sun M, Ganders FR (1986) Female frequencies in gynodioecious populations correlated with selling rates in hermaphrodites. Am J Bot 73: 1645–1648

    Article  Google Scholar 

  • Thomson JD, Brunet J (1990) Hypotheses for the evolution of dioecy in seed plants. Trends Ecol Evol 5: 11–16

    Article  PubMed  CAS  Google Scholar 

  • Valdeyron G, Dommée B, Valdeyron A (1973) Gynodioecy: another computer simulation model. Am Nat 107: 454–459

    Article  Google Scholar 

  • van Damme JMM (1983) Gynodioecy in Plantago lanceolata L. II. Inheritance of three male sterility types. Heredity 50: 253–273

    Article  Google Scholar 

  • Webb CJ (1979) Breeding systems and the evolution of dioecy in New Zealand apioid Umbelliferae. Evolution 33: 662–67

    Article  Google Scholar 

  • Weller SG, Sakai AK (1991) The genetic basis of male sterility in Schiedea ( Caryophyllaceae), an endemic Hawaiian genus. Heredity 67: 265–273

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Charlesworth, D. (1999). Theories of the Evolution of Dioecy. In: Geber, M.A., Dawson, T.E., Delph, L.F. (eds) Gender and Sexual Dimorphism in Flowering Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03908-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03908-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08424-9

  • Online ISBN: 978-3-662-03908-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics