Skip to main content

Differentiation and Transdifferentiation of Sponge Cells

  • Chapter
  • First Online:
Marine Organisms as Model Systems in Biology and Medicine

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 65))

Abstract

Over 100 years of sponge biology research has demonstrated spectacular diversity of cell behaviors during embryonic development, metamorphosis and regeneration. The past two decades have allowed the first glimpses into molecular and cellular mechanisms of these processes. We have learned that while embryonic development of sponges utilizes a conserved set of developmental regulatory genes known from other animals, sponge cell differentiation appears unusually labile. During normal development, and especially as a response to injury, sponge cells appear to have an uncanny ability to transdifferentiate. Here, I argue that sponge cell differentiation plasticity does not preclude homology of cell types and processes between sponges and other animals. Instead, it does provide a wonderful opportunity to better understand transdifferentiation processes in all animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams EDM, Goss GG, Leys SP (2010) Freshwater sponges have functional, sealing epithelia with high transepithelial resistance and negative transepithelial potential. PLoS One 5(11):e15040

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Adamska M (2016a) Sponges as models to study emergence of complex animals. Curr Opin Genet Dev 39:21–28

    Article  PubMed  CAS  Google Scholar 

  • Adamska M (2016b) Sponges as the Rosetta Stone of colonial-to-multicellular transition. In: Niklas KJ, Newman SA (eds) Multicellularity: origins and evolution. The MIT Press, Cambridge, MA; London 978-0-262-03415-9

    Google Scholar 

  • Adamska M, Degnan SM, Green KM, Adamski M, Craigie A, Larroux C, Degnan BM (2007) Wnt and Tgfβ expression in the sponge Amphimedon queenslandica and the origin of metazoan embryonic patterning. PLoS One 2(10):e1031

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Adamska M, Larroux C, Adamski M, Green K, Lovas E, Koop D, Richards GS, Zwafink C, Degnan BM (2010) Structure and expression of conserved wnt pathway components in the demosponge Amphimedon queenslandica. Evol Dev 12(5):494–518

    Article  PubMed  CAS  Google Scholar 

  • Adamska M, Degnan BM, Green K, Zwafink C (2011) What sponges can tell us about the evolution of developmental processes. Zoology 114:1–10

    Article  PubMed  Google Scholar 

  • Alder H, Schmid V (1987) Cell cycles and in vitro transdifferentiation and regeneration of isolated, striated muscle of jellyfish. Dev Biol 124(2):358–369

    Article  PubMed  CAS  Google Scholar 

  • Alexander BE, Liebrand K, Osinga R, van der Geest HG, Admiraal W et al (2014) Cell turnover and detritus production in marine sponges from tropical and temperate benthic ecosystems. PLoS One 9(10):e109486

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alié A, Hayashi T, Sugimura I, Manuel M, Sugano W, Mano A, Satoh N, Agata K, Funayama N (2015) The ancestral gene repertoire of animal stem cells. Proc Natl Acad Sci USA 112(51):E7093–E7100

    PubMed  PubMed Central  Google Scholar 

  • Amano S, Hori I (1993) Metamorphosis of calcareous sponges II. Cell rearrangement and differentiation in metamorphosis. Invertebr Reprod Dev 24:13–26

    Article  Google Scholar 

  • Arenas-Mena C (2010) Indirect development, transdifferentiation and the macroregulatory evolution of metazoans. Philos Trans R Soc B 365:653–669

    Article  Google Scholar 

  • Bond C (1992) Continuous cell movements rearrange anatomical structures in intact sponges. J Exp Zool 263:284–302

    Article  PubMed  CAS  Google Scholar 

  • Borisenko IE, Adamska M, Tokina DB, Ereskovsky AV (2015) Transdifferentiation is a driving force of regeneration in Halisarca dujardini (Demospongiae, Porifera). PeerJ 3:e1211

