Skip to main content

Mineral-Organic Interactions in Prebiotic Synthesis

The Discontinuous Synthesis Model for the Formation of RNA in Naturally Complex Geological Environments

  • Chapter
  • First Online:
Prebiotic Chemistry and Chemical Evolution of Nucleic Acids

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 35))

Abstract

A common criticism of “prebiotic chemistry research” is that it is done with starting materials that are too pure, in experiments that are too directed, to get results that are too scripted, under conditions that could never have existed on Earth. Planetary scientists in particular remark that these experiments often arise simply because a chemist has a “cool idea” and then pursues it without considering external factors, especially geological and planetary context. A growing literature addresses this criticism and is reviewed here. We assume a model where RNA emerged spontaneously from a prebiotic environment on early Earth, giving the planet its first access to Darwinism. This “RNA First Hypothesis” is not driven by the intrinsic prebiotic accessibility; quite the contrary, RNA is a “prebiotic chemist’s nightmare.” However, by assuming models for the accretion of the Earth, the formation of the Moon, and the acquisition of Earth’s “late veneer,” a reasonable geological model can be envisioned to deliver the organic precursors needed to form the nucleobases and ribose of RNA. A geological model having an environment with dry arid land under a carbon dioxide atmosphere receiving effluent from serpentinizing igneous rocks allows their conversion to nucleosides and nucleoside phosphates. Mineral elements including boron and molybdenum prevent organic material from devolving to form “tars” along the way. And dehydration and activation allows the formation of oligomeric RNA that can be stabilized by adsorption on available minerals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramov O, Mojzsis SJ (2009) Microbial habitability of the Hadean Earth during the late heavy bombardment. Nature 459:419–422

    Article  PubMed  CAS  Google Scholar 

  • Agricola G (1530) Quarzum. In: Bermannus, Sive De Re Metallica, in Aedibus Frobenianis. Basileae, p 129

    Google Scholar 

  • Allègre CJ, Manhès G, Göpel G (2008) The major differentiation of the Earth at ∼4.45 Ga. Earth Planet Sci Lett 267:386–398

    Article  CAS  Google Scholar 

  • Andreani M, Munoz M, Marcaillou C et al (2013) μXANES study of iron redox state in serpentine during oceanic serpentinization. Lithos 178:70–83

    Article  CAS  Google Scholar 

  • Anet FA (2004) The place of metabolism in the origin of life. Curr Opin Chem Biol 8:654–659

    Article  PubMed  CAS  Google Scholar 

  • Anumukonda LN, Young A, Lynn DG et al (2011) Adenine synthesis in a model prebiotic reaction: connecting origin of life chemistry with biology. J Chem Educ 88:1698–1701

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Appayee C, Breslow R (2014) Deuterium studies reveal a new mechanism for the formose reaction involving hydride shifts. J Am Chem Soc 136:3720–3723

    Article  PubMed  CAS  Google Scholar 

  • Bach W, Paulick H, Garrido CJ et al (2006) Unravelling the sequence of serpentinization reactions: petrography, mineral chemistry, and petrophysics of serpentinites from MAR 15_N (ODP Leg 209, Site 1274). Geophys Res Lett 33:L13306

    Article  CAS  Google Scholar 

  • Bada JL, Chalmers JH, Cleaves HJ (2016) Is formamide a geochemically plausible prebiotic solvent? Phys Chem Chem Phys 18:20085–20090

    Article  PubMed  CAS  Google Scholar 

  • Becker H (2006) Highly siderophile element composition of the Earth’s primitive upper mantle: constraints from new data on peridotite massifs and xenoliths. Geochim Cosmochim Acta (17):4528–4550

    Google Scholar 

  • Becker S, Thoma I, Deutsch A et al (2016) A high-yielding, strictly regioselective prebiotic purine nucleoside formation pathway. Science 352(6287):833–836

    Article  PubMed  CAS  Google Scholar 

  • Bell EA, Boehnke P, Harrison TM et al (2015) Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon. Proc Natl Acad Sci U S A 112(47):14518–14521

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Benner SA (2009) The life, the universe and the scientific method. FfAME Press, .Gainesville, 312 pp.

    Google Scholar 

  • Benner SA (2013) Synthesis as a route to knowledge. Biol Theory 8:357–367

    Article  Google Scholar 

  • Benner SA (2017a) Detecting Darwinism from molecules in the Enceladus plumes, Jupiter’s moons, and other planetary water lagoons. Astrobiology 17(9):840–851

    Article  PubMed  PubMed Central  Google Scholar 

  • Benner SA (2017b) Uniting natural history with the molecular sciences. The ultimate multidisciplinarity. Acc Chem Res 50:498–502

    Article  PubMed  CAS  Google Scholar 

  • Benner SA, Kim HJ (2015) The case for a Martian origin for Earth life. In: Hoover RB, Levin GV, Rozanov, AY, Wickramasinghe NC (eds) Instruments, methods, and missions for astrobiology XVII, SPIE Optical Engineering+ Applications, 9606, 96060C

    Google Scholar 

  • Benner SA, Ellington AD, Tauer A (1989) Modern metabolism as a palimpsest of the RNA world. Proc Natl Acad Sci U S A 86:7054–7058

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Benner SA, Devine KG, Matveeva LN et al (2000) The missing organic molecules on Mars. Proc Natl Acad Sci U S A 97:2425–2430

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Benner SA, Caraco MD, Thomson JM et al (2002) Planetary biology. Paleontological, geological, and molecular histories of life. Science 293:864–868

    Article  Google Scholar 

  • Benner SA, Bains W, Seager S (2013) Models and standards of proof in cross-disciplinary science: the case of arsenic DNA. Astrobiology 13:510–513

    Article  PubMed  CAS  Google Scholar 

  • Benner SA, Karalkar NB, Hoshika S et al (2016) Alternative Watson-Crick synthetic genetic systems. Synthetic Biology. Cold Spring Harb Perspect Biol 8(11). doi: https://doi.org/10.1101/cshperspect.a023770

