Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

Natural glasses have been used since prehistoric times and are strongly linked to human evolution. On Earth, glasses are typically produced by rapid cooling of melts, and as in the case of minerals and rocks, natural glasses can provide key information on the evolution of the Earth. However, we are aware that natural glasses are products that are not solely terrestrial and that the formation mechanisms give rise to a variety of natural amorphous materials. On the Earth's surface, glasses are scarce compared to other terrestrial bodies (i. e., the Moon), since the conditions on the surface give rise to devitrification or weathering. In order to provide an exhaustive overview, we shall classify natural glasses based on the mechanisms by which they were formed: temperature related, temperature–pressure related, temperature–pressure–volatile related, and others.

In this chapter, we will review the most common natural glasses and their technological applications and also the scientific and technological advancements achieved from the study of these natural amorphous materials. Finally, we will provide some insights into the structure and properties of natural glasses and melts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • R.A. Weeks, J.R. Underwood, R. Giegengack: Libyan Desert glass: A review, J. Non-Cryst. Solids 67, 593–619 (1984)

    Article  CAS  Google Scholar 

  • J.W. Delano: Pristine lunar glasses: Criteria, data, and implications, J. Geophys. Res. Solid Earth 91, 201–213 (1986)

    Article  Google Scholar 

  • C. Koeberl: Geochemistry and tektites and impact glasses, Annu. Rev. Earth Planet. Sci. 14, 323–350 (1986)

    Article  CAS  Google Scholar 

  • B.P. Glass: Tektites and microtektites: Key facts and inferences, Tectonophysics 171, 393–404 (1990)

    Article  Google Scholar 

  • T. Aboud: Libyan Desert Glass: Has the enigma of its origin been resolved?, Phys. Procedia 2, 1425–1432 (2009)

    Article  CAS  Google Scholar 

  • K. Heide, G. Heide: Vitreous state in nature—Origin and properties, Chem. Erde 71, 305–335 (2011)

    Article  CAS  Google Scholar 

  • M.A. Pasek, K. Block, V. Pasek: Fulgurite morphology: A classification scheme and clues to formation, Contrib. Mineral. Petrol. 164, 477–492 (2012)

    Article  CAS  Google Scholar 

  • R. Gill: Igneous Rocks and Processes—A Practical Guide (Wiley-Blackwell, Chichester 2010)

    Google Scholar 

  • J. Keller, R. Djerbashian, S.G. Karapetian, E. Pernicka, V. Nasedkin: Armenian and Caucasian obsidian occurrences as sources for the Neolithic trade: Volcanological setting and chemical characteristics. In: Proc. 29th Int. Symp. Archaeom. (1996) pp. 69–86

    Google Scholar 

  • R.H. Tykot: Chemical fingerprinting and source tracing of obsidian: The central mediterranean trade in black gold, Acc. Chem. Res. 35, 618–627 (2002)

    Article  CAS  Google Scholar 

  • L. Bellot-Gurlet, F.-X. Le Bourdonnec, G. Poupeau, S. Dubernet: Raman micro-spectroscopy of western Mediterranean obsidian glass: One step towards provenance studies?, J. Raman Spectrosc. 35, 671–677 (2004)

    Article  CAS  Google Scholar 

  • J. Gottsmann, D.B. Dingwell: The cooling of frontal flow ramps: A calorimetric study on the Rocche Rosse rhyolite flow, Lipari, Aeolian Islands, Italy, Terra Nova 13, 157–164 (2001)

    Article  CAS  Google Scholar 

  • R. MacDonald, R.L. Smith, J.E. Thomas: Chemistry of the subalkalic silicic obsidians, US Geological Survey Professional Paper 1523 (1992)

    Google Scholar 

  • G. Deganello, L. Liotta, A. Longo, A. Martorana, Y. Yanev, N. Zotov: Structure of natural water-containing glasses from Lipari (Italy) and Eastern Rhodopes (Bulgaria): SAXS, WAXS and IR studies, J. Non-Cryst. Solids 232, 547–553 (1998)

    Article  Google Scholar 

  • N. Bagdassarov, F. Ritter, Y. Yanev: Kinetics of perlite glasses degassing: TG and DSC analysis, Glass Sci. Technol. 72, 277–290 (1999)

    CAS  Google Scholar 

  • D.J.M. Burkhard: Crystallization and oxidation of Kilauea basalt glass: Processes during reheating experiments, J. Petrol. 42, 507–527 (2001)

    Article  CAS  Google Scholar 

  • M.G. Davis, M.O. Garcia, P. Wallace: Volatiles in glasses from Mauna Loa Volcano, Hawai'i: implications for magma degassing and contamination, and growth of Hawaiian volcanoes, Contrib. Mineral. Petrol. 144, 570–591 (2003)

    Article  CAS  Google Scholar 

  • T. Katsura: Pele's hair as a liquid of Hawaiian tholeiitic basalts, Geochem. J. 1, 157–168 (1967)

    Article  CAS  Google Scholar 

  • T.L. Wright: Magma mixing as illustrated by the 1959 eruption, Kilauea Volcano, Hawaii, Bull. Geol. Soc. Am. 84, 849–858 (1973)

    Article  CAS  Google Scholar 

  • P.J. Kelly, P.R. Kyle, N.W. Dunbar, K.W.W. Sims: Geochemistry and mineralogy of the phonolite lava lake, Erebus volcano, Antarctica: 1972-2004 and comparison with older lavas, J. Volcanol. Geotherm. Res. 177, 589–605 (2008)

    Article  CAS  Google Scholar 

  • G.A. MacDonald: Physical properties of erupting Hawaiian magmas, Bull. Geol. Soc. Am. 74, 1071–1078 (1963)

    Article  CAS  Google Scholar 

  • D.R. Chapman, L.C. Scheiber: Chemical investigation of Australasian tektites, J. Geophys. Res. 74, 6737–6776 (1969)

    Article  CAS  Google Scholar 

  • B.P. Glass, B.M. Simonson: Distal Impact Ejecta Layers—A Record of Large Impacts in Sedimentary Deposits (Springer, Berlin, Heidelberg 2013)

    Book  Google Scholar 

  • L. Folco, M. D'Orazio, M. Tiepolo, S. Tonarini, L. Ottolini, N. Perchiazzi, P. Rochette, B.P. Glass: Transantarctic Mountain microtektites: Geochemical affinity with Australasian microtektites, Geochim. Cosmochim. Acta 73, 3694–3722 (2009)

    Article  CAS  Google Scholar 

  • B.P. Glass, C. Koeberl, J.D. Blum, F. Senftle, G.A. Izett, B.J. Evans, A.N. Thorpe, H. Povenmire, R.L. Strange: A Muong Nong-type Georgia tektite, Geochim. Cosmochim. Acta 59, 4071–4082 (1995)

    Article  CAS  Google Scholar 

  • J.M. Lange: Tektite glasses from Lusatia (Lausitz), Germany, Chem. Erde 56, 498–510 (1996)

    CAS  Google Scholar 

  • K. Žák, R. Skála, Z. Řanda, J. Mizera: A review of volatile compounds in tektites, and carbon content and isotopic composition of moldavite glass, Meteorit. Planet. Sci. 47, 1010–1028 (2012)

    Article  CAS  Google Scholar 

  • C. Koeberl, H. Sigurdsson: Geochemistry of impact glasses from the K/T boundary in Haiti: Relation to smectites and a new type of glass, Geochim. Cosmochim. Acta 56, 2113–2129 (1992)

    Article  CAS  Google Scholar 

  • G. Giuli, S.G. Eeckhout, E. Paris, C. Koeberl, G. Pratesi: Iron oxidation state in impact glass from the K/T boundary at Beloc, Haiti, by high-resolution XANES spectroscopy, Meteorit. Planet. Sci. 40, 1575–1580 (2005)

    Article  CAS  Google Scholar 

  • G. Giuli, E. Paris, G. Pratesi, C. Koeberl, C. Cipriani: Iron oxidation state in the Fe-rich layer and silica matrix of Libyan Desert Glass: A high-resolution XANES study, Meteorit. Planet. Sci. 38, 1181–1186 (2003)

