Skip to main content
Log in

Abiotic synthesis of purines and other heterocyclic compounds by the action of electrical discharges

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

The synthesis of purines and pyrimidines using Oparin-Urey-type primitive Earth atmospheres has been demonstrated by reacting methane, ethane, and ammonia in electrical discharges. Adenine, guanine, 4-aminoimidazole-5-carboxamide (AICA), and isocytosine have been identified by UV spectrometry and paper chromatography as the products of the reaction. The total yields of the identified heterocyclic compounds are 0.0023%. It is concluded that adenine synthesis occurs at a much lower concentration of hydrogen cyanide than has been shown by earlier studies. Pathways for the synthesis of purines from hydrogen cyanide are discussed, and a comparison of the heterocyclic compounds that have been identified in meteorites and in prebiotic reactions is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abelson PH (1966) Chemical events on the primitive Earth. Proc Natl Acad Sci USA 55:1365–1375

    Google Scholar 

  • Anders E, Hayatsu R, Studier MH (1974) Catalytic reaction in the solar nebula: implications for interstellar molecules and organic compounds in meteorites. Orig Life 5:55–67

    Google Scholar 

  • Chargaff E (1955) Isolation and composition of the deoxypentose nucleic acids and of the corresponding nucleoproteins. In: Chargaff E, Davidson JN (eds) The nucleic acids, chemistry and biology, vol 1. Academic Press, New York, pp 307–371

    Google Scholar 

  • Ferris JP, Orgel LE (1965) Aminomalononitrile and 4-amino-5-cyanoimidazole in hydrogen cyanide polymerization and adenine synthesis. J Am Chem Soc 87:4976–4977

    PubMed  Google Scholar 

  • Ferris JP, Orgel LE (1966) Studies in prebiotic synthesis: I. Aminomalononitrile and 4-amino-5-cyanoimidazole. J Am Chem Soc 88:3829–3831

    PubMed  Google Scholar 

  • Ferris JP, Sanchez RA, Orgel LE (1968) Studies in prebiotic synthesis III. Synthesis of pyrimidines from cyanoacetylene and cyanate. J Mol Biol 33:693–704

    PubMed  Google Scholar 

  • Hayatsu R (1964) Orgueil meteorite: organic nitrogen contents. Science 146:1291–1293

    Google Scholar 

  • Hayatsu R, Studier MH, Oda A, Fuse K, Anders E (1968) Origin of organic matter in early solar system II. Nitrogen compounds. Geochim Cosmochim Acta 32:175–190

    Google Scholar 

  • Hayatsu R, Studier MH, Matsuoka S, Anders E (1972) Origin of organic matter in early solar system VI. Catalytic synthesis of nitriles, nitrogen bases and porphyrin-like pigments. Geochim Cosmochim Acta 36:555–571

    Google Scholar 

  • Hayatsu R, Studier MH, Moore LP, Anders E (1975) Purines and triazines in the Murchison meteorite. Geochim Cosmochim Acta 39:471–488

    Google Scholar 

  • Heyns VK, Walter W, Meyer E (1957) Modelluntersuchungen zur Bildung organischer Verbindungen in Atmosphären einfacher Gase durch elektrische Entladungen. Naturwissenschaften 44:385–389

    Google Scholar 

  • Labadie M, Jensen R, Neuzil E (1968) Recherches sur l'evolution prebiologic III. Les acides azulmiques noir formes a partir du cyanure d'ammonium. Biochim Biophys Acta 163: 525–533

    Google Scholar 

  • Lemmon RH (1970) Chemical evolution. Chem Rev 70:95–109

    Google Scholar 

  • Lowe CU, Rees MW, Markham R (1963) Synthesis of complex organic compounds from simple precursors: formation of amino-acids, amino acid polymers, fatty acids and purines from ammonium cyanide. Nature 199:219–222

    PubMed  Google Scholar 

  • Miller SL (1953) A production of amino acids under possible primitive Earth conditions. Science 117:528–529

    PubMed  Google Scholar 

  • Miller SL (1955) Production of some organic compounds under possible primitive Earth conditions. J Am Chem Soc 77:2351–2361

    Google Scholar 

  • Miller SL (1957) The mechanism of synthesis of amino acids by electric discharges. Biochim Biophys Acta 23:480–489

    PubMed  Google Scholar 

  • Oró J (1960) Synthesis of adenine from ammonium cyanide. Biochim Biophys Res Commun 2:407–412

    Google Scholar 

  • Oró J (1961) Mechanism of synthesis of adenine from hydrogen cyanide under possible primitive Earth conditions. Nature 191:1193–1194