  • Bernal JD (1951) The physical basis of life. Routledge and Kegan Paul, London

    Google Scholar 

  • Berndt ME, Allen DE, Seyfried WE (1996) Reduction of CO2 during serpentinization of olivine at 300 °C and 500 bar. Geology 24(4):351–354

    Article  CAS  Google Scholar 

  • Biondi E, Branciamore S, Maurel MC et al (2007a) Montmorillonite protection of an UV-irradiated hairpin ribozyme. Evolution of the RNA world in a mineral environment. BMC Evol Biol 7(Suppl 2):S2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Biondi E, Branciamore S, Fusi L et al (2007b) Catalytic activity of a hammerhead ribozyme in a clay mineral environment: implications for the RNA World. Gene 389:10–18

    Article  PubMed  CAS  Google Scholar 

  • Biondi E, Howell L, Benner SA (2016) Opal adsorbs and stabilizes RNA – a hierarchy of prebiotic silica minerals. Syn Lett 27:A–E

    Google Scholar 

  • Biondi E, Furukawa Y, Kwai J et al (2017) Adsorption of RNA on mineral surfaces and mineral precipitates. Beilstein J Org Chem 13:393–404

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blöchl E, Keller M, Wächtershäuser G et al (1992) Reactions depending on iron sulfide and linking geochemistry with biochemistry. Proc Natl Acad Sci U S A 89(17):8117–8120

    Article  PubMed  PubMed Central  Google Scholar 

  • Boehnken P, Harrison TM (2016) Illusory late heavy bombardments. Proc Natl Acad Sci U S A 113(39):10802–10806

    Article  CAS  Google Scholar 

  • Boily JF, Persson P, Sjöberg S (2000a) Benzenecarboxylate complexation at the goethite-water interface: I. A mechanistic description of pyromellitate surface complexes from the combined evidence of infrared spectroscopy, potentiometry, adsorption data and surface complexation modeling. Langmuir 16:5719–5729

    Article  CAS  Google Scholar 

  • Boily JF, Persson P, Sjöberg S (2000b) Benzenecarboxylate surface complexation at the goethite (α-FeOOH)/water interface: II. Linking IR spectroscopic observations to mechanistic surface complexation models for phthalate, trimellitate, and pyromellitate. Geochim Cosmochim Acta 64(20):3453–3470

    Article  CAS  Google Scholar 

  • Bonner WA, Kavasmaneck PR, Martin FS et al (1974) Asymmetric adsorption of alanine by quartz. Science 186(4159):143–144

    Article  PubMed  CAS  Google Scholar 

  • Bonner WA, Kavasmaneck PR, Martin FS et al (1975) Asymmetric adsorption by quartz: a model for the prebiotic origin of optical activity. Orig Life 6(3):367–376

    Article  PubMed  CAS  Google Scholar 

  • Borisov AA (2016) Mutual interaction of redox pairs in silicate melts: equilibria involving metallic phases. Petrology 24(2):117

    Article  CAS  Google Scholar 

  • Brandes JA, Boctor NZ, Cody GD et al (1998) Abiotic nitrogen reduction on the early Earth. Nature 395(6700):365–367

    Article  PubMed  CAS  Google Scholar 

  • Brasser R, Mojzsis SJ (2017) A colossal impact enriched Mars’ mantle with noble metals. Geophys Res Lett. https://doi.org/10.1002/(2017GL074002

  • Brasser R, Mojzsis SJ, Werner SC et al (2016) Late veneer and late accretion to the terrestrial planets. Earth Planet Sci Lett 455:85–93

    Article  CAS  Google Scholar 

  • Bregestovski PD (2015) “RNA World”, a highly improbable scenario of the origin and early evolution of life on Earth. J Evol Biochem Physiol 51:72–84

    Article  CAS  Google Scholar 

  • Burcar BT, Barge LM, Trail D et al (2015) RNA oligomerization in laboratory analogues of alkaline hydrothermal vent systems. Astrobiology 15:509–522

    Article  PubMed  CAS  Google Scholar 

  • Burcar BT, Pasek M, Gull M et al (2016) Darwin’s warm little pond: a one-pot reaction for prebiotic phosphorylation and the mobilization of phosphate from minerals in a urea-based solvent. Angew Chem Int Ed 55(42):13249–13253

    Article  CAS  Google Scholar 

  • Burton FG, Neuman MW, Neuman WF (1969) On the possible role of crystals in the origins of life. I. The adsorption of nucleosides, nucleotides and pyrophosphate by apatite crystals. Biosystems 3(1):20–26

    Article  CAS  Google Scholar 

  • Butlerov A (1861) Bildung einer zuckerartigen Substanz durch Synthese. Ann Chem 120:295–298

    Article  Google Scholar 

  • Cairns-Smith AG (1977) Takeover mechanisms and early biochemical evolution. Biosystems 9(2–3):105–109

    Article  PubMed  CAS  Google Scholar 

  • Cairns-Smith AG (1982) Genetic takeover and the mineral origins of life. Cambridge University Press, Cambridge

    Google Scholar 

  • Cairns-Smith AG (2005) Sketches for a mineral genetic material. Elements 1:157–161

    Article  CAS  Google Scholar 

  • Calvin M, Calvin GI (1964) Atom to Adam. Am Sci 52:163

    Google Scholar 

  • Cech TR (2000) The ribosome is a ribozyme. Science 289(5481):878–879

    Article  PubMed  CAS  Google Scholar 

  • Cech TR, Bass BL (1986) Biological catalysis by RNA. Annu Rev Biochem 55:599–629

    Article  PubMed  CAS  Google Scholar 

  • Chapman CR, Cohen BA, Grinspoon DH (2007) What are the real constraints on the existence and magnitude of the late heavy bombardment? Icarus 189(1):233–245

    Article  Google Scholar 

  • Cherniak DJ, Hanchar JM, Watson EB (1997) Rare-earth diffusion in zircon. Chem Geol 134:289–301