    Article  CAS  Google Scholar 

  • C. Koeberl: Libyan Desert Glass: geochemical composition and origin. In: Proc. Silica ´96 Meet. (1997) pp. 121–131

    Google Scholar 

  • J.-A. Barrat, B.M. Jahn, J. Amossé, R. Rocchia, F. Keller, G.R. Poupeau, E. Diemer: Geochemistry and origin of Libyan Desert glasses, Geochim. Cosmochim. Acta 61, 1953–1959 (1997)

    Article  CAS  Google Scholar 

  • T. Meisel, C. Koeberl, R.J. Ford: Geochemistry of Darwin impact glass and target rocks, Geochim. Cosmochim. Acta 54, 1463–1474 (1990)

    Article  CAS  Google Scholar 

  • E.A. Carter, M.A. Pasek, T. Smith, T.P. Kee, P. Hines, H.G.M. Edwards: Rapid Raman mapping of a fulgurite, Anal. Bioanal. Chem. 387, 2647–2658 (2010)

    Article  CAS  Google Scholar 

  • G. Giuli, G. Pratesi, S.G. Eeckhout, C. Koeberl, E. Paris: Iron reduction in silicate glass produced during the 1945 nuclear test at the Trinity site (Alamogordo, New Mexico, USA). In: GSA Special Papers—Large Meteorite Impacts and Planetary Evolution IV, ed. by R.L. Gibson, W.U. Reimold (GSA, Boulder 2010) pp. 653–660

    Google Scholar 

  • R. Searle: Mid-Ocean Ridges (Cambridge University Press, Cambridge 2013)

    Book  Google Scholar 

  • T. Gregg, J. Fink: Quantification of submarine lava-flow morphology through analog experiments, Geology 23, 73–76 (1995)

    Article  Google Scholar 

  • C.D. Byers, D.W. Muenow, M.O. Garcia: Volatiles in basalts and andesites from the Galapagos Spreading Center, 85° to 86° W, Geochim. Cosmochim. Acta 47, 1551–1558 (1983)

    Article  CAS  Google Scholar 

  • D.M. Christie, I.S.E. Carmichael, C.H. Langmuir: Oxidation states of mid-ocean ridge basalt glasses, Earth. Planet. Sci. Lett. 79, 397–411 (1986)

    Article  CAS  Google Scholar 

  • A. Bézos, E. Humler: The Fe3+/\(\Upsigma\)Fe ratios of MORB glasses and their implications for mantle melting, Geochim. Cosmochim. Acta 69, 711–725 (2005)

    Article  CAS  Google Scholar 

  • D.J. Frost, C.A. McCammon: The Redox State of Earth's Mantle, Annu. Rev. Earth Planet. Sci. 36, 389–420 (2008)

    Article  CAS  Google Scholar 

  • V. Bouška, V.I. Feldman: Terrestrial and lunar, volcanic and impact glasses, tektites, and fulgurites. In: Advanced Mineralogy, ed. by A.S. Marfunin (Springer, Berlin, Heidelberg 1994) pp. 258–265

    Chapter  Google Scholar 

  • J.A. O'Keefe: Natural glass, J. Non-Cryst. Solids 67, 1–17 (1984)

    Article  CAS  Google Scholar 

  • G. Heiken: Morphology and petrography of volcanic ashes, Bull. Geol. Soc. Am. 83, 1961–1988 (1972)

    Article  CAS  Google Scholar 

  • D. Shimozuru: Physical parameters governing the formation of Pele's hair and tears, Bull. Volcanol. 56, 217–219 (1994)

    Article  Google Scholar 

  • S. Moune, F. Faure, P.J. Gauthier, K.W.W. Sims: Pele's hairs and tears: Natural probe of volcanic plume, J. Volcanol. Geotherm. Res. 164, 244–253 (2007)

    Article  CAS  Google Scholar 

  • V. Fiore, T. Scalici, G. Di Bella, A. Valenza: A review on basalt fibre and its composites, Compos. B Eng. 74, 74–94 (2015)

    Article  CAS  Google Scholar 

  • V. Dhand, G. Mittal, K.Y. Rhee, S.-J. Park, D. Hui: A short review on basalt fiber reinforced polymer composites, Compos. B Eng. 73, 166–180 (2015)

    Article  CAS  Google Scholar 

  • K. Singha: A short review on basalt fiber, Int. J. Text. Sci. 1, 19–28 (2012)

    Google Scholar 

  • B.E. Ramachandran, V. Velpari, N. Balasubramanian: Chemical durability studies on basalt fibres, J. Mater. Sci. 16, 3393–3397 (1981)

    Article  CAS  Google Scholar 

  • P.R. Kyle, J.A. Moore, M.F. Thirlwall: Petrologic evolution of anorthoclase phonolite lavas at Mount Erebus, Ross island, Antarctica, J. Petrol. 33, 849–875 (1992)

    Article  Google Scholar 

  • C. Le Losq, D.R. Neuville, R. Moretti, P.R. Kyle, C. Oppenheimer: Rheology of phonolitic magmas—The case of the Erebus lava lake, Earth Planet. Sci. Lett. 411, 53–61 (2015)

    Article  CAS  Google Scholar 

  • P.R. Kyle: Mineralogy and glass chemistry of recent volcanic ejecta from Mt Erebus, Ross Island, Antarctica, N.Z. J. Geol. Geophys. 20, 1123–1146 (1977)

    Article  CAS  Google Scholar 

  • I. Friedman, W. Long: Volcanic glasses, their origins and alteration processes, J. Non-Cryst. Solids 67, 127–133 (1984)

    Article  CAS  Google Scholar 

  • N.A. Stroncik, H.U. Schmincke: Palagonite—A review, Int. J. Earth. Sci. 91, 680–697 (2002)

    Article  CAS  Google Scholar 

  • B. Parruzot, P. Jollivet, D. Rébiscoul, S. Gin: Long-term alteration of basaltic glass: Mechanisms and rates, Geochim. Cosmochim. 154, 28–48 (2015)

    Article  CAS  Google Scholar 

  • R. Ewing: Natural glasses: Analogues for radioactive waste forms. In: Scientific Basis for Nuclear Waste Management, ed. by G.J. McCarthy (Springer, Boston 1979) pp. 56–78

    Google Scholar 

  • N. Chapman, I. McKinley, J. Smellie: The potential of natural analogues in assessing systems for deep disposal of high-level radioactive waste, KBS Technical Report 84-16 (KBS, Stockholm 1984)

    Google Scholar 

  • R. Ewing, M. Jercinovic: Natural analogues: Their application to the prediction of the long-term behavior of nuclear waste forms, Mater. Res. Soc. Symp. Proc. 84, 67 (1986)

    Article  Google Scholar 

  • R. Zielinski: Stability of glass in the geologic environment: Some evidence from studies of natural silicate glasses, Nucl. Technol. 51, 197–200 (1980)

    Article  CAS  Google Scholar 

  • G. Malow, W. Lutze, R. Ewing: Alteration effects and leach rates of basaltic glasses: Implications for the long-term stability of nuclear waste form borosilicate glasses, J. Non-Cryst. Solids 67, 305–321 (1984)

    Article  CAS  Google Scholar 

  • C. Byers, M. Jercinovic, R. Ewing, K. Keil: Basalt glass: An analogue for the evaluation of the long-term stability of nuclear waste form borosilicate glasses, MRS Proc. 44, 583 (1984)

    Article  Google Scholar 

  • I. Techer, T. Advocat, J. Lancelot, J.-M. Liotard: Basaltic glass: Alteration mechanisms and analogy with nuclear waste glasses, J. Nucl. Mater. 282, 40–46 (2000)

    Article  CAS  Google Scholar 

  • G. Berger, J. Schott, C. Guy: Behavior of Li, Rb and Cs during basalt glass and olivine dissolution and chlorite, smectite and zeolite precipitation from seawater: Experimental investigations and modelization between 50 and 300 °C, Chem. Geol. 71, 297–312 (1988)

    Article  CAS  Google Scholar 

  • J.-L. Crovisier, T. Advocat, J.-L. Dussossoy: Nature and role of natural alteration gels formed on the surface of ancient volcanic glasses (Natural analogs of waste containment glasses), J. Nucl. Mater. 321, 91–109 (2003)