    Article  PubMed  PubMed Central  Google Scholar 

  • Borisenko I, Adamski M, Ereskovsky A, Adamska M (2016) Surprisingly rich repertoire of Wnt genes in the demosponge Halisarca dujardini. BMC Evol Biol 16:123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bosch TCG, Adamska M, Augustin R, Domazet-Loso T, Foret S, Fraune S, Funayama N, Grasis J, Hamada M, Hatta M, Hobmayer B, Kawai K, Klimovich A, Manuel M, Shinzato C, Technau U, Yum S, Miller DJ (2014) The case for eco-devo analyses of “lower” animals: what can be learned about environmental influences on development by studying sponges and cnidarians? Bioessays 36:1185–1194

    Article  PubMed  PubMed Central  Google Scholar 

  • Boute N, Exposito JY, Boury-Esnault N, Vacelet J, Nor N, Miyazaki K, Yoshizato K, Garrone R (1996) Type IV collagen in sponges, the missing link in basement membrane ubiquity. Biol Cell 88:37–44

    Article  PubMed  CAS  Google Scholar 

  • Brunet T, King N (2017) The origin of animal multicellularity and cell differentiation. Dev Cell 43(2):124–140. https://doi.org/10.1016/j.devcel.2017.09.016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Buscema M, De Sutter D, Van de Vyver G (1980) Ultrastructural study of differentiation processes during aggregation of purified sponge archaeocytes. Wilhelm Roux Arch Dev Biol 188:45–53

    Article  Google Scholar 

  • Choi TY, Ninov N, Stainier DYR, Shin D (2014) Extensive conversion of hepatic biliary epithelial cells to hepatocytes after near total loss of hepatocytes in zebrafish. Gastroenterology 146:776–788

    Article  PubMed  CAS  Google Scholar 

  • Custodio MR, Prokic I, Steffen R, Koziol C, Borojevic R, Brümmer F, Nickel M, Müller WE (1998) Primmorphs generated from dissociated cells of the sponge Suberites domuncula: a model system for studies of cell proliferation and cell death. Mech Ageing Dev 105(1–2):45–59

    Article  PubMed  CAS  Google Scholar 

  • De Lázaro I, Kostarelos K (2016) Engineering cell fate for tissue regeneration by in vivo transdifferentiation. Stem Cell Rev Rep 12:129–139

    Article  CAS  PubMed  Google Scholar 

  • Degnan BM, Adamska M, Richards GR, Larroux C, Leininger S, Bergum B, Calcino A, Maritz K, Nakanishi N, Degnan SM (2015) Porifera. In: Wanninger A (ed) Evolutionary developmental biology of invertebrates, vol 1. Springer, Wein, pp 65–106 978-3-7091-1861-0

    Chapter  Google Scholar 

  • Dohrmann M, Wörheide G (2013) Novel scenarios of early animal evolution—is it time to rewrite textbooks? Integr Comp Biol 53:503–511

    Article  PubMed  Google Scholar 

  • Eerkes-Medrano DI, Leys SP (2006) Ultrastructure and embryonic development of a syconoid calcareous sponge. Invertebr Biol 125(3):177–194

    Article  Google Scholar 

  • Eerkes-Medrano D, Feehan CJ, Leys SP (2015) Sponge cell aggregation: checkpoints in development indicate a high level of organismal complexity. Invertebr Biol 134(1):1–18

    Article  Google Scholar 

  • Eguizabal C, Montserrat N, Veiga A, Izpisua Belmonte JC (2013) Dedifferentiation, transdifferentiation, and reprogramming: future directions in regenerative medicine. Semin Reprod Med 31(1):82–94

    Article  PubMed  Google Scholar 

  • Elliot GR, Macdonald TA, Leys SP (2004) Sponge larval phototaxis: a comparative study. Boll Mus Ist Biol Univ Genov 68:291–300

    Google Scholar 

  • Ereskovsky AV (2010) The comparative embryology of sponges. Springer, New York

    Book  Google Scholar 

  • Ereskovsky AV, Boury-Esnault N (2002) Cleavage pattern in Oscarella species (Porifera, Demospongiae, Homoscleromorpha): transmission of maternal cells and symbiotic bacteria. J Nat Hist 12:1761–1775

    Article  Google Scholar 

  • Ereskovsky AV, Tokina DB, Bézac C, Boury-Esnault N (2007) Metamorphosis of cinctoblastula larvae (Homoscleromorpha, Porifera). J Morphol 268:518–528