    Article  CAS  Google Scholar 

  • Cleaves HJ (2008) The prebiotic geochemistry of formaldehyde. Precambrian Res 164:111–118

    Article  CAS  Google Scholar 

  • Cody GD (2004) Transition metal sulfides and the origins of metabolism. Geophysical Laboratory, Carnegie Institution of Washington, Washington, DC, pp 569–599

    Google Scholar 

  • Cody GD (2005) Geochemical connections to primitive metabolism. Elements 1:139–143

    Article  CAS  Google Scholar 

  • Cody GD, Boctor NZ, Filley T et al (2000) The primordial synthesis of carbonylated iron-sulfur clusters and the synthesis of pyruvate. Science 289:1339–1339

    Article  Google Scholar 

  • Cody GD, Boctor NZ, Hazen RM et al (2001) Geochemical roots of autotrophic carbon fixation: Hydrothermal experiments in the system citric acid, H2O-(±FeS)-(±NiS). Geochim Cosmochim Acta 65(20):3557–3576

    Article  CAS  Google Scholar 

  • Cody GD, Boctor NZ, Brandes JA et al (2004) Assaying the catalytic potential of transition metal sulfides for abiotic carbon fixation. Geochim Cosmochim Acta 68(10):2185–2196

    Article  CAS  Google Scholar 

  • Cohen BA, Swindle TD, Kring DA (2000) Support for the lunar cataclysm hypothesis from lunar meteorite impact melt ages. Science 290:1754–1756

    Article  PubMed  CAS  Google Scholar 

  • Condie KC (2018) A planet in transition: the onset of plate tectonics on Earth between 3 and 2 Ga. Geosci Front 9(1):51–60

    Google Scholar 

  • Cox PA (1989) The elements: their origin, abundance, and distribution. Oxford University Press, Oxford

    Google Scholar 

  • da Silva JAL, Holm NG (2014) Borophosphates and silicophosphates as plausible contributors to the emergence of life. J Colloid Interface Sci 431:250–254

    Article  PubMed  CAS  Google Scholar 

  • Dal Negro A, Ungaretti L (1971) Refinement of the crystal structure of aragonite. Am Mineral 56:768–772

    CAS  Google Scholar 

  • Danielson LR, Righter K, Newville M et al (2011) Molybdenum valence in basaltic silicate melts: effects of temperature and pressure. In: 42nd Lunar and planetary science conference, 2609

    Google Scholar 

  • Dauphas N, Schauble EA (2016) Mass fractionation laws, mass-independent effects, and isotopic anomalies. Annu Rev Earth Planet Sci 44:709–783

    Article  CAS  Google Scholar 

  • Dauphas N, Chen J, Papanastassiou D (2015) Testing Earth–Moon isotopic homogenization with calcium-48. In: Lunar and planetary science conference XXXXVI, 2436

    Google Scholar 

  • Day JM, Walker RJ (2015) Highly siderophile element depletion in the Moon. Earth Planet Sci Lett 423:114–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Decher G, Lehr B, Lowack K et al (1994) New nanocomposite films for biosensors – layer-by-layer adsorbed films of polyelectrolytes, proteins or DNA. Biosens Bioelectron 9:677–684

    Article  CAS  Google Scholar 

  • Decker P, Schweer H, Pohlamnn R (1982) Bioids: X. Identification of formose sugars, presumable prebiotic metabolites, using capillary gas chromatography/gas chromatography—mas spectrometry of n-butoxime trifluoroacetates on OV-225. J Chromatogr A 244:281–291

    Article  CAS  Google Scholar 

  • Dyson F (1985) Origin of life. Cambridge University Press, Cambridge

    Google Scholar 

  • Ehlmann BL, Mustard JF, Murchie SL et al (2008) Orbital identification of carbonate-bearing rocks on Mars. Science 322:1828–1832

    Article  PubMed  CAS  Google Scholar 

  • Ertem G, Ferris JP (1996) Synthesis of RNA oligomers on heterogeneous templates. Nature 379(6562):238–240

    Article  PubMed  CAS  Google Scholar 

  • Ertem G, Ferris JP (1997) Template-directed synthesis using the heterogeneous templates produced by montmorillonite catalysis. A possible bridge between the prebiotic and RNA worlds. J Am Chem Soc 119(31):7197–7201

    Article  PubMed  CAS  Google Scholar 

  • Ertem G, Ertem MC, McKay CP et al (2017) Shielding biomolecules from effects of radiation by Mars analogue minerals and soils. Int J Astrobiol 16(03):280–285

    Article  CAS  Google Scholar 

  • Eschenmoser A (1997) Towards a chemical etiology of nucleic acid structure. Orig Life Evol Biosph 27(5–6):535–553

    Article  PubMed  CAS  Google Scholar 

  • Evgenii K, Wolfram T (2000) The role of quartz in the origin of optical activity on earth. Orig Life Evol Biosph 30(5):431–434

    Article  PubMed  CAS  Google Scholar 

  • Feely RA, Trefry JH, Lebon GT et al (1998) The relationship between P/Fe and V/Fe ratios in hydrothermal precipitates and dissolved phosphate in seawater. Geophys Res Lett 25:2253–2256

    Article  CAS  Google Scholar 

  • Feigl F (1937) Qualitative analysis by spot tests. Nordemann, New York, p 400

    Google Scholar 

  • Ferris JP (2005) Mineral catalysis and prebiotic synthesis: montmorillonite-catalyzed formation of RNA. Elements 1(3):145–149

    Article  CAS  Google Scholar 

  • Ferris JP, Ertem G (1992) Oligomerization of ribonucleotides on montmorillonite: reaction of the 5′-phosphorimidazolide of adenosine. Science 257(5075):1387–1389

    Article  PubMed  CAS  Google Scholar 

  • Ferris JP, Ertem G (1993) Montmorillonite catalysis of RNA oligomer formation in aqueous solution. A model for the prebiotic formation of RNA. J Am Chem Soc 115(26):12270–12275