    Article  CAS  Google Scholar 

  • C. Poinssot, S. Gin: Long-term Behavior Science: The cornerstone approach for reliably assessing the long-term performance of nuclear waste, J. Nucl. Mater. 420, 182–192 (2012)

    Article  CAS  Google Scholar 

  • S.M. Brown, T.L. Grove: Origin of the Apollo 14, 15, and 17 yellow ultramafic glasses by mixing of deep cumulate remelts, Geochim. Cosmochim. Acta 171, 201–215 (2015)

    Article  CAS  Google Scholar 

  • C.K. Shearer, J.J. Papike: Basaltic magmatism on the Moon: A perspective from volcanic picritic glass beads, Geochim. Cosmochim. Acta 57, 4785–4812 (1993)

    Article  CAS  Google Scholar 

  • M. Ma, Y. Liu, R. Schmitt: A chemical study of individual green glasses and brown glasses from 15426—Implications for their petrogenesis. In: Proc. Lunar Planet. Sci. 12 B (1981) pp. 915–933

    Google Scholar 

  • J.W. Delano, D.H. Lindsley: Mare glasses from Apollo 17: Constraints on the moon's bulk composition, J. Geophys. Res. 88, 3 (1983)

    Article  CAS  Google Scholar 

  • J. Longhi: On the connection between mare basalts and picritic volcanic glasses, J. Geophys. Res. Earth Planets 92, E349–E360 (1987)

    Article  CAS  Google Scholar 

  • S.S. Hughes, J.W. Delano, R.A. Schmitt: Apollo 15 yellow-brown volcanic glass: Chemistry and petrogenetic relations to green volcanic glass and olivine-normative mare basalts, Geochim. Cosmochim. Acta 52, 2379–2391 (1988)

    Article  CAS  Google Scholar 

  • C.K. Shearer, J.J. Papike, S.B. Simon, N. Shimizu, H. Yurimoto, S. Sueno: Ion microprobe studies of trace elements in Apollo 14 volcanic glass beads: Comparisons to Apollo 14 mare basalts and petrogenesis of picritic magmas, Geochim. Cosmochim. Acta 54, 851–867 (1990)

    Article  CAS  Google Scholar 

  • T.P. Wagner, T.L. Grove: Experimental constraints on the origin of lunar high-Ti ultramafic glasses, Geochim. Cosmochim. Acta 61, 1315–1327 (1997)

    Article  CAS  Google Scholar 

  • L.T. Elkins Tanton, J.A. Van Orman, B.H. Hager, T.L. Grove: Re-examination of the lunar magma ocean cumulate overturn hypothesis: Melting or mixing is required, Earth Planet. Sci. Lett. 196, 239–249 (2002)

    Article  CAS  Google Scholar 

  • M.J. Krawczynski, T.L. Grove: Experimental investigation of the influence of oxygen fugacity on the source depths for high titanium lunar ultramafic magmas, Geochim. Cosmochim. Acta 79, 1–19 (2012)

    Article  CAS  Google Scholar 

  • C.K. Shearer, P.C. Hess, M.A. Wieczorek, M.E. Pritchard, E.M. Parmentier, L.E. Borg, J. Longhi, L.T. Elkins-Tanton, C.R. Neal, I. Antonenko, R.M. Canup: Thermal and magmatic evolution of the Moon, Rev. Mineral. Geochem. 60, 365–518 (2006)

    Article  CAS  Google Scholar 

  • M. Wadhwa: Redox conditions on small bodies, the Moon and Mars, Rev. Mineral. Geochem. 68, 493–510 (2008)

    Article  CAS  Google Scholar 

  • C.D.K. Herd: Basalts as probes of planetary interior redox state, Rev. Mineral. Geochem. 68, 527–553 (2008)

    Article  CAS  Google Scholar 

  • J.J. Papike, J.M. Karner, C.K. Shearer: Comparative planetary mineralogy: Valence state partitioning of Cr, Fe, Ti, and V among crystallographic sites in olivine, pyroxene, and spinel from planetary basalts, Am. Mineral. 90, 277–290 (2005)

    Article  CAS  Google Scholar 

  • M. Sato, N.L. Hickling, J.E. McLane: Oxygen fugacity values of Apollo 12, 14, and 15 lunar samples and reduced state of lunar magmas, Proc. Lunar Sci. Conf. 4, 1061–1079 (1973)

    Google Scholar 

  • R.A. Fogel, M.J. Rutherford: Magmatic volatiles in primitive lunar glasses: I. FTIR and EPMA analyses of Apollo 15 green and yellow glasses and revision of the volatile-assisted fire-fountain theory, Geochim. Cosmochim. Acta 59, 201–215 (1995)

    Article  CAS  Google Scholar 

  • S.R. Sutton, J. Karner, J. Papike, J.S. Delaney, C. Shearer, M. Newville, P. Eng, M. Rivers, M.D. Dyar: Vanadium K edge XANES of synthetic and natural basaltic glasses and application to microscale oxygen barometry, Geochim. Cosmochim. Acta 69, 2333–2348 (2005)

    Article  CAS  Google Scholar 

  • J.M. Karner, S.R. Sutton, J.J. Papike, C.K. Shearer, J.H. Jones, M. Newville: Application of a new vanadium valence oxybarometer to basaltic glasses from the Earth, Moon, and Mars, Am. Mineral. 91, 270–277 (2006)

    Article  CAS  Google Scholar 

  • B.P. Glass: High-silica (\(> \) 60%) lunar glasses in an Apollo 14 soil sample: Evidence for silicic lunar volcanism?, Earth. Planet. Sci. Lett. 33, 79–85 (1976)

    Article  CAS  Google Scholar 

  • W.U. Reimold, F. Jourdan: Impact!—Bolides, craters, and catastrophes, Elements 8, 19–24 (2012)

    Article  CAS  Google Scholar 

  • C. Koeberl: The geochemistry and cosmochemistry of impacts. In: Treatise Geochemistry, 2nd edn., Vol. 2, ed. by H. Holland, K. Turekian (Elsevier, Amsterdam 2013) pp. 73–118

    Google Scholar 

  • R.F. Fudali, M.D. Dyar, D.L. Griscom, H.D. Schreiber: The oxidation state of iron in tektite glass, Geochim. Cosmochim. Acta 51, 2749–2756 (1987)

    Article  CAS  Google Scholar 

  • G. Giuli, G. Pratesi, C. Cipriani, E. Paris: Iron local structure in tektites and impact glasses by extended x-ray absorption fine structure and high-resolution x-ray absorption near-edge structure spectroscopy, Geochim. Cosmochim. Acta 66, 4347–4353 (2002)

    Article  CAS  Google Scholar 

  • G. Giuli, S.G. Eeckhout, M.R. Cicconi, C. Koeberl, G. Pratesi, E. Paris: Iron oxidation state and local structure in North American tektites. In: GSA Special Papers – Large Meteorite Impacts and Planetary Evolution IV, ed. by R.L. Gibson, W.U. Reimold (GSA, Boulder 2010)

    Google Scholar 

  • G. Giuli, M.R. Cicconi, S.G. Eeckhout, G. Pratesi, E. Paris, L. Folco: Australasian microtektites from Antarctica: XAS determination of the Fe oxidation state, Meteorit. Planet. Sci. 49, 696–705 (2014)

    Article  CAS  Google Scholar 

  • J. O'Keefe: The origin of tektites, Space Sci. Rev. 6, 174–221 (1966)

    Article  CAS  Google Scholar 

  • B.P. Glass: Chemical composition of Ivory Coast microtektites, Geochim. Cosmochim. Acta 33, 1135–1147 (1969)

    Article  CAS  Google Scholar 

  • B.P. Glass, B.M. Simonson: Distal impact ejecta layers: Spherules and more, Elements 8, 43–48 (2012)

    Article  CAS  Google Scholar 

  • W. Engelhardt, E. Luft, J. Arndt, H. Schock, W. Weiskirchner: Origin of moldavites, Geochim. Cosmochim. Acta 51, 1425–1443 (1987)

    Article  CAS  Google Scholar 

  • C. Koeberl: The geochemistry of tektites: An overview, Tectonophysics 171, 405–422 (1990)

