Skip to main content

Immunity

  • Chapter
  • First Online:
Lumpy Skin Disease

Abstract

There are many factors that can play a role in the susceptibility of infection to lumpy skin disease virus (LSDV). The interaction between the host’s immune system and the virus determines the outcome. Following natural or experimental infection of cattle with virulent LSDV, virus neutralizing antibodies are elicited. These antibodies are detected starting around 15 days following infection, with the titres of the antibodies increasing over the next 2 weeks and then wane. With capripoxvirus infections, mild infections generate lower antibody responses compared to severe infections (Bowden et al. 2009). Unfortunately, following vaccination with several of the currently available vaccines, in many times only low or undetectable levels of virus neutralizing antibodies are elicited.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Amara RR, Nigam P, Sharma S, Liu J, Bostik V (2004) Long-lived poxvirus immunity, robust CD4 help, and better persistence of CD4 than CD8 T cells. J Virol 78:3811–3816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowden TR, Coupar BE, Babiuk SL, White JR, Boyd V, Duch CJ, Shiell BJ, Ueda N, Parkyn GR, Copps JS, Boyle DB (2009) Detection of antibodies specific for sheeppox and goatpox viruses using recombinant capripoxvirus antigens in an indirect enzyme-linked immunosorbent assay. J Virol Methods 161:19–29

    Article  CAS  PubMed  Google Scholar 

  • Bray M, Wright ME (2003) Progressive vaccinia. Clin Infect Dis 36:766–774

    Article  PubMed  Google Scholar 

  • Chaudhri G, Panchanathan V, Bluethmann H, Karupiah G (2006) Obligatory requirement for antibody in recovery from a primary poxvirus infection. J Virol 80:6339–6344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crotty S, Felgner P, Davies H, Glidewell J, Villarreal L, Ahmed R (2003) Cutting edge: long-term B cell memory in humans after smallpox vaccination. J Immunol 171:4969–4973

    Article  CAS  PubMed  Google Scholar 

  • Edghill-Smith Y, Golding H, Manischewitz J, King LR, Scott D, Bray M, Nalca A, Hooper JW, Whitehouse CA, Schmitz JE, Reimann KA, Franchini G (2005) Smallpox vaccine-induced antibodies are necessary and sufficient for protection against monkeypox virus. Nat Med 11:740–747

    Article  CAS  PubMed  Google Scholar 

  • Galmiche MC, Goenaga J, Wittek R, Rindisbacher L (1999) Neutralizing and protective antibodies directed against vaccinia virus envelope antigens. Virology 254:71–80

    Article  CAS  PubMed  Google Scholar 

  • Gilchuk P, Spencer CT, Conant SB, Hill T, Gray JJ, Niu X, Zheng M, Erickson JJ, Boyd KL, McAfee KJ, Oseroff C, Hadrup SR, Bennink JR, Hildebrand W, Edwards KM, Crowe JE Jr, Williams JV, Buus S, Sette A, Schumacher TN, Link AJ, Joyce S (2013) Discovering naturally processed antigenic determinants that confer protective T cell immunity. J Clin Invest 123:1976–1987

    Article  CAS  PubMed  Google Scholar 

  • Gordon J, Mohandas A, Wilton S, Dales S (1991) A prominent antigenic surface polypeptide involved in the biogenesis and function of the vaccinia virus envelope. Virology 181:671–686

    Article  CAS  PubMed  Google Scholar 

  • Hammarlund E, Lewis MW, Hansen SG, Strelow LI, Nelson JA, Sexton GJ, Hanifin JM, Slifka MK (2003) Duration of antiviral immunity after smallpox vaccination. Nat Med 9:1131–1137

    Article  PubMed  Google Scholar 

  • Hathaway WE, Githens JH, Blackburn WR, Fulginiti V, Kempe CH (1965) Aplastic anemia, histiocytosis and erythrodermia in immunologically deficient children: probable human runt disease. N Engl J Med 273:953–958