    Article  PubMed  CAS  Google Scholar 

  • Ferris JP, Sanchez RA, Orgel LE (1968) Studies in prebiotic synthesis: III. Synthesis of pyrimidines from cyanoacetylene and cyanate. J Mol Biol 33(3):693–704

    Article  PubMed  CAS  Google Scholar 

  • Feynman R (1974) Cargo cult science. Caltech commencement address. Reproduced in “Surely You’re Joking, Mr. Feynman”. Norton, New York

    Google Scholar 

  • Fiore M, Strazewski P (2016) Prebiotic lipidic amphiphiles and condensing agents on the early Earth. Life 6. https://doi.org/10.3390/life6020017

  • Fox SW (1965) A theory of macromolecular and cellular origins. Nature 205:328

    Article  PubMed  CAS  Google Scholar 

  • Fuchs LH (1969) The phosphate mineralogy of meteorites. In: Meteorite research. Springer, Dordrecht, pp 683–695

    Google Scholar 

  • Fyfe WS, Bischoff JL (1965) The calcite-aragonite problem. In Pray LC, Murray RC (eds), Dolomitization and limestone diagenesis: a symposium. Society of Economic Paleontologists and Mineralogists, Special Publication, 13, pp 3–13

    Google Scholar 

  • Galison PL (1987) How experiments end. University of Chicago Press, Chicago

    Google Scholar 

  • Genda H, Fujita T, Kobayashi H et al (2017) Impact erosion model for gravity-dominated planetesimals. Icarus 294:234–246

    Article  Google Scholar 

  • Goldschmidt VM (1952) Geochemical aspects of the origin of complex organic molecules on the earth, as precursors to organic life. New Biol 12:97–105

    Google Scholar 

  • Grasby SE (2003) Naturally precipitating vaterite (μ-CaCO3) spheres: Unusual carbonates formed in an extreme environment. Geochim Cosmochim Acta 67:1659–1666

    Article  CAS  Google Scholar 

  • Grosjean M, Geyh MA, Messerli B et al (1995) Late-glacial and early Holocenelake sediments, groundwater formation and climate in the Atacama altiplano 22–241S. J Paleolimnol 14:241–252

    Article  Google Scholar 

  • Guerrier-Takada C, Gardiner K, Marsh T et al (1983) The RNA moiety of ribonuclease-P is the catalytic subunit of the enzyme. Cell 35:849–857

    Article  PubMed  CAS  Google Scholar 

  • Gull M, Mojica MA, Fernández FM et al (2015) Nucleoside phosphorylation by the mineral schreibersite. Sci Rep 5:17198. https://doi.org/10.1038/srep17198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hamano K, Abe Y, Genda H (2013) Emergence of two types of terrestrial planet on solidification of magma ocean. Nature 497:607–610

    Article  PubMed  CAS  Google Scholar 

  • Hanczyc MM, Fujikawa SM, Szostak JW (2003) Experimental models of primitive cellular compartments: encapsulation, growth, and division. Science 302(5645):618–622

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harman CE, Kasting JF, Wolf ET (2013) Atmospheric production of glycolaldehyde under hazy prebiotic conditions. Orig Life Evol Biosph 43:77–98

    Article  PubMed  CAS  Google Scholar 

  • Hartmann WK (1975) Lunar “cataclysm”: a misconception? Icarus 24(2):181–187

    Article  Google Scholar 

  • Hazen RM (2005) Genesis. The scientific quest for life’s origins. Joseph Henry Press, Washington, DC

    Google Scholar 

  • Hazen RM, Papineau D, Bleeker W et al (2008) Mineral evolution. Am Mineral 93(11–12):1693–1720

    Article  CAS  Google Scholar 

  • Hedenquist JW, Arribas A, Gonzalez-Urien E (2000) Exploration for epithermal gold deposits. Rev Econ Geol 13:45–77

    Google Scholar 

  • Herdewijn P (2001) TNA as a potential alternative to natural nucleic acids. Angew Chem Int Ed 40(12):2249–2251

    Article  CAS  Google Scholar 

  • Holland H (1984) The chemical evolution of the atmosphere and oceans. Princeton University Press, Princeton, 598 p

    Google Scholar 

  • Holm NG, Ertem G, Ferris JP (1993) The binding and reactions of nucleotides and polynucleotides on iron oxide hydroxide polymorphs. Orig Life Evol Biosph 23(3):195–215

    Article  PubMed  CAS  Google Scholar 

  • Huber C, Wächtershäuser G (1997) Activated acetic acid by carbon fixation on (Fe,Ni)S under primordial conditions. Science 276(5310):245–247

    Article  PubMed  CAS  Google Scholar 

  • Huber C, Wächtershäuser G (1998) Peptides by activation of amino acids with CO on (Ni,Fe)S surfaces: implications for the origin of life. Science 281(5377):670–671

    Article  PubMed  CAS  Google Scholar 

  • Huber C, Eisenreich W, Hecht S et al (2003) A possible primordial peptide cycle. Science 301(5635):938–940

    Article  PubMed  CAS  Google Scholar 

  • Huber C, Kraus F, Hanzlik M et al (2012) Elements of metabolic evolution. Chem Eur J 18(7):2063–2080

    Article  PubMed  CAS  Google Scholar 

  • Hud NV, Jain SS, Li X et al (2007) Addressing the problems of base pairing and strand cyclization in template-directed synthesis. Chem Biodivers 4(4):768–783

    Article  PubMed  CAS  Google Scholar 

  • Hyeon C, Dima RI, Thirumalai D (2006) Size, shape, and flexibility of RNA structures. J Chem Phys 125(19):194905

    Article  PubMed  CAS  Google Scholar 

  • Ichida JK, Zou K, Horhota A et al (2005) An in vitro selection system for TNA. J Am Chem Soc 127(9):2802–2803

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Inoue T, Orgel LE (1982) Oligomerization of (guanosine 5′-phosphor)-2-methylimidazolide on poly (C): an RNA polymerase model. J Mol Biol 162(1):201–217