    Article  CAS  Google Scholar 

  • A. Deutsch, C. Koeberl: Establishing the link between the Chesapeake Bay impact structure and the North American tektite strewn field: The Sr-Nd isotopic evidence, Meteorit. Planet. Sci. 41, 689–703 (2006)

    Article  CAS  Google Scholar 

  • C.W. Poag, C. Koeberl, W.U. Reimold: The Chesapeake Bay Crater (Springer, Berlin, Heidelberg 2004)

    Book  Google Scholar 

  • D. Stöffler, N.A. Artemieva, E. Pierazzo: Modeling the Ries-Steinheim impact event and the formation of the moldavite strewn field, Meteorit. Planet. Sci. 37, 1893–1907 (2002)

    Article  Google Scholar 

  • L. Folco, P. Rochette, N. Perchiazzi, M. D'Orazio, M.A.A. Laurenzi, M. Tiepolo: Microtektites from Victoria Land Transantarctic Mountains, Geology 36, 291–294 (2008)

    Article  CAS  Google Scholar 

  • L. Folco, B.P. Glass, M. D'Orazio, P. Rochette: A common volatilization trend in Transantarctic Mountain and Australasian microtektites: Implications for their formation model and parent crater location, Earth Planet. Sci. Lett. 293, 135–139 (2010)

    Article  CAS  Google Scholar 

  • B.P. Glass, J.E. Pizzuto: Geographic variation in Australasian microtektite concentrations: Implications concerning the location and size of the source crater, J. Geophys. Res. 99, 19075 (1994)

    Article  Google Scholar 

  • M.-Y. Lee, K.-Y. Wei: Australasian microtektites in the South China Sea and the West Philippine Sea: Implications for age, size, and location of the impact crater, Meteorit. Planet. Sci. 35, 1151–1155 (2000)

    Article  CAS  Google Scholar 

  • B.P. Glass, C. Koeberl: Australasian microtektites and associated impact ejecta in the South China Sea and the Middle Pleistocene supereruption of Toba, Meteorit. Planet. Sci. 41, 305–326 (2006)

    Article  CAS  Google Scholar 

  • P. Ma, K. Aggrey, C. Tonzola, C. Schnabel, P. de Nicola, G.F. Herzog, J.T. Wasson, B.P. Glass, L. Brown, F. Tera, R. Middleton, J. Klein: Beryllium-10 in Australasian tektites: Constraints on the location of the source crater, Geochim. Cosmochim. Acta 68, 3883–3896 (2004)

    Article  CAS  Google Scholar 

  • B. Glass: Microtektites in deep-sea sediments, Nature 214, 372–374 (1967)

    Google Scholar 

  • B.P. Glass: Australasian microtektites and the stratigraphic age of the australites, Bull. Geol. Soc. Am. 89, 1455–1458 (1978)

    Article  CAS  Google Scholar 

  • B.P. Glass: Bottle Green Microtektites, J. Geophys. Res. 77, 7057–7064 (1972)

    Article  CAS  Google Scholar 

  • B.P. Glass, M.J. Zwart: North American microtektites in Deep Sea Drilling Project cores from the Caribbean Sea and Gulf of Mexico, Geol. Soc. Am. Bull. 90, 595 (1979)

    Article  Google Scholar 

  • F.A. Frey: Microtektites: A chemical comparison of bottle-green microtektites, normal microtektites and tektites, Earth Planet. Sci. Lett. 35, 43–48 (1977)

    Article  CAS  Google Scholar 

  • G. Giuli, M.R. Cicconi, S.G. Eeckhout, C. Koeberl, B.P. Glass, G. Pratesi, M. Cestelli-Guidi, E. Paris: Amorphous Materials: Properties, structure, and durability: North American microtektites are more oxidized than tektites, Am. Mineral. 98, 1930–1937 (2013)

    Article  CAS  Google Scholar 

  • C. Koeberl: Geochemistry and origin of Muong Nong-type tektites, Geochim. Cosmochim. Acta 56, 1033–1064 (1992)

    Article  CAS  Google Scholar 

  • N. Artemieva: Numerical modeling of tektite origin in oblique impacts: Implication to Ries-Moldavites strewn field, Bull. Czech. Geol. Surv. 77, 303–311 (2002)

    Google Scholar 

  • N. Artemieva, E. Pierazzo: The Canyon Diablo impact event: 2. Projectile fate and target melting upon impact, Meteorit. Planet. Sci. 46, 805–829 (2011)

    Article  CAS  Google Scholar 

  • E. Pierazzo, N. Artemieva, E. Asphaug, E.C. Baldwin, J. Cazamias, R. Coker, G.S. Collins, D.A. Crawford, T. Davison, D. Elbeshausen, K.A. Holsapple, K.R. Housen, D.G. Korycansky, K. Wünnemann: Validation of numerical codes for impact and explosion cratering: Impacts on strengthless and metal targets, Meteorit. Planet. Sci. 43, 1917–1938 (2008)

    Article  CAS  Google Scholar 

  • A. Montanari, C. Koeberl: Impact Stratigraphy (Berlin, Heidelberg 2000)

    Google Scholar 

  • B.C. Johnson, H.J. Melosh: Formation of spherules in impact produced vapor plumes, Icarus 217, 416–430 (2012)

    Article  CAS  Google Scholar 

  • L.W. Alvarez, W. Alvarez, F. Asaro, H.V. Michel: Extraterrestrial cause for the cretaceous-tertiary extinction, Science 208, 1095–1108 (1980)

    Article  CAS  Google Scholar 

  • P. Schulte, L. Alegret, I. Arenillas, J.A. Arz, P.J. Barton, P.R. Bown, T.J. Bralower, G.L. Christeson, P. Claeys, C.S. Cockell, G.S. Collins, A. Deutsch, T.J. Goldin, K. Goto, J.M. Grajales-Nishimura, R.A.F. Grieve, S.P.S. Gulick, K.R. Johnson, W. Kiessling, C. Koeberl, D.A. Kring, K.G. MacLeod, T. Matsui, J. Melosh, A. Montanari, J.V. Morgan, C.R. Neal, D.J. Nichols, R.D. Norris, E. Pierazzo, G. Ravizza, M. Rebolledo-Vieyra, W.U. Reimold, E. Robin, T. Salge, R.P. Speijer, A.R. Sweet, J. Urrutia-Fucugauchi, V. Vajda, M.T. Whalen, P.S. Willumsen: The chicxulub asteroid impact and mass extinction at the cretaceous-paleogene boundary, Science 327, 1214–1218 (2010)

    Article  CAS  Google Scholar 

  • J. Smit, G. Klaver: Sanidine spherules at the Cretaceous-Tertiary boundary indicate a large impact event, Nature 292, 47–49 (1981)

    Article  CAS  Google Scholar 

  • G.A. Izett: Authigenic “spherules” in K-T boundary sediments at Caravaca, Spain, and Raton Basin, Colorado and New Mexico, may not be impact derived, Geol. Soc. Am. Bull. 99, 78–86 (1987)

    Article  CAS  Google Scholar 

  • H. Sigurdsson, S. D'Hondt, M.A. Arthur, T.J. Bralower, J.C. Zachos, M. van Fossen, J.E.T. Channel: Glass from the Cretaceous/Tertiary boundary in Haiti, Nature 349, 482–487 (1991)

    Article  CAS  Google Scholar 

  • C. Koeberl: Water content of glasses from the K/T boundary, Haiti: An indication of impact origin, Geochim. Cosmochim. Acta 56, 4329–4332 (1992)

    Article  CAS  Google Scholar 

  • B.F. Bohor: Shock-induced microdeformations in quartz and other mineralogical indications of an impact event at the Cretaceous-Tertiary boundary, Tectonophysics 171, 359–372 (1990)

    Article  Google Scholar 

  • T.E. Bunch, R.E. Hermes, A.M.T. Moore, D.J. Kennett, J.C. Weaver, J.H. Wittke, P.S. DeCarli, J.L. Bischoff, G.C. Hillman, G.A. Howard, D.R. Kimbel, G. Kletetschka, C.P. Lipo, S. Sakai, Z. Revay, A. West, R.B. Firestone, J.P. Kennett: Very high-temperature impact melt products as evidence for cosmic airbursts and impacts 12,900 years ago, Proc. Natl. Acad. Sci. 109, E1903–E1912 (2012)