    Article  PubMed  Google Scholar 

  • Ereskovsky AV, Borisenko IE, Lapébie P, Gazave E, Tokina DB et al (2015) Oscarella lobularis (Homoscleromorpha, Porifera) regeneration: epithelial morphogenesis and metaplasia. PLoS One 10(8):e0134566

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ereskovsky AV, Chernogor LI, Belikov SI (2016) Ultrastructural description of development and cell composition of primmorphs in the endemic Baikal sponge Lubomirskia baicalensis. Zoomorphology 135(1):1–17

    Article  Google Scholar 

  • Ereskovsky AV, Lavrov AI, Bolshakov FV, Tokina DB (2017) Regeneration in White Sea sponge Leucosolenia complicata (Porifera, Calcarea). Invertebr Zool 14(2):108–113

    Google Scholar 

  • Feuda R, Dohrmann M, Pett W, Philippe H, Rota-Stabelli O, Lartillot N, Wörheide G, Pisani D (2017) Improved modeling of compositional heterogeneity supports sponges as sister to all other animals. Curr Biol 27:3864–3870

    Article  PubMed  CAS  Google Scholar 

  • Fierro-Constaín L, Schenkelaars Q, Gazave E, Haguenauer A, Rocher C, Ereskovsky A, Borchiellini C, Renard E (2017) The conservation of the germline multipotency program, from sponges to vertebrates: a stepping stone to understanding the somatic and germline origins. Genome Biol Evol 9(3):474–488

    PubMed  PubMed Central  Google Scholar 

  • Fortunato S, Adamski M, Mendivil O, Leininger S, Liu J, Ferrier DEK, Adamska M (2014a) Calcisponges have a ParaHox gene and dynamic expression of dispersed NK homeobox genes. Nature 514(7524):620–623

    Article  PubMed  CAS  Google Scholar 

  • Fortunato S, Leininger S, Adamska M (2014b) Evolution of the Pax-Six-Eya-Dach network: the calcisponge case study. EvoDevo 5:23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fortunato SAV, Adamski M, Adamska M (2015) Comparative analyses of developmental transcription factor repertoires in sponges reveal unexpected complexity of the earliest animals. Mar Genomics 2:121–129

    Article  Google Scholar 

  • Fortunato SA, Vervoort M, Adamski M, Adamska M (2016) Conservation and divergence of bHLH genes in the calcisponge Sycon ciliatum. EvoDevo 7:23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Franzen W (1988) Oogenesis and larval development of Scypha ciliata (Porifera, Calcarea). Zoomorphology 107:349

    Article  Google Scholar 

  • Freedman BD, Kempna PB, Carlone DL, Shah MS, Guagliardo NA, Barrett PQ, Gomez-Sanchez CE, Majzoub JA, Breault DT (2013) Adrenocortical zonation results from lineage conversion of differentiated zona glomerulosa cells. Dev Cell 26(6):666–673

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Funayama N (2010) The stem cell system in demosponges: insights into the origin of somatic stem cells. Develop Growth Differ 52:1–14

    Article  CAS  Google Scholar 

  • Funayama N (2013) The stem cell system in demosponges: suggested involvement of two types of cells: archeocytes (active stem cells) and choanocytes (food-entrapping flagellated cells). Dev Genes Evol 223(1-2):23–38

    Article  PubMed  Google Scholar 

  • Funayama N, Nakatsukasa M, Kuraku S, Takechi K, Dohi M, Iwabe N, Miyata T, Agata K (2005) Isolation of Ef silicatein and Ef lectin as molecular markers for sclerocytes and cells involved in innate immunity in the fresh water sponge Ephydatia fluviatilis. Zool Sci 22:1113–1122

    Article  CAS  Google Scholar 

  • Funayama N, Nakatsukasa M, Mohri K, Masuda Y, Agata K (2010) Piwi expression in archeocytes and choanocytes in demosponges: insights into the stem cell system in demosponges. Evol Dev 12(3):275–287

    Article  PubMed  CAS  Google Scholar 

  • Fusco G, Carrer R, Serrelli E (2014) The landscape metaphor in development. In: Minelli A, Pradeu T (eds) Towards a theory of development. Oxford University Press, Oxford