    Article  CAS  PubMed  Google Scholar 

  • Heraud JM, Edghill-Smith Y, Ayala V, Kalisz I, Parrino J, Kalyanaraman VS, Manischewitz J, King LR, Hryniewicz A, Trindade CJ, Hassett M, Tsai WP, Venzon D, Nalca A, Vaccari M, Silvera P, Bray M, Graham BS, Golding H, Hooper JW, Franchini G (2006) Subunit recombinant vaccine protects against monkeypox. J Immunol 177:2552–2564

    Article  CAS  PubMed  Google Scholar 

  • Hooper JW, Custer DM, Thompson E (2003) Four-gene-combination DNA vaccine protects mice against a lethal vaccinia virus challenge and elicits appropriate antibody responses in nonhuman primates. Virology 306:181–195

    Article  CAS  PubMed  Google Scholar 

  • Hsiao JC, Chung CS, Chang W (1999) Vaccinia virus envelope D8L protein binds to cell surface chondroitin sulfate and mediates the adsorption of intracellular mature virions to cells. J Virol 73:8750–8761

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kitching RP (1986) Passive protection of sheep against capripoxvirus. Res Vet Sci 41:247–250

    Article  PubMed  CAS  Google Scholar 

  • Moise L, McMurry JA, Buus S, Frey S, Martin WD, De Groot AS (2009) In silico-accelerated identification of conserved and immunogenic variola/vaccinia T-cell epitopes. Vaccine 27:6471–6479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moutaftsi M, Tscharke DC, Vaughan K, Koelle DM, Stern L, Calvo-Calle M, Ennis F, Terajima M, Sutter G, Crotty S, Drexler I, Franchini G, Yewdell JW, Head SR, Blum J, Peters B, Sette A (2010) Uncovering the interplay between CD8, CD4 and antibody responses to complex pathogens. Future Microbiol 5:221–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ngichabe CK, Wamwayi HM, Ndungu EK, Mirangi PK, Bostock CJ, Black DN, Barrett T (2002) Long term immunity in African cattle vaccinated with a recombinant capripox-rinderpest virus vaccine. Epidemiol Infect 128:343–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panchanathan V, Chaudhri G, Karupiah G (2006) Protective immunity against secondary poxvirus infection is dependent on antibody but not on CD4 or CD8 T-cell function. J Virol 80:6333–6338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parker AK, Parker S, Yokoyama WM, Corbett JA, Buller RM (2007) Induction of natural killer cell responses by ectromelia virus controls infection. J Virol 81:4070–4079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perrin LH, Zinkernagel RM, Oldstone MB (1977) Immune response in humans after vaccination with vaccinia virus: generation of a virus-specific cytotoxic activity by human peripheral lymphocytes. J Exp Med 146:949–969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez JF, Janeczko R, Esteban M (1985) Isolation and characterization of neutralizing monoclonal antibodies to vaccinia virus. J Virol 56:482–488

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sette A, Grey H, Oseroff C, Peters B, Moutaftsi M, Crotty S, Assarsson E, Greenbaum J, Kim Y, Kolla R, Tscharke D, Koelle D, Johnson RP, Blum J, Head S, Sidney J (2009) Definition of epitopes and antigens recognized by vaccinia specific immune responses: their conservation in variola virus sequences, and use as a model system to study complex pathogens. Vaccine 27(Suppl 6):G21–G26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss KE (1968) Lumpy skin disease virus. Virol Monogr 3:111–131

    Article  Google Scholar 

  • Wolffe EJ, Vijaya S, Moss B (1995) A myristylated membrane protein encoded by the vaccinia virus L1R open reading frame is the target of potent neutralizing monoclonal antibodies. Virology 211:53–63

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Babiuk, S. (2018). Immunity. In: Lumpy Skin Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-92411-3_12

Download citation

Publish with us

Policies and ethics