    Article  CAS  Google Scholar 

  • R.B. Firestone, A. West, J.P. Kennett, L. Becker, T.E. Bunch, Z.S. Revay, P.H. Schultz, T. Belgya, D.J. Kennett, J.M. Erlandson, O.J. Dickenson, A.C. Goodyear, R.S. Harris, G.A. Howard, J.B. Kloosterman, P. Lechler, P.A. Mayewski, J. Montgomery, R. Poreda, T. Darrah, S.S.Q. Hee, A.R. Smith, A. Stich, W. Topping, J.H. Wittke, W.S. Wolbach: Evidence for an extraterrestrial impact 12,900 years ago that contributed to the megafaunal extinctions and the Younger Dryas cooling, Proc. Natl. Acad. Sci. USA 104, 16016–16021 (2007)

    Article  CAS  Google Scholar 

  • J.H. Wittke, J.C. Weaver, T.E. Bunch, J.P. Kennett, D.J. Kennett, A.M.T. Moore, G.C. Hillman, K.B. Tankersley, A.C. Goodyear, C.R. Moore, I.R. Daniel, J.H. Ray, N.H. Lopinot, D. Ferraro, I. Israde-Alcántara, J.L. Bischoff, P.S. DeCarli, R.E. Hermes, J.B. Kloosterman, Z. Revay, G.A. Howard, D.R. Kimbel, G. Kletetschka, L. Nabelek, C.P. Lipo, S. Sakai, A. West, R.B. Firestone: Evidence for deposition of 10 million tonnes of impact spherules across four continents 12,800 y ago, Proc. Natl. Acad. Sci. 110, E2088–E2097 (2013)

    Article  CAS  Google Scholar 

  • T.A. Surovell, V.T. Holliday, J.A.M. Gingerich, C. Ketron, C.V. Haynes, I. Hilman, D.P. Wagner, E. Johnson, P. Claeys: An independent evaluation of the Younger Dryas extraterrestrial impact hypothesis, Proc. Natl. Acad. Sci. 106, 18155–18158 (2009)

    Article  CAS  Google Scholar 

  • N. Pinter, A.C. Scott, T.L. Daulton, A. Podoll, C. Koeberl, R.S. Anderson, S.E. Ishman: The Younger Dryas impact hypothesis: A requiem, Earth Sci. Rev. 106, 247–264 (2011)

    Article  Google Scholar 

  • M. Boslough, K. Nicoll, V. Holliday, T.L. Daulton, D. Meltzer, N. Pinter, A.C. Scott, T. Surovell, P. Claeys, J. Gill, F. Paquay, J. Marlon, P. Bartlein, C. Whitlock, D. Grayson, A.J.T. Jull: Arguments and evidence against a Younger Dryas impact event, Geophys. Monogr. Ser. 198, 13–26 (2012)

    Google Scholar 

  • A. Van Hoesel, W.Z. Hoek, G.M. Pennock, M.R. Drury: The younger dryas impact hypothesis: A critical review, Quat. Sci. Rev. 83, 95–114 (2014)

    Article  Google Scholar 

  • W.U. Reimold, L. Ferrière, A. Deutsch, C. Koeberl: Impact controversies: Impact recognition criteria and related issues, Meteorit. Planet. Sci. 49, 723–731 (2014)

    Article  CAS  Google Scholar 

  • G. Bigazzi, V. Michele: New fission-track age determinations on impact glasses, Meteorit. Planet. Sci. 31, 234–236 (1996)

    Article  CAS  Google Scholar 

  • R. Rocchia, E. Robin, F. Fröhlich, H. Meon, L. Froget, E. Diemer: L'origine des verres du désert libyque: Un impact météoritique, C. R. Acad. Sci. 2 322(10), 839–845 (1996)

    CAS  Google Scholar 

  • P.A. Clayton: Silica-Glass from the Libyan Desert, Mineral. Mag. 23, 501–508 (1934)

    CAS  Google Scholar 

  • W.R. Seebaugh, A.M. Strauss: A cometary impact model for the source of Libyan Desert glass, J. Non-Cryst. Solids 67, 511–519 (1984)

    Article  Google Scholar 

  • L. Gomez-Nubla, J. Aramendia: S. Fdez-Ortiz de Vallejuelo, A. Alonso-Olazabal, K. Castro, M.C. Zuluaga, L.Á. Ortega, X. Murelaga, J.M. Madariaga: Multispectroscopic methodology to study Libyan desert glass and its formation conditions, Anal. Bioanal. Chem. 409, 3597–3610 (2017)

    Article  CAS  Google Scholar 

  • D. Storzer, G.A. Wagner: Fission track dating of meteorite impacts, Meteoritics 12, 368–369 (1977)

    Google Scholar 

  • D. Storzer, C. Koeberl: Uranium and Zirconium Enrichments in Libyan Desert Glass: Zircon Baddeleyite, and High Temperature History of the Glass, Lunar Planet. Sci. 22, 1345 (1991)

    Google Scholar 

  • M. Swaenen, E.A. Stefaniak, R. Frost, A. Worobiec, R. Van Grieken: Investigation of inclusions trapped inside Libyan desert glass by Raman microscopy, Anal. Bioanal. Chem. 397, 2659–2665 (2010)

    Article  CAS  Google Scholar 

  • G. Pratesi, C. Viti, C. Cipriani, M. Mellini: Silicate-silicate liquid immiscibility and graphite ribbons in Libyan desert glass, Geochim. Cosmochim. Acta 66, 903–911 (2002)

    Article  CAS  Google Scholar 

  • C.-H. Lo, K.T. Howard, S.-L. Chung, S. Meffre: Laser fusion argon-40/argon-39 ages of Darwin impact glass, Meteorit. Planet. Sci. 37, 1555–1562 (2002)

    Article  CAS  Google Scholar 

  • K.T. Howard: Physical distribution trends in Darwin glass, Meteorit. Planet. Sci. 44, 115–129 (2009)

    Article  CAS  Google Scholar 

  • L. Gomez-Nubla, J. Aramendia, A. Alonso-Olazabal: S. Fdez-Ortiz de Vallejuelo, K. Castro, L.A. Ortega, M.C. Zuluaga, X. Murelaga, J.M. Madariaga: Darwin impact glass study by Raman spectroscopy in combination with other spectroscopic techniques, J. Raman Spectrosc. 46, 913–919 (2015)

    Article  CAS  Google Scholar 

  • R.F. Fudali, R.J. Ford: Darwin Glass and Darwin Crater: A Progress Report, Meteoritics 14, 283–296 (1979)

    Article  Google Scholar 

  • K.T. Howard, P.W. Haines: The geology of Darwin Crater, western Tasmania, Australia, Earth Planet. Sci. Lett. 260, 328–339 (2007)

    Article  CAS  Google Scholar 

  • K.T. Howard: Geochemistry of Darwin glass and target rocks from Darwin Crater, Tasmania, Australia, Meteorit. Planet. Sci. 43, 1–21 (2008)

    Article  Google Scholar 

  • E.J. Essene, D.C. Fisher: Lightning strike fusion: extreme reduction and metal-silicate liquid immiscibility, Science 234, 189–193 (1986)

    Article  CAS  Google Scholar 

  • M.A. Uman: The peak temperature of lightning, J. Atmos. Terr. Phys. 26, 123–128 (1964)

    Article  Google Scholar 

  • E.P. Krider, G.A. Dawson, M.A. Uman: Peak power and energy dissipation in a single-stroke lightning flash, J. Geophys. Res. 73, 3335–3339 (1968)

    Article  Google Scholar 

  • B.E. Jones, K.S. Jones, K.J. Rambo, V.A. Rakov, J. Jerald, M.A. Uman: Oxide reduction during triggered-lightning fulgurite formation, J. Atmos. Sol.-Terr. Phys. 67, 423–428 (2005)

    Article  CAS  Google Scholar 

  • M. Pasek, K. Block: Lightning-induced reduction of phosphorus oxidation state, Nat. Geosci. 2, 553–556 (2009)