    Google Scholar 

  • Gaino E, Burlando B (1990) Sponge cell motility: a model system for the study of morphogenetic processes. Boll Zool 57(2):109–118

    Article  Google Scholar 

  • Gaino E, Burlando B, Buffa P (1987) Structural and ultrastructural aspects of growth in Oscarella lobularis (Porifera, Demospongiae). Growth 51(4):451–460

    PubMed  CAS  Google Scholar 

  • Galtsoff PS (1925) Regeneration after dissociation (an experimental study on sponges). I. Behavior of dissociated cells of Microciona prolifera under normal and altered conditions. J Exp Zool 42:183–221

    Article  CAS  Google Scholar 

  • Graf T, Enver T (2009) Forcing cells to change lineages. Nature 462(7273):587–594

    Article  PubMed  CAS  Google Scholar 

  • Grogg MW, Call MK, Okamoto M, Vergara MN, Del Rio-Tsonis K, Tsonis PA (2005) BMP inhibition-driven regulation of six-3 underlies induction of newt lens regeneration. Nature 438:858–862

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Haeckel E (1870) On the organization of sponges and their relationship to the corals. Ann Mag Nat Hist 5(1–13):107–120

    Article  Google Scholar 

  • He J, Lu H, Zou Q, Luo L (2014) Regeneration of liver after extreme hepatocyte loss occurs mainly via biliary transdifferentiation in zebrafish. Gastroenterology 146:789–800

    Article  PubMed  CAS  Google Scholar 

  • Holstein TW, Hobmayer E, Technau U (2003) Cnidarians: an evolutionarily conserved model system for regeneration? Dev Dyn 226:257–267

    Article  PubMed  CAS  Google Scholar 

  • Hooper JNA, Van Soest RWM (eds) (2002) Systema porifera: a guide to the classification of sponges, vol 2. Kluwer Academic/Plenum Publishers, New York, 1718 p

    Google Scholar 

  • Huxley JS (1911) Some phenomena of regeneration in Sycon; with a note on the structure of its collar-cells. Philos Trans R Soc B 202:165–189

    Article  Google Scholar 

  • Huxley JS (1921) Further studies on restitution-bodies and free tissue culture in Sycon. Q J Microsc Sci 65:293–322

    Google Scholar 

  • James-Clark H (1867) IV.—Conclusive proofs of the animality of the ciliate sponges, and of their affinities with the infusoria flagellate. Ann Mag Nat Hist 19(109):13–18

    Article  Google Scholar 

  • Jarriault S, Schwab Y, Greenwald I (2008) A Caenorhabditis elegans model for epithelial-neuronal transdifferentiation. Proc Natl Acad Sci USA 105(10):3790–3795

    Article  PubMed  PubMed Central  Google Scholar 

  • Jopling C, Boue S, Izpisua Belmonte JC (2011) Dedifferentiation, transdifferentiation and reprogramming: three routes to regeneration. Nat Rev 12:79–89

    Article  CAS  Google Scholar 

  • Juliano C, Wessel G (2010) Versatile germline genes. Science 329:640–641

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kaandorp JA (1999) Morphological analysis of growth forms of branching marine sessile organisms along environmental gradients. Mar Biol 134:295–306

    Article  Google Scholar 

  • King N (2004) The unicellular ancestry of animal development. Dev Cell 7:313–325

    Article  PubMed  CAS  Google Scholar 

  • King N, Rokas A (2017) Embracing uncertainty in reconstructing early animal evolution. Curr Biol 27(19):R1081–R1088

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ladewig J, Koch P, Brüstle O (2013) Leveling Waddington: the emergence of direct programming and the loss of cell fate hierarchies. Nat Rev Mol Cell Biol 14(4):225–236

    Article  PubMed  CAS  Google Scholar 

  • Lavrov AI, Kosevich IA (2016) Sponge cell reaggregation: cellular structure and morphogenetic potencies of multicellular aggregates. J Exp Zool A 325:158–177