    PubMed  Google Scholar 

  • Oró J (1963a) Synthesis of organic compounds by electric discharges. Nature 197:862–867

    Google Scholar 

  • Oró J (1963b) Ultraviolet-absorbing compounds reported present in the Murray meteorite. Nature 197:756–758

    Google Scholar 

  • Oró J, Kimball AP (1961) Synthesis of purines under possible primitive Earth conditions. I. Adenine from hydrogen cyanide. Arch Biochem Biophys 94:217–227

    PubMed  Google Scholar 

  • Oró J, Kimball AP (1962) Synthesis of purines under possible primitive Earth conditions. II. Purine intermediates from hydrogen cyanide. Arch Biochem Biophys 96:293–313

    PubMed  Google Scholar 

  • Oró J, Skewes H (1965) Free amino acids on human finger: the question of contamination in microanalysis Nature 207:1042–1045

    PubMed  Google Scholar 

  • Ponnamperuma C, Lemmon RM, Mariner R, Calvin M (1963) Formation of adenine by electron irradiation of methane, ammonia and water. Proc Natl Acad Sci USA 49:737–740

    Google Scholar 

  • Ring D, Wolman Y, Friedman N, Miller SL (1972) Prebiotic synthesis of hydrophobic and protein amino acids. Proc Natl Acad Sci USA 69:765–768

    PubMed  Google Scholar 

  • Sanchez RA, Ferris JP, Orgel LE (1966) Cyanoacetylene in prebiotic synthesis. Science 154:784–785

    PubMed  Google Scholar 

  • Sanchez RA, Ferris JP, Orgel LE (1967) Studies in prebiotic synthesis II. Synthesis of purine precursors and amino acids from aqueous hydrogen cyanide. J Mol Biol 30:223–253

    PubMed  Google Scholar 

  • Sanchez RA, Ferris JP, Orgel LE (1968) Studies in prebiotic synthesis. IV. Conversion of 4-aminoimidazole-5-carbonitrile derivatives to purines. J Mol Biol 38:121–128

    PubMed  Google Scholar 

  • Schlesinger G, Miller SL (1983a) Prebiotic syntheses in atmospheres containing CH4, CO, and CO2. I. Amino acids. J Mol Evol 19:376–382

    PubMed  Google Scholar 

  • Schlesinger G, Miller SL (1983b) Prebiotic syntheses in atmospheres containing CH4, CO, and CO2. II. Hydrogen cyanide, formaldehyde and ammonia. J Mol Evol 19:383–390

    PubMed  Google Scholar 

  • Stoks PG, Schwartz AW (1979) Uracil in carbonaceous meteorites. Nature 282:709–710

    PubMed  Google Scholar 

  • Stoks PG, Schwartz AW (1981) Nitrogen-heterocyclic compounds in meteorites. Significance and mechanisms of formation. Geochim Cosmochim Acta 45:563–569

    Google Scholar 

  • van der Velden W, Schwartz AW (1977) Search for purines and pyrimidines in the Murchison meteorite. Geochim Cosmochim Acta 41:961–968

    Google Scholar 

  • Wolman Y, Haverland WJ, Miller SL (1972) Nonprotein amino acids from spark discharges and their comparison with Murchison meteorite amino acids. Proc Natl Acad Sci USA 69: 809–811

    Google Scholar 

  • Yang CC, Oró J (1971) Synthesis of adenine, guanine, cytosine and other nitrogen organic compounds by a Fischer-Tropsch-like process. In: Buvet R, Ponnamperuma C (eds) Chemical evolution and the origin of life. North Holland, Amsterdam, pp 152–167

    Google Scholar 

  • Yuasa S, Oró J (1974) Role of weak bases on the prebiotic formation of heterocyclic compounds. In: Oró J, Miller SL, Ponnamperuma C, Young RS (eds) Cosmochemical evolution and the origins of life, vol 2. Reidel, Dordrecht The Netherlands, pp 295–299

    Google Scholar 

  • Yuasa S, Flory D, Basile B, Oro J (1984) On the abiotic formation of amino acids I. HCN as a precursor of amino acids detected in extracts of lunar samples. II. Formation of HCN and amino acids from simulated mixtures of gases released from lunar samples. J Mol Evol 20:52–58

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuasa, S., Flory, D., Basile, B. et al. Abiotic synthesis of purines and other heterocyclic compounds by the action of electrical discharges. J Mol Evol 21, 76–80 (1984). https://doi.org/10.1007/BF02100630

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02100630

Key words

Navigation