    Article  CAS  Google Scholar 

  • A.E. Anderson: Sand fulgurites from Nebraska their structure and formative factors, Neb. State Mus. Bull. 7(1), 49–86 (1925)

    Google Scholar 

  • A. Wasserman, H. Melosh: Chemical reduction of impact processed materials. In: Proc. 32nd Ann. Lunar Planet. Sci. Conf. (2001) p. 2037

    Google Scholar 

  • L.R. Rowan, T.J. Ahrens: Observations of impact-induced molten metal-silicate partitioning, Earth Planet. Sci. Lett. 122, 71–88 (1994)

    Article  CAS  Google Scholar 

  • I.S.E. Carmichael: Glass and the glassy rocks. In: Evolution Igneous Rocks, ed. by H.S. Yoder (Princeton University Press, Princeton 1979) pp. 233–244

    Google Scholar 

  • J. Castro, M. Manga, K. Cashman: Dynamics of obsidian flows inferred from microstructures: Insights from microlite preferred orientations, Earth Planet. Sci. Lett. 199, 211–226 (2002)

    Article  CAS  Google Scholar 

  • J.H. Fink: Structural geologic constraints on the rheology of rhyolitic obsidian, J. Non-Cryst. Solids 67, 135–146 (1984)

    Article  Google Scholar 

  • J.E. Ericson, A. Makishima, J.D. Mackenzie, R. Berger: Chemical and physical properties of obsidian: A naturally occurring glass, J. Non-Cryst. Solids 17, 129–142 (1975)

    Article  CAS  Google Scholar 

  • V. Mameli, A. Musinu, D. Niznansky, D. Peddis, G. Ennas, A. Ardu, C. Lugliè, C. Cannas: Much more than a glass: The complex magnetic and microstructural properties of obsidian, J. Phys. Chem. C 120, 27635–27645 (2016)

    Article  CAS  Google Scholar 

  • L. Bellot-Gurlet, T. Calligaro, O. Dorighel, J.C. Dran, G. Poupeau, J. Salomon: PIXE analysis and fission track dating of obsidian from South American prehispanic cultures (Colombia, Ecuador), Nucl. Instrum. Methods Phys. B 150, 616–621 (1999)

    Article  CAS  Google Scholar 

  • G. Longworth, S.E. Warren: The application of Mössbauer spectroscopy to the characterisation of western mediterranean obsidian, J. Archaeol. Sci. 6, 179–193 (1979)

    Article  CAS  Google Scholar 

  • M. Duttine, G. Villeneuve, G. Poupeau, A.M. Rossi, R.B. Scorzelli: Electron spin resonance of Fe3+ ion in obsidians from Mediterranean islands. Application to provenance studies, J. Non-Cryst. Solids 323, 193–199 (2003)

    Article  CAS  Google Scholar 

  • A. Milleville, L. Bellot-Gourlet, B. Champagnon, D. Santallier: La Micro-spectroscopie Raman pour l'étude des Obsidiennes: Structure, Micro-inclusions et études de provenance?, Rev. Archéométrie 27, 123–130 (2003)

    Article  Google Scholar 

  • C. Ma, J. Gresh, G.R. Rossman, G.C. Ulmer, E.P. Vicenzi: Micro-analytical study of the optical properties of rainbow and sheen obsidians, Can. Mineral. 39, 57–71 (2001)

    Article  CAS  Google Scholar 

  • C. Ma, G.R. Rossman, J.A. Miller: The origin of color in “fire” obsidian, Can. Mineral. 45, 551–557 (2007)

    Article  CAS  Google Scholar 

  • H.M.N. Wright, R.F. Weinberg: Strain localization in vesicular magma: Implications for rheology and fragmentation, Geology 37, 1023–1026 (2009)

    Article  Google Scholar 

  • A. Cabrera, R.F. Weinberg, H.M.N. Wright, S. Zlotnik, R.A.F. Cas: Melt fracturing and healing: A mechanism for degassing and origin of silicic obsidian, Geology 39, 67–70 (2011)

    Article  Google Scholar 

  • J.M. Castro, B. Cordonnier, H. Tuffen, M.J. Tobin, L. Puskar, M.C. Martin, H.A. Bechtel: The role of melt-fracture degassing in defusing explosive rhyolite eruptions at volcán Chaitén, Earth Planet. Sci. Lett. 333/334, 63–69 (2012)

    Article  CAS  Google Scholar 

  • C.I. Schipper, J.M. Castro, H. Tuffen, M.R. James, P. How: Shallow vent architecture during hybrid explosive–effusive activity at Cordón Caulle (Chile, 2011–12): Evidence from direct observations and pyroclast textures, J. Volcanol. Geotherm. Res. 262, 25–37 (2013)

    Article  CAS  Google Scholar 

  • J.S. Denton, H. Tuffen, J.S. Gilbert, N. Odling: The hydration and alteration of perlite and rhyolite, J. Geol. Soc. Lond. 166, 895–904 (2009)

    Article  CAS  Google Scholar 

  • W. Vogel: Glass Chemistry (Springer, Berlin, Heidelberg 1994)

    Book  Google Scholar 

  • F. Arzilli, L. Mancini, M. Voltolini, M.R. Cicconi, S. Mohammadi, G. Giuli, D. Mainprice, E. Paris, F. Barou, M.R. Carroll: Near-liquidus growth of feldspar spherulites in trachytic melts: 3D morphologies and implications in crystallization mechanisms, Lithos 216/217, 93–105 (2015)

    Article  CAS  Google Scholar 

  • J.M. Castro, P. Beck, H. Tuffen, A.R.L. Nichols, D.B. Dingwell, M.C. Martin: Timescales of spherulite crystallization in obsidian inferred from water concentration profiles, Am. Mineral. 93, 1816–1822 (2008)

    Article  CAS  Google Scholar 

  • J. Watkins, M. Manga, C. Huber, M. Martin: Diffusion-controlled spherulite growth in obsidian inferred from H2O concentration profiles, Contrib. Mineral. Petrol. 157, 163–172 (2009)

    Article  CAS  Google Scholar 

  • Y. Erdogan, E. Yasar, P. Gamage Ranjith: Obtaining lightweight concrete using colemanite waste and acidic pumice, Physicochem. Probl. Miner. Process. (2016), https://doi.org/10.5277/PPMP160103

    Article  Google Scholar 

  • E. Le Bourhis: Glass: Mechanics and Technology (Wiley-VCH, Weinheim 2008)

    Google Scholar 

  • A. Ayadi, N. Stiti, K. Boumchedda, H. Rennai, Y. Lerari: Elaboration and characterization of porous granules based on waste glass, Powder Technol. 208, 423–426 (2011)

    Article  CAS  Google Scholar 

  • C.S. Ross: Optical properties of glass from Alamogordo, New Mexico, Am. Mineral. 33, 360–362 (1948)

    CAS  Google Scholar 

  • N. Eby, R. Hermes, N. Charnley, J.A. Smoliga: Trinitite—The atomic rock, Geol. Today 26, 180–185 (2010)

    Article  Google Scholar 

  • B.P. Glass, F.E. Senftle, D.W. Muenow, K.E. Aggrey, A.N. Thorpe: Atomic bomb glass beads: Tektite and microtektite analogs. In: Proc. 2nd Int. Conf. Nat. Glasses, ed. by J. Konta (1987) pp. 361–369

    Google Scholar 

  • D. Atkatz, C. Bragg: Determining the yield of the Trinity nuclear device via gamma-ray spectroscopy, Am. J. Phys. 63, 411–413 (1995)

    Article  Google Scholar 

  • P. Parekh, T. Semkow, M. Torres, D. Haines: Radioactivity in trinitite six decades later, J. Environ. Radioact. 85, 103–120 (2006)

    Article  CAS  Google Scholar 

  • C. Wallace, J.J. Bellucci, A. Simonetti, T. Hainley, E.C. Koeman, P.C. Burns: A multi-method approach for determination of radionuclide distribution in trinitite, J. Radioanal. Nucl. Chem. 298, 993–1003 (2013)