    Article  Google Scholar 

  • Leininger S, Adamski M, Bergum B, Guder C, Liu J, Laplante M, Bråte J, Hoffmann F, Fortunato S, Jordal S, Rapp HT, Adamska M (2014) Developmental gene expression provides clues to relationships between sponge and eumetazoan body plans. Nature Commun 5:3905

    Article  CAS  Google Scholar 

  • Leys SP, Degnan BM (2001) Cytological basis of photoresponsive behavior in a sponge larva. Biol Bull 201(3):323–338

    Article  PubMed  CAS  Google Scholar 

  • Leys SP, Degnan BM (2002) Embryogenesis and metamorphosis in a haplosclerid demosponge: gastrulation and transdifferentiation of larval ciliated cells to choanocytes. Invertebr Biol 121:171–189

    Article  Google Scholar 

  • Leys SP, Eerkes-Medrano D (2005) Gastrulation in calcareous sponges: in search of Haeckel’s gastraea. Integr Comp Biol 45(2):342–351

    Article  PubMed  Google Scholar 

  • Leys SP, Eerkes-Medrano DI (2006) Feeding in a calcareous sponge: particle uptake by pseudopodia. Biol Bull 211(2):157–171

    Article  PubMed  Google Scholar 

  • Leys SP, Mackie GO, Reiswig HM (2007) The biology of glass sponges. Adv Mar Biol 52:1–145

    Article  PubMed  CAS  Google Scholar 

  • Leys SP, Nichols SA, Adams ED (2009) Epithelia and integration in sponges. Integr Comp Biol 49(2):167–177

    Article  PubMed  Google Scholar 

  • Mah JL, Christensen-Dalsgaard KK, Leys SP (2014) Choanoflagellate and choanocyte collar-flagellar systems and the assumption of homology. Evol Dev 16(1):25–37

    Article  PubMed  CAS  Google Scholar 

  • Maldonado M (2002) Phylum porifera. In: Young CM, Sewell MA, Rice ME (eds) Atlas of marine invertebrate larvae. Academic Press, San Diego, pp 21–50

    Google Scholar 

  • Maldonado M (2004) Choanoflagellates, choanocytes, and animal multicellularity. Invertebr Biol 123(1):1–22

    Article  Google Scholar 

  • Maldonado M (2006) The ecology of the sponge larva. Can J Zool 84(2):175–194

    Article  Google Scholar 

  • Manconi R, Pronzato R (1991) Life cycle of Spongilla lacustris (Porifera, Spongillidae): a cue for environment-dependent phenotype. Hydrobiologia 220:155–160

    Article  Google Scholar 

  • Manconi R, Pronzato R (2016) How to survive and persist in temporary freshwater? Adaptive traits of sponges (Porifera: Spongillida): a review. Hydrobiologia 782(1):11–22

    Article  Google Scholar 

  • McDonald JI, McGuinness KA, Hooper JNA (2003) Influence of re-orientation on alignment to flow and tissue production in a Spongia sp (Porifera: Demospongiae: Dictyoceratida). J Exp Mar Biol Ecol 296:13–22

    Article  Google Scholar 

  • Mendola D, van den Boogaart JG, van Leeuwen JL, Wijffels RH (2007) Re-plumbing in a Mediterranean sponge. Biol Lett 3:595–598

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mendola D, de Caralt S, Uriz MJ, van den End F, Van Leeuwen JL, Wijffels RH (2008) Environmental flow regimes for Dysidea avara sponges. Mar Biotechnol (NY) 10:622–630

    Article  CAS  Google Scholar 

  • Merrell AJ, Stanger BZ (2016) Adult cell plasticity in vivo: de-differentiation and transdifferentiation are back in style. Nat Rev Mol Cell Biol 17(7):413–425

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mikhailov KV, Konstantinova AV, Nikitin MA, Troshin PV, Rusin LY, Lyubetsky VA, Panchin YV, Mylnikov AP, Moroz LL, Kumar S, Aleoshin VV (2009) The origin of Metazoa: a transition from temporal to spatial cell differentiation. Bioessays 31(7):758–768

    Article  PubMed  CAS  Google Scholar 

  • Mohri K, Nakatsukasa M, Masuda Y, Agata K, Funayama N (2008) Towards understanding the morphogenesis of siliceous spicules in freshwater sponge: differential expression of spicule-type-specific silicatein genes in Ephydatia fluviatilis. Dev Dyn 237:3024–3039