    Article  PubMed  CAS  Google Scholar 

  • Islam S, Bučar DK, Powner MW (2017) Prebiotic selection and assembly of proteinogenic amino acids and natural nucleotides from complex mixtures. Nat Chem 9:584–589

    Article  CAS  Google Scholar 

  • Izgu EC, Oh SS, Szostak JW (2016) Synthesis of activated 3′-amino-3′-deoxy-2-thio-thymidine, a superior substrate for the nonenzymatic copying of nucleic acid templates. Chem Commun 52(18):3684–3686

    Article  CAS  Google Scholar 

  • Javoy M, Kaminski E, Guyot F et al (2010) The chemical composition of the Earth: enstatite chondrite models. Earth Planet Sci Lett 293:259–268

    Article  CAS  Google Scholar 

  • Jermann TM, Opitz JG, Stackhouse J et al (1995) Reconstructing the evolutionary history of the artiodactyl ribonuclease superfamily. Nature 374:57–59

    Article  PubMed  CAS  Google Scholar 

  • Jones LC, Rosenbauer R, Goldsmith JI et al (2010) Carbonate control of H2 and CH4 production in serpentinization systems at elevated P-Ts. Geophys Res Lett 37:L14306

    Google Scholar 

  • Joyce GF, Orgel LE (1999) Prospects for understanding the origin of the RNA world. In: Gestland RF, Cech RTR, Atkins JF (eds) The RNA World, 2nd edn. Cold Spring Harbor Press, Cold Spring Harbor, NY, pp 49–78

    Google Scholar 

  • Keefe AD, Miller SL (1996) Was ferrocyanide a prebiotic reagent? Orig Life Evol Biosph 26(2):111–129

    Article  PubMed  CAS  Google Scholar 

  • Kim HJ, Benner SA (2010) Comment on “The silicate-mediated formose reaction: bottom-up synthesis of sugar silicates”. Science 329(5994):902-a

    Google Scholar 

  • Kim HJ, Benner, SA (2017) Prebiotic stereoselective synthesis of purine and noncanonical pyrimidine nucleotide from nucleobases and phosphorylated carbohydrates. Proc Natl Acad Sci U S A (on line)

    Google Scholar 

  • Kim HJ, Ricardo A, Illangkoon HI et al (2011) Synthesis of carbohydrates in mineral-guided prebiotic cycles. J Am Chem Soc 133:9457–9468

    Article  PubMed  CAS  Google Scholar 

  • Kim HJ, Furukawa Y, Kakegawa T et al (2016) Evaporite borate-containing mineral ensembles make phosphate available and regiospecifically phosphorylate ribonucleosides: borate as a multifaceted problem solver in prebiotic chemistry. Angew Chem 55:15816–15820

    Article  CAS  Google Scholar 

  • Kring DA, Cohen BA (2002) Cataclysmic bombardment throughout the inner solar system 3.9–4.0Ga. J Geophys Res 107(E2):4-1–4-6

    Article  Google Scholar 

  • Kruijer TS, Kleine T, Fischer-Gödde M et al (2015) Lunar tungsten isotopic evidence for the late veneer. Nature 5:534–537

    Article  CAS  Google Scholar 

  • Lahav N (1994) Minerals and the origin of life – hypotheses and experiments in heterogeneous chemistry. Heterog Chem Rev 1:159–179

    CAS  Google Scholar 

  • Lahav N, White D, Chang S (1978) Peptide formation in the prebiotic era: thermal condensation of glycine in fluctuating clay environments. Science 201(435 O):67–69

    Google Scholar 

  • Lambert JB, Gurusamy-Thangavelu SA, Ma KBA (2010a) The silicate-mediated formose reaction: bottom-up synthesis of sugar silicates. Science 327:984–986

    Article  PubMed  CAS  Google Scholar 

  • Lambert JB, Gurusamy-Thangavelu SA, Ma KBA (2010b) Response to comment on “The silicate-mediated formose reaction: bottom-up synthesis of sugar silicates”. Science 329(5994):902-b

    Google Scholar 

  • Lapen TJ, Righter M, Brandon AD et al (2010) A younger age for ALH84001 and its geochemical link to shergottite sources in Mars. Science 328:347–351

    Article  PubMed  CAS  Google Scholar 

  • Larralde R, Robertson MP, Miller SL (1995) Rates of decomposition of ribose and other sugars. Implications for chemical evolution. Proc Natl Acad Sci U S A 92:8158–8160

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lehman N (2003) A case for the extreme antiquity of recombination. J Mol Evol 56:770–777

    Article  PubMed  CAS  Google Scholar 

  • Leman LJ, Orgel LE, Ghadiri MR (2006) Amino acid dependent formation of phosphate anhydrides in water mediated by carbonyl sulfide. J Am Chem Soc 128(1):20–21

    Article  PubMed  CAS  Google Scholar 

  • Levy M, Miller SL (1998) The stability of the RNA bases: implications for the origin of life. Proc Natl Acad Sci U S A 95:7933–7938

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Levy M, Miller SL, Oró J (1999) Production of guanine from NH4CN polymerizations. J Mol Evol 49:165–168

    Article  PubMed  CAS  Google Scholar 

  • Li L, Prywes N, Tam CP et al (2017) Enhanced nonenzymatic RNA copying with 2-aminoimidazole activated nucleotides. J Am Chem Soc 139(5):1810–1813

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lincoln TA, Joyce GF (2009) Self-sustained replication of an RNA enzyme. Science 323:1229–1232

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Löb W (1913) Uber das Verhalten des Formamids unter der Wirkung der stillen Entladung Ein Beitrag zur Frage der Stickstoff-Assimilation. Ber Dtsch Chem Ges 46:684–697

    Article  Google Scholar 

  • Lohrmann R (1972) Formation of urea and guanidine by irradiation of ammonium cyanide. J Mol Evol 1:263–269