    Article  CAS  Google Scholar 

  • A.F.B. Tompson, C.J. Bruton, G.A. Pawloski, D.K. Smith, W.L. Bourcier, D.E. Shumaker, A.B. Kersting, S.F. Carle, R.M. Maxwell: On the evaluation of groundwater contamination from underground nuclear tests, Environ. Geol. 42, 235–247 (2002)

    Article  CAS  Google Scholar 

  • A.F.B. Tompson, G.B. Hudson, D.K. Smith, J.R. Hunt: Analysis of radionuclide migration through a 200-m Vadose zone following a 16-year infiltration event, Adv. Water Resour. 29, 281–292 (2006)

    Article  CAS  Google Scholar 

  • Q.H. Hu, T.P. Rose, M. Zavarin, D.K. Smith, J.E. Moran, P.H. Zhao: Assessing field-scale migration of radionuclides at the Nevada Test Site: “mobile” species, J. Environ. Radioact. 99, 1617–1630 (2008)

    Article  CAS  Google Scholar 

  • J.I. Pacold, W.W. Lukens, C.H. Booth, D.K. Shuh, K.B. Knight, G.R. Eppich, K.S. Holliday: Chemical speciation of U, Fe, and Pu in melt glass from nuclear weapons testing, J. Appl. Phys. (2016), https://doi.org/10.1063/1.4948942

    Article  Google Scholar 

  • G.N. Eby, N. Charnley, D. Pirrie, R. Hermes, J. Smoliga, G. Rollinson: Trinitite redux: Mineralogy and petrology, Am. Mineral. 100, 427–441 (2015)

    Article  Google Scholar 

  • R.E. Hermes, W.B. Strickfaden: A new look at trinitite, Nucl. Weapons J. 2, 2–7 (2005)

    Google Scholar 

  • J.J. Molgaard, J.D. Auxier, A.V. Giminaro, C.J. Oldham, M.T. Cook, S.A. Young, H.L. Hall: Development of synthetic nuclear melt glass for forensic analysis, J. Radioanal. Nucl. Chem. 304, 1293–1301 (2015)

    Article  CAS  Google Scholar 

  • W.U. Reimold, R.L. Gibson: “Pseudotachylites” in large impact structures. In: Impact Tectonics, ed. by C. Koeberl, H. Henkel (Springer, Berlin, Heidelberg 2005) pp. 1–53

    Google Scholar 

  • J.G. Spray: Frictional Melting Processes in Planetary Materials: From Hypervelocity Impact to Earthquakes, Annu. Rev. Earth Planet. Sci. 38, 221–254 (2010)

    Article  CAS  Google Scholar 

  • T. Kenkmann, U. Hornemann, D. Stöffler: Experimental generation of shock-induced pseudotachylites along lithological interfaces, Meteorit. Planet Sci. 35, 1275–1290 (2000)

    Article  CAS  Google Scholar 

  • T. Erismann, H. Heuberger, E. Preuss: Der Bimsstein von Köfels (Tirol), ein Bergsturz-‘Friktionit', Tschermaks Mineral. Petrol. Mitt. 24, 67–119 (1977)

    Article  Google Scholar 

  • F.V. De Blasio, L. Medici: Microscopic model of rock melting beneath landslides calibrated on the mineralogical analysis of the Köfels frictionite, Landslides 14, 337–350 (2017)

    Article  Google Scholar 

  • A.-M. Boullier, T. Ohtani, K. Fujimoto, H. Ito, M. Dubois: Fluid inclusions in pseudotachylytes from the Nojima fault, Japan, J. Geophys. Res. 106, 21965 (2001)

    Article  CAS  Google Scholar 

  • L. Masch, E. Preuss: Das Vorkommen des Hyalomylonits von Langtang, Himalaya (Nepal), N. Jahrb. Min. 129, 292–311 (1977)

    Google Scholar 

  • J.T. Weidinger, O. Korup, H. Munack, U. Altenberger, S.A. Dunning, G. Tippelt, W. Lottermoser: Giant rockslides from the inside, Earth Planet. Sci. Lett. 389, 62–73 (2014)

    Article  CAS  Google Scholar 

  • A. Lin, T. Shimamoto: Selective melting processes as inferred from experimentally generated pseudotachylytes, J. Asian Earth Sci. 16, 533–545 (1998)

    Article  Google Scholar 

  • J.G. Spray: Artificial generation of pseudotachylyte using friction welding apparatus: simulation of melting on a fault plane, J. Struct. Geol. 9, 49–60 (1987)

    Article  Google Scholar 

  • T. Coradin, R. Brayner, C. Gautier, M. Hemadi, P.J. Lopez, J. Livage: From diatoms to bio-inspired materials… and back. In: Proc. 9th Int. Symp. Biominer., ed. by J.L. Arias, M.S. Fernández (2007) pp. 419–430

    Google Scholar 

  • H.C.W. Skinner, A.H. Jahren: Biomineralization. In: Treatise on Geochemistry, Vol. 8, ed. by H.D. Holland, K.K. Turekian (2003) pp. 1–69

    Google Scholar 

  • F. Fröhlich: Deep-sea biogenic silica: New structural and analytical data from infrared analysis- geological implications, Terra Nova 1, 267–273 (1989)

    Article  Google Scholar 

  • A. Gendron-Badou, T. Coradin, J. Maquet, F. Fröhlich, J. Livage: Spectroscopic characterization of biogenic silica, J. Non-Cryst. Solids 316, 331–337 (2003)

    Article  CAS  Google Scholar 

  • H.C. Schröder, X. Wang, W. Tremel, H. Ushijima, W.E.G. Müller: Biofabrication of biosilica-glass by living organisms, Nat. Prod. Rep. 25, 455–474 (2008)

    Article  CAS  Google Scholar 

  • W.E.G. Müller, K. Wendt, C. Geppert, M. Wiens, A. Reiber, H.C. Schröder: Novel photoreception system in sponges?, Biosens. Bioelectron. 21, 1149–1155 (2006)

    Article  CAS  Google Scholar 

  • V.C. Sundar, A.D. Yablon, J.L. Grazul, M. Ilan, J. Aizenberg: Fibre-optical features of a glass sponge, Nature 424, 899–900 (2003)

    Article  CAS  Google Scholar 

  • J. Aizenberg, V.C. Sundar, A.D. Yablon, J.C. Weaver, G. Chen: Biological glass fibers: Correlation between optical and structural properties, Proc. Natl. Acad. Sci. USA 101, 3358–3363 (2004)

    Article  CAS  Google Scholar 

  • R.L. Brutchey, E.S. Yoo, D.E. Morse: Biocatalytic synthesis of a nanostructured and crystalline bimetallic perovskite-like barium oxofluorotitanate at low temperature, J. Am. Chem. Soc. 128, 10288–10294 (2006)

    Article  CAS  Google Scholar 

  • D. Kisailus, J.H. Choi, J.C. Weaver, W. Yang, D.E. Morse: Enzymatic synthesis and nanostructural control of gallium oxide at low temperature, Adv. Mater. 17, 314–318 (2005)

    Article  CAS  Google Scholar 

  • D.R. Neuville, P. Courtial, D.B. Dingwell, P. Richet: Thermodynamic and rheological properties of rhyolite and andesite melts, Contrib. Mineral. Petrol. 113, 572–581 (1993)

    Article  CAS  Google Scholar 

  • D.R. Neuville: Viscosity, structure and mixing in (Ca, Na) silicate melts, Chem. Geol. 229, 28–41 (2006)

    Article  CAS  Google Scholar 

  • P.G. Debenedetti, F.H. Stillinger: Supercooled liquids and the glass transition, Nature 410, 259–267 (2001)

    Article  CAS  Google Scholar 

  • C.A. Angell: Relaxation in liquids, polymers and plastic crystals—Strong/fragile patterns and problems, J. Non-Cryst. Solids 131–133, 13–31 (1991)

    Article  Google Scholar 

  • G.S. Henderson, M.E. Fleet, G.M. Bancroft: An x-ray scattering study of vitreous KFeSi3O8 and NaFeSi3O8 and reinvestigation of vitreous SiO2 using quasi-crystalline modelling, J. Non-Cryst. Solids 68, 333–349 (1984)