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi N, Sogabe S, Degnan BM (2014) Evolutionary origin of gastrulation: insights from sponge development. BMC Biol 12:26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Palumbi SR (1984) Tactics of acclimation: morphological changes of sponges in an unpredictable environment. Science 225:1478–1480

    Article  PubMed  CAS  Google Scholar 

  • Paulus W, Weissenfels N (1986) The spermatogenesis of Ephydatia fluviatilis (Porifera). Zoomorphology 106:155–162

    Article  Google Scholar 

  • Peña JF, Alié A, Richter DJ, Wang L, Funayama N, Nichols SA (2016) Conserved expression of vertebrate microvillar gene homologs in choanocytes of freshwater sponges. EvoDevo 7:13

    Article  PubMed  PubMed Central  Google Scholar 

  • Piraino S, Boero F, Aeschbach B, Schmid V (1996) Reversing the life cycle: Medusae transforming into polyps and cell transdifferentiation in Turritopsis nutricula (Cnidaria, Hydrozoa). Biol Bull 190(3):302–312

    Article  PubMed  CAS  Google Scholar 

  • Richter DJ, King N (2013) The genomic and cellular foundations of animal origins. Annu Rev Genet 47:509–537

    Article  PubMed  Google Scholar 

  • Riesgo A, Taylor C, Leys SP (2007) Reproduction in a carnivorous sponge: the significance of the absence of an aquiferous system to the sponge body plan. Evol Dev 9:618–631

    Article  PubMed  Google Scholar 

  • Rivera AS, Ozturk N, Fahey B, Plachetzki DC, Degnan BM, Sancar A, Oakley TH (2012) Blue-light-receptive cryptochrome is expressed in a sponge eye lacking neurons and opsin. J Exp Biol 215(8):1278–1286. https://doi.org/10.1242/jeb.067140

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sancho-Martinez I, Baek SH, Izpisua Belmonte JC (2012) Lineage conversion methodologies meet the reprogramming toolbox. Nat Cell Biol 14(9):892–899

    Article  PubMed  CAS  Google Scholar 

  • Saville-Kent W (1880) A manual of the infusoria: including a description of all known flagellate, ciliate, and tentaculiferous protozoa, British and foreign, and an account of the organization and the affinities of the sponges. David Bogue, London

    Google Scholar 

  • Schmid V, Wydler M, Alder H (1982) Transdifferentiation and regeneration in vitro. Dev Biol 92(2):476–488

    Article  PubMed  CAS  Google Scholar 

  • Sebé-Pedrós A, Degnan BM, Ruiz-Trillo I (2017) The origin of Metazoa: a unicellular perspective. Nat Rev Genet 18:498–512

    Article  PubMed  CAS  Google Scholar 

  • Sethmann I, Wörheide G (2008) Structure and composition of calcareous sponge spicules: a review and comparison to structurally related biominerals. Micron 39(3):209–228

    Article  PubMed  CAS  Google Scholar 

  • Simpson TL (1984) The cell biology of sponges. Springer, New York

    Book  Google Scholar 

  • Sipkema D, van Wielink R, van Lammeren AA, Tramper J, Osinga R, Wijffels RH (2003) Primmorphs from seven marine sponges: formation and structure. J Biotechnol 100(2):127–139

    Article  PubMed  CAS  Google Scholar 

  • Slack JM (2007) Metaplasia and transdifferentiation: from pure biology to the clinic. Nat Rev Mol Cell Biol 8(5):369–378

    Article  PubMed  CAS  Google Scholar 

  • Solana J (2013) Closing the circle of germline and stem cells: the primordial stem cell hypothesis. EvoDevo 4(1):2–16

    Article  PubMed  PubMed Central  Google Scholar 

  • Sugimoto K, Gordon SP, Meyerowitz EM (2011) Regeneration in plants and animals: dedifferentiation, transdifferentiation, or just differentiation? Trends Cell Biol 21(4):212–218