    Article  PubMed  CAS  Google Scholar 

  • Maher KA, Stevenson DJ (1988) Impact frustration of the origin of life. Nature 331:612–614

    Article  PubMed  CAS  Google Scholar 

  • Malaterre C (2013) Synthetic biology and synthetic knowledge. Biol Theory 8:346–356

    Article  Google Scholar 

  • Mann U, Frost DJ, Rubie DC et al (2012) Partitioning of Ru Rh Pd Re Ir and Pt between liquid metal and silicate at high pressures and high temperatures – Implications for the origin of highly siderophile element concentrations in the Earth’s mantle. Geochim Cosmochim Acta 84:593–613

    Article  CAS  Google Scholar 

  • Marchi S, Bottke WF, Cohen BE et al (2013) High-velocity collisions from the lunar cataclysm recorded in asteroidal meteorites. Nat Geosci 6:303–307

    Article  CAS  Google Scholar 

  • Markovitch O, Lancet D (2014) Multispecies population dynamics of prebiotic compositional assemblies. J Theor Biol 357:26–34

    Article  PubMed  Google Scholar 

  • Maslen EN, Streltsov VA, Streltsova NR (1993) X-ray study of the electron density in calcite, CaCO3. Acta Cryst B49:636–641

    Article  CAS  Google Scholar 

  • McCauley JW, Roy R (1974) Controlled nucleation and crystal growth of various CaCO3 phases by the silica gel technique. Am Mineral 59:947–963

    CAS  Google Scholar 

  • McCollom TM (2013) Miller-Urey and beyond: What have we learned about prebiotic organic synthesis reactions in the past 60 years? Annu Rev Earth Planet Sci 41:207–229

    Article  CAS  Google Scholar 

  • McCollom TM, Seewald JS (2001) A reassessment of the potential for reduction of dissolved CO2 to hydrocarbons during serpentinization of olivine. Geochim Cosmochim Acta 65(21):3769–3778

    Article  CAS  Google Scholar 

  • Miller SL (1953) A production of amino acids under possible primitive earth conditions. Science 117:528–529

    Article  PubMed  CAS  Google Scholar 

  • Miyakawa S, Cleaves HJ, Miller SL (2002) The cold origin of life: B. Implications based on pyrimidines and purines produced from frozen ammonium cyanide solutions. Orig Life Evol Biosph 32:209–218

    Article  PubMed  CAS  Google Scholar 

  • Mojzsis SJ, Arrhenius G, McKeegan KD et al (1996) Evidence for life on Earth before 3,800 million years ago. Nature 384(6604):55–59

    Article  PubMed  CAS  Google Scholar 

  • Molster FJ, Lim TL, Sylvester RJ et al (2001) The complete ISO spectrum of NGC 6302. Astron Astrophys 372:165–172

    Article  CAS  Google Scholar 

  • Morbidelli A, Marchi S, Bottke WF et al (2012) A sawtooth-like timeline for the first billion years of lunar bombardment. Earth Planet Sci Lett 355-356:144–151

    Article  CAS  Google Scholar 

  • Müller J, Fabricius F (1978) Lüneburgite [Mg3(PO4)2B2O(OH)4 × 6 H2O] in Upper Miocene sediments of the Eastern Mediterranean Sea. Init Rep DSDP 42:661–664. https://doi.org/10.2973/dsdp.proc.42-1.127.1978

    Article  Google Scholar 

  • Mutschler H, Wochner A, Holliger P (2015) Freeze-thaw cycles as drivers of complex ribozyme assembly. Nat Chem 7:502–508

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Neveu M, Kim HJ, Benner SA (2013) The “Strong” RNA World hypothesis. Fifty years old. Astrobiology 13:391–403

    Article  PubMed  Google Scholar 

  • Nishiyama T, Kagami Y, Yamauchi T et al (2013) Assembly of stimulus-sensitive gel particles with DNA-dye complexes. Polym J 45:659–664

    Article  CAS  Google Scholar 

  • Okafor CD, Lanier KA, Petrov AS et al (2017) Iron mediates catalysis of nucleic acid processing enzymes: support for Fe (II) as a cofactor before the great oxidation event. Nucleic Acids Res 45:3634–3642

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Orgel LE (2000a) A simpler nucleic acid. Science 290(5495):1306–1307

    Article  PubMed  CAS  Google Scholar 

  • Orgel LE (2000b) Self-organizing biochemical reactions. Proc Natl Acad Sci U S A 97:12503–12507

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oró JJ (1965) Investigation of organo-chemical evolution. In: Mamikunian G, Briggs MH (eds) Current aspects of exobiology. Pergamon Press, Oxford, pp 13–39

    Chapter  Google Scholar 

  • Parsons I, Lee MR, Smith JV (1998) Biochemical evolution II: origin of life in tubular microstructures on weathered feldspar surfaces. Proc Natl Acad Sci 95(26):15173–15176

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pasek MA (2016) Schreibersite on the early earth: scenarios for prebiotic phosphorylation. Geosci Front 8(2):329–335

    Article  CAS  Google Scholar 

  • Pearce BKD, Pudritz RE (2015) Seeding the pregenetic Earth: meteoritic abundances of nucleobases and potential reaction pathways. Astrophys J 807:85–94

    Article  CAS  Google Scholar 

  • Pearce BKD, Pudritz RE, Semenov DA et al (2017) Origin of the RNA world: the fate of nucleobases in warm little ponds. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.1710339114

  • Petrus L, Petrusová M, Hricovíniová Z (2001) The Bilik reaction. In: Stutz AE (ed) Topics in current chemistry: glycoscience, epimerisation, isomerisation and rearrangment reactions of carbohydrates, vol 215. Springer, Berlin, pp 15–41

    Google Scholar 

  • Piccoli PM, Candela P (2002) Apatite in igneous systems. Rev Miner Geochem 48:255–292

    Article  CAS  Google Scholar 

  • Pinto J, Gladstone G, Yung Y (1980) Photochemical production of formaldehyde in Earth’s primitive atmosphere. Science 210:183–185