    Article  CAS  Google Scholar 

  • N. Zotov: Structure of natural volcanic glasses: Diffraction versus spectroscopic perspective, J. Non-Cryst. Solids. 323, 1–6 (2003)

    Article  CAS  Google Scholar 

  • M. Taylor, G.E. Brown: Structure of mineral glasses—I. The feldspar glasses NaAlSi3O8, KAlSi3O8, CaAl2Si2O8, Geochim. Cosmochim. Acta 43, 61–75 (1979)

    Article  CAS  Google Scholar 

  • J.H. Konnert, J. Karle, G.A. Ferguson: Crystalline ordering in silica and germania glasses, Science 179, 177–179 (1973)

    Article  CAS  Google Scholar 

  • A.C. Wright, J.A.E. Desa, R.A. Weeks, R.N. Sinclair, D.K. Bailey: Neutron diffraction studies of natural glasses, J. Non-Cryst. Solids 67, 35–44 (1984)

    Article  CAS  Google Scholar 

  • M. Okuno, H. Iwatsuki, T. Matsumoto: Structural analysis of an obsidian by x-ray diffraction method, Eur. J. Mineral. 8, 1257–1264 (1997)

    Article  Google Scholar 

  • G. Heide, B. Müller, G. Kloess, D. Moseler, G.H. Frischat: Structural classification of natural non-crystalline silicates, J. Non-Cryst. Solids 323, 68–71 (2003)

    Article  CAS  Google Scholar 

  • A.C. Wright, A.J. Leadbetter: Diffraction studies of glass structure, Phys. Chem. Glasses 17, 122–145 (1976)

    CAS  Google Scholar 

  • D.R. Neuville, D. de Ligny, G.S. Henderson: Advances in Raman Spectroscopy Applied to Earth and Material Sciences, Rev. Mineral. Geochem. 78, 509–541 (2014)

    Article  CAS  Google Scholar 

  • P. McMillan, B. Piriou: The structures and vibrational spectra of crystals and glasses in the silica-alumina system, J. Non-Cryst. Solids 53, 279–298 (1982)

    Article  CAS  Google Scholar 

  • P.F. McMillan: Structural studies of silicate glasses and melts-applications and limitations of Raman spectroscopy, Am. Mineral. 69, 622–644 (1984)

    CAS  Google Scholar 

  • B. Champagnon, G. Panczer, C. Chemarin: Differentiation of natural silica glasses using Raman microspectrometry, Geochem 57, 290–296 (1997)

    Google Scholar 

  • D. Di Genova, D. Morgavi, K.-U. Hess, D.R. Neuville, N. Borovkov, D. Perugini, D.B. Dingwell: Approximate chemical analysis of volcanic glasses using Raman spectroscopy, J. Raman Spectrosc. 46, 1235–1244 (2015)

    Article  CAS  Google Scholar 

  • A. Ilieva, B. Mihailova, Z. Tsintsov, O. Petrov: Structural state of microcrystalline opals: A Raman spectroscopic study, Am. Mineral. 92, 1325–1333 (2007)

    Article  CAS  Google Scholar 

  • F.L. Galeener, A.E. Geissberger, R.A. Weeks: On the thermal history of Libyan Desert glass, J. Non-Cryst. Solids 67, 629–636 (1984)

    Article  CAS  Google Scholar 

  • V.C. Kress, I.S.E. Carmichael: The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states, Contrib. Mineral. Petrol. 108, 82–92 (1991)

    Article  CAS  Google Scholar 

  • G. Ottonello, R. Moretti, L. Marini, M. Vetuschi Zuccolini: Oxidation state of iron in silicate glasses and melts: A thermochemical model, Chem. Geol. 174, 157–179 (2001)

    Article  CAS  Google Scholar 

  • C.A. McCammon: Mantle oxidation state and oxygen fugacity: Constraints on mantle chemistry, structure, and dynamics. In: Earth's Deep Mantle: Structure, Composition, and Evolution, ed. by R.D. Van Der Hilst, J.D. Bass, J. Matas, J. Trampert (American Geophysical Union, Washington 2005) pp. 219–240

    Chapter  Google Scholar 

  • C.A. McCammon: Microscopic properties to macroscopic behaviour: The influence of iron electronic state, J. Mineral. Petrol. Sci. 101, 130–144 (2006)

    Article  CAS  Google Scholar 

  • M. Wilding, S. Webb, D.B. Dingwell: Tektite cooling rates: Calorimetric relaxation geospeedometry applied to a natural glass, Geochim. Cosmochim. Acta 60, 1099–1103 (1996)

    Article  CAS  Google Scholar 

  • C. Schnetzler, W. Pinson: The chemical composition of tektites. In: Tektites, ed. by J.A. O'Keefe (Univ. of Chicago Press, Chicago 1963) pp. 95–129

    Google Scholar 

  • J. Philpotts, W. Pinson: New data on the chemical composition and origin of moldavites, Geochim. Cosmochim. Acta 30, 253–266 (1966)

    Article  CAS  Google Scholar 

  • H.D. Schreiber, L.M. Minnix, G.B. Balazs: The redox state of iron in tektites, J Non.-Cryst. Solids 67, 349–359 (1984)

    Article  CAS  Google Scholar 

  • B.J. Evans, L.K. Leung: Mössbauer Spectroscopy of Tektites and Other Natural Glasses, J. Phys. Colloq. 40, C2-489–C2-490 (1979)

    Article  Google Scholar 

  • R.A. Dunlap: An investigation of Fe oxidation states and site distributions in a Tibetan tektite, Hyperfine Interact. 110, 217–225 (1997)

    Article  CAS  Google Scholar 

  • S. Rossano, E. Balan, G. Morin, J.P. Bauer, G. Calas, C. Brouder: 57Fe Mössbauer spectroscopy of tektites, Phys. Chem. Miner. 26, 530–538 (1999)

    Article  CAS  Google Scholar 

  • G. Giuli, S.G. Eeckhout, M.R. Cicconi, C. Koeberl, B.P. Glass, G. Pratesi, E. Paris: North-American microtektites are more oxidized compared to tektites. In: Proc. Large Meteor. Impacts Planet. Evol. IV (2008), Paper id 3044

    Google Scholar 

  • G. Giuli, M.R. Cicconi, A. Trapananti, S.G. Eeckhout, G. Pratesi, E. Paris, C. Koeberl: Iron redox variations in Australasian Muong Nong-type tektites. In: Proc. 76th Annu. Meteorit. Soc. Meet (2013) p. 5246

    Google Scholar 

  • D.R. Neuville, L. Hennet, P. Florian, D. de Ligny: In situ high-temperature experiments, Rev. Mineral. Geochem. 78, 779–800 (2014)

    Article  CAS  Google Scholar 

  • M.R. Cicconi, D.R. Neuville, I. Tannou, F. Baudelet, P. Floury, E. Paris, G. Giuli: Competition between two redox states in silicate melts: An in-situ experiment at the Fe K-edge and Eu L3-edge, Am. Mineral. 100, 1013–1016 (2015)

    Article  Google Scholar 

  • M.R. Cicconi, G. Giuli, W. Ertel-Ingrisch, E. Paris, D.B. Dingwell: The effect of the [Na/(Na+K)] ratio on Fe speciation in phonolitic glasses, Am. Mineral. 100, 1610–1619 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

Some of the data here shown were acquired at the FAME beamline, and we thank the European Synchrotron Radiation Facility (Grenoble, France) for provision of synchrotron radiation facilities. The authors thank D. de Ligny and G. Henderson for the useful discussions, B. Cochain for help during the HT XANES experiments, and J. Stebbins for the Libyan Desert glass sample. MRC thanks E. Guillaud for pictures of natural glasses and S. Wolf for useful discussions on biomimetic materials. DRN thanks J.C. Bouillard, Curator of the Collection de Minéraux University Pierre and Marie Curie, Paris, for providing fulgurite samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Rita Cicconi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Cicconi, M.R., Neuville, D.R. (2019). Natural Glasses. In: Musgraves, J.D., Hu, J., Calvez, L. (eds) Springer Handbook of Glass. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-93728-1_22

Download citation

Publish with us

Policies and ethics