    Article  PubMed  CAS  Google Scholar 

  • Tata PR, Rajagopal J (2016) Cellular plasticity: 1712 to the present day. Curr Opin Cell Biol 43:46–54

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thowfeequ S, Myatt EJ, Tosh D (2007) Transdifferentiation in developmental biology, disease, and in therapy. Dev Dyn 236(12):3208–3217

    Article  PubMed  CAS  Google Scholar 

  • Tuzet O (1973) Éponges calcaires. In: Grassé P-P (ed) Traité de Zoologie Anatomie, Systématique, Biologie Spongiaires. Masson et Cie, Paris, pp 27–132

    Google Scholar 

  • Ueda N, Richards GS, Degnan BM, Kranz A, Adamska M, Croll RP, Degnan SM (2016) An ancient role for nitric oxide in regulating the animal pelagobenthic life cycle: evidence from a marine sponge. Sci Rep 6:37546

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Uriz MJ, Turon X, Becerro MA, Agell G (2003) Siliceous spicules and skeleton frameworks in sponges: origin, diversity, ultrastructural patterns, and biological functions. Microsc Res Tech 62(4):279–299

    Article  PubMed  CAS  Google Scholar 

  • Vacelet J, Boury-Esnault N (1995) Carnivorous sponges. Nature 373:333–335

    Article  CAS  Google Scholar 

  • Voigt O, Adamski M, Sluzek K, Adamska M (2014) Calcareous sponge genomes reveal complex evolution of alpha-carbonic anhydrases and two key biomineralization enzymes. BMC Evol Biol 14:230

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Waddington CH (1957) The strategy of the genes: a discussion of some aspects of theoretical biology. Allen & Unwin, London

    Google Scholar 

  • Weismann A (1892) Das Keimplasma: eine Theorie der Vererbung. Fischer, Jena

    Google Scholar 

  • Whelan NV, Kocot KM, Moroz TP, Mukherjee K, Williams P, Paulay G, Moroz LL, Halanych KM (2017) Ctenophore relationships and their placement as the sister group to all other animals. Nat Ecol Evol 1(11):1737–1746

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilson HV (1907) On some phenomena of coalescence and regeneration in sponges. J Exp Zool 5:245–258

    Article  Google Scholar 

  • Wolff G (1895) Entwicklungsphysiologische Studien. I. Die regeneration der urodelenlinse. Wilhelm Roux Arch Entwickl Mech Org 1:380–390

    Google Scholar 

  • Woodland W (1905) Memoirs: studies in spicule formation: I.—the development and structure of the spicules in sycons: with remarks on the conformation, modes of disposition and evolution of spicules in calcareous sponges generally. Q J Microsc Sci 49:231–282

    Google Scholar 

  • Wulff J (2010) Regeneration of sponges in ecological context: is regeneration an integral part of life history and morphological strategies? Integr Comp Biol 50:494–505

    Article  PubMed  Google Scholar 

  • Zuryn S, Ahier A, Portoso M, White ER, Morin MC, Margueron R, Jarriault S (2014) Sequential histone-modifying activities determine the robustness of transdifferentiation. Science 345(6198):826–829

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Research in my laboratory is currently supported by the Australian Research Council through Future Fellowship (FT160100068) and the Centre of Excellence for Coral Reef Studies (CE140100020) grants. I acknowledge generous past funding from the Sars International Centre for Marine Molecular Biology (Bergen, Norway). I am deeply indebted to past and current members of my laboratories, as well as collaborators and colleagues, for continuous and stimulating discussions on sponge cell biology and evolution of animal body plans. Special thanks to Kathryn Green, Christin Zwafink, and Erika Broberg for the assistance in generating images shown in many of the figures presented in this chapter and to Noriko Funayama and Sacha Ereskovsky for photographs of Ephydatia and Oscarella.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maja Adamska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Adamska, M. (2018). Differentiation and Transdifferentiation of Sponge Cells. In: Kloc, M., Kubiak, J. (eds) Marine Organisms as Model Systems in Biology and Medicine. Results and Problems in Cell Differentiation, vol 65. Springer, Cham. https://doi.org/10.1007/978-3-319-92486-1_12

Download citation

Publish with us

Policies and ethics