    Article  PubMed  CAS  Google Scholar 

  • Powner MW, Gerland B, Sutherland JD (2009) Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 459:239–242

    Article  PubMed  CAS  Google Scholar 

  • Puchtel IS, Walker RJ, Touboul M et al (2014) Insights into early Earth from the Pt–Re–Os isotope and highly siderophile element abundance systematics of Barberton komatiites. Geochim Cosmochim Acta 125:394–413

    Article  CAS  Google Scholar 

  • Qin L, Alexander CMD, Carlson RW (2010) Contributors to chromium isotope variation of meteorites. Geochim Cosmochim Acta 74:1122–1145

    Article  CAS  Google Scholar 

  • Ricardo A, Carrigan MA, Olcott AN et al (2004) Borate minerals stabilize ribose. Science 303:196

    Article  PubMed  CAS  Google Scholar 

  • Rich A (1962) On the problems of evolution and biochemical information transfer. In: Kasha M, Pullmann B (eds) Horizons in biochemistry. Academic Press, NY, pp 103–126

    Google Scholar 

  • Richter Y, Fischer B (2003) Characterization and elucidation of coordination requirements of adenine nucleotides complexes with Fe (II) ions. Nucleosides Nucleotides Nucleic Acids 22(9):1757–1780

    Article  PubMed  CAS  Google Scholar 

  • Righter K, Yang H, Costin G et al (2008) Oxygen fugacity in the Martian mantle controlled by carbon: New constraints from the nakhlite MIL 03346. Meteorit Planet Sci 43:1709–1723

    Article  CAS  Google Scholar 

  • Righter K, Danielson LR, Pando KM et al (2015) Highly siderophile element (HSE) abundances in the mantle of Mars are due to core formation at high pressure and temperature. Meteorit Planet Sci 50:604–631

    Article  CAS  Google Scholar 

  • Rosing MT (1999) 13C-Depleted carbon microparticles in >3700-Ma sea-floor sedimentary rocks from West Greenland. Science 283:674–676

    Article  PubMed  CAS  Google Scholar 

  • Rubie DC, Jacobson SA, Morbidelli A et al (2015a) Accretion and differentiation of the terrestrial planets with implications for the compositions of early-formed Solar System bodies and accretion of water. Icarus 248:89–108

    Article  CAS  Google Scholar 

  • Rubie DC, Nimmo F, Melosh HJ (2015b) Formation of the Earth’s core. In: Schubert G (ed) Treatise on geophysics, vol 9: Evolution of the Earth, 2nd edn. Elsevier, Oxford, pp 43–79

    Google Scholar 

  • Russell MJ, Hall AJ (1997) The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front. J Geol Soc 154(3):377–402

    Article  CAS  Google Scholar 

  • Russell MJ, Martin W (2004) The rocky roots of the acetyl-CoA pathway. Trends Biochem Sci 29(7):358–363

    Article  PubMed  CAS  Google Scholar 

  • Russell MJ, Daniel RM, Hall AJ et al (1994) A hydrothermally precipitated catalytic iron sulphide membrane as a first step toward life. J Mol Evol 39(3):231–243

    Article  CAS  Google Scholar 

  • Sahai N, Kaddour H, Dalai P (2016) The transition from geochemistry to biogeochemistry. Elements 12(6):389–394

    Article  CAS  Google Scholar 

  • Saladino R, Ciambecchini U, Crestini C et al (2003) One-pot TiO2-catalyzed synthesis of nucleic bases and acyclonucleosides from formamide: implications for the origin of life. Chembiochem 4:514–521

    Article  PubMed  CAS  Google Scholar 

  • Saladino R, Barontini M, Cossetti C et al (2011) The effects of borate minerals on the synthesis of nucleic acid bases, amino acids and biogenic carboxylic acids from formamide. Orig Life Evol Biosph 41:317–330

    Article  PubMed  CAS  Google Scholar 

  • Sanchez RA, Orgel LE (1970) Studies in prebiotic synthesis: V. Synthesis and photoanomerization of pyrimidine nucleosides. J Mol Biol 47:531–543

    Article  PubMed  CAS  Google Scholar 

  • Sanchez RA, Ferris JP, Orgel LE (1966) Cyanoacetylene in prebiotic synthesis. Science 154:784–785

    Article  PubMed  CAS  Google Scholar 

  • Santos AR, Agee CB, McCubbin FM et al (2013) Apatite and merrillite from Martian meteorite NWA 7034. In: Lunar and planetary science conference 44, 2601

    Google Scholar 

  • Schoonen M, Smirnov A (2016) Staging life in an early warm ‘seltzer’ ocean. Elements 12(6):395–400

    Article  CAS  Google Scholar 

  • Schoonen M, Smirnov A, Cohn C (2004) A perspective on the role of minerals in prebiotic synthesis. Ambio 33(8):539–551

    Article  PubMed  Google Scholar 

  • Sekimoto K, Takayama M (2012) Formation of hydrogen cyanide HCN under limited discharge conditions in non-reduced ambient air. ESCAMPIG XXI, Viana do Castelo, Portugal, 10–14 July

    Google Scholar 

  • Shapiro R (1995) The prebiotic role of adenine: a critical analysis. Orig Life Evol Biosph 25:83–98

    Article  PubMed  CAS  Google Scholar 

  • Shapiro R (1999) Prebiotic cytosine synthesis: a critical analysis and implications for the origin of life. Proc Natl Acad Sci U S A 96:4396–4401

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shapiro R (2007) A simpler origin for life. Sci Am 296:46–53

    Article  PubMed  Google Scholar 

  • Sleep NH, Meibom A, Fridriksson T et al (2004) H2-rich fluids from serpentinization: geochemical and biotic implications. Proc Natl Acad Sci U S A 101:12818–12823

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sleep NH, Bird DK, Pope EC (2011) Serpentinite and the dawn of life. Philos Trans R Soc B 366:2857–2869

    Article  CAS  Google Scholar 

  • Smith JV (1998) Biochemical evolution. I. Polymerization on internal, organophilic silica surfaces of dealuminated zeolites and feldspars. Proc Natl Acad Sci U S A 95(7):3370–3375

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Smith JV, Arnold FP, Parsons I et al (1999) Biochemical evolution III: polymerization on oganophilic silica-rich surfaces, crystal-chemical modeling, formation of first cells, and geological clues. Proc Natl Acad Sci U S A 96(7):3479–3485

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stephenson JD, Hallis LJ, Nagashima K et al (2013) Boron enrichment in Martian clay. PLoS One 8(6):e64624

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stephenson JD, Popović M, Bristow TF et al (2016) Evolution of ribozymes in the presence of a mineral surface. RNA 22:1893–1901

    PubMed  PubMed Central  CAS  Google Scholar 

  • Stober W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in micron size range. J Colloid Interface Sci 26:62–69

    Article  Google Scholar 

  • Summers DP, Chang S (1993) Prebiotic ammonia from reduction of nitrite by iron (II) on the early Earth. Nature 365(6447):630–633

    Article  PubMed  CAS  Google Scholar 

  • Sutherland JD (2016) The origin of life. Out of the blue. Angew Chem Int Ed 55(1):104–121

    Article  CAS  Google Scholar 

  • Taves DR (1963) Similarity of octacalcium phosphate and hydroxyapatite structures. Nature 200(4913):1312–1313

    Article  CAS  Google Scholar 

  • Taves DR, Reedy RC (1969) A structural basis for the transphosphorylation of nucleotides with hydroxyapatite. Calcif Tissue Int 3(1):284–292

    Article  CAS  Google Scholar 

  • Tera F, Papanastassiou DA, Wasserburg GJ (1974) Isotopic evidence for a terminal lunar cataclysm. Earth Planet Sci Lett 22(1):1–21

    Article  CAS  Google Scholar 

  • Touboul M, Puchtel IS, Walker RJ (2012) 182W evidence for long term preservation of early mantle differentiation products. Science 335:1065–1069

    Article  PubMed  CAS  Google Scholar 

  • Touboul M, Liu J, O’Neil J et al (2014) New insights into the Hadean mantle revealed by 182 W and highly siderophile element abundances of supracrustal rocks from the Nuvvuagittuq greenstone belt, Quebec Canada. Chem Geol 383:63–75

    Article  CAS  Google Scholar 

  • Trail D, Watson EB, Tailby ND (2011) The oxidation state of Hadean magmas and implications for early Earth’s atmosphere. Nature 480(7375):79–82

    Article  PubMed  CAS  Google Scholar 

  • Van Vleck JH (1928) The correspondence principle in the statistical interpretation of quantum mechanics. Proc Natl Acad Sci U S A 14(2):178–188

    Article  PubMed  PubMed Central  Google Scholar 

  • Wächtershäuser G (1988a) Before enzymes and templates: theory of surface metabolism. Microbiol Rev 52(4):452–484

    PubMed  PubMed Central  Google Scholar 

  • Wächtershäuser G (1988b) Pyrite formation, the first energy source for life: a hypothesis. Syst Appl Microbiol 10(3):207–210

    Article  Google Scholar 

  • Wächtershäuser G (1990a) Evolution of the first metabolic cycles. Proc Natl Acad Sci U S A 87(1):200–204

    Article  PubMed  PubMed Central  Google Scholar 

  • Wächtershäuser G (1990b) The case for the chemoautotrophic origin of life in an iron-sulfur world. Orig Life Evol Biosph 20(2):173–176

    Article  Google Scholar 

  • Wächtershäuser G (1993) The cradle chemistry of life: on the origin of natural products in a pyrite-pulled chemoautotrophic origin of life. Pure Appl Chem 65(6):1343–1348

    Article  Google Scholar 

  • Warren PH (2011) Stable-isotopic anomalies and the accretionary assemblage of the Earth and Mars: a subordinate role for carbonaceous chondrites. Earth Planet Sci Lett 311:93–100

    Article  CAS  Google Scholar 

  • Weber AL (1995) Prebiotic polymerization: oxidative polymerization of 2,3-dimercapto-l-propanol on the surface of iron(III) hydroxide oxide. Orig Life Evol Biosph 25(1–3):53–60

    Article  PubMed  CAS  Google Scholar 

  • Willbold M, Elliot T, Moorbath S (2011) The tungsten isotopic composition of the Earth’s mantle before the terminal bombardment. Nature 477:195–198

    Article  PubMed  CAS  Google Scholar 

  • Willbold M, Mojzsis SJ, Chen HW et al (2015) Tungsten isotope composition of the Acasta Gneiss Complex. Earth Planet Sci Lett 419:168–177

    Article  CAS  Google Scholar 

  • Young ED, Kohl IE, Warren PH et al (2016) Oxygen isotopic evidence for vigorous mixing during the Moon-forming giant impact. Science 351:493–496

    Article  PubMed  CAS  Google Scholar 

  • Yuasa S, Flory D, Basile B et al (1984) Abiotic synthesis of purines and other heterocyclic compounds by the action of electrical discharges. J Mol Evol 21:76–80

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Dauphas N, Davis AM et al (2012) The proto-Earth as a significant source of lunar material. Nat Geosci 5:251–255

    Article  CAS  Google Scholar 

  • Zhang S, Blain JC, Zielinska D et al (2013) Fast and accurate nonenzymatic copying of an RNA-like synthetic genetic polymer. Proc Natl Acad Sci U S A 110(44):17732–17737

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa Biondi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Benner, S.A., Kim, HJ., Biondi, E. (2018). Mineral-Organic Interactions in Prebiotic Synthesis. In: Menor-Salván , C. (eds) Prebiotic Chemistry and Chemical Evolution of Nucleic Acids. Nucleic Acids and Molecular Biology, vol 35. Springer, Cham. https://doi.org/10.1007/978-3-319-93584-3_3

Download citation

Publish with us

Policies and ethics