Skip to main content

Abscisic Acid Signaling and Biosynthesis: Protein Structures and Molecular Probes

  • Chapter
  • First Online:
Plant Structural Biology: Hormonal Regulations

Abstract

Abscisic acid (ABA) is an apocarotenoid plant hormone that mediates responses to abiotic stress and modulates multiple growth and developmental processes. ABA acts through a negative regulatory signaling module that is present in all land plant genomes sequenced. Here we review ABA’s biosynthesis, perception, and its core signaling network, focusing on the wealth of X-ray crystallographic data for the receptors, phosphatases, and kinases that form the core ABA response module. We unite these structural insights with progress in the development of ABA biosynthesis and signaling modulators and cover both inhibitors of 9-cis-expoycarotenoid dioxygenases (NCEDs) and ABA receptor modulators including the agonist quinabactin and antagonist AS6. Quinabactin preferentially activates dimeric subfamily III ABA receptors and its biological activity has defined pyrabactin resistance 1 (PYR1) and its close relatives as key targets for controlling transpiration. Structural analyses of receptor-ligand complexes have facilitated the design of ABA analogs such as AS6 that antagonize signaling by disrupting receptor-PP2C interactions. Thus, the extensive structural data now available is facilitating the development of chemical and genetic tools to manipulate ABA biosynthesis and signaling and has refined our understanding of these new druggable target sites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrams SR, Rose PA, Cutler AJ, Balsevich JJ, Lei B, Walker-Simmons MK (1997) 8[prime]-methylene Abscisic acid (an effective and persistent analog of Abscisic acid). Plant Physiol 114:89–97

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Anderberg RJ, Walker-Simmons MK (1992) Isolation of a wheat cDNA clone for an abscisic acid-inducible transcript with homology to protein kinases. Proc Natl Acad Sci U S A 89:10183–10187

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Anderson JP, Badruzsaufari E, Schenk PM, Manners JM, Desmond OJ, Ehlert C, Maclean DJ, Ebert PR, Kazan K (2004) Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell 16:3460–3479

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Auldridge ME, McCarty DR, Klee HJ (2006) Plant carotenoid cleavage oxygenases and their apocarotenoid products. Curr Opin Plant Biol 9:315–321

    Article  PubMed  CAS  Google Scholar 

  • Belin C, de Franco P-O, Bourbousse C, Chaignepain S, Schmitter J-M, Vavasseur A, Giraudat J, Barbier-Brygoo H, Thomine S (2006) Identification of features regulating OST1 kinase activity and OST1 function in guard cells. Plant Physiol 141:1316–1327

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Benson CL, Kepka M, Wunschel C, Rajagopalan N, Nelson KM, Christmann A, Abrams SR, Grill E, Loewen MC (2015) Abscisic acid analogs as chemical probes for dissection of abscisic acid responses in Arabidopsis thaliana. Phytochemistry 113:96–107

    Article  PubMed  CAS  Google Scholar 

  • Bhaskara GB, Nguyen TT, Verslues PE (2012) Unique drought resistance functions of the highly ABA-induced clade a protein phosphatase 2Cs. Plant Physiol 160:379–395

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cao M, Liu X, Zhang Y, Xue X, Zhou XE, Melcher K, Gao P, Wang F, Zeng L, Zhao Y, Zhao Y, Deng P, Zhong D, Zhu J-K, Xu HE, Xu Y (2013) An ABA-mimicking ligand that reduces water loss and promotes drought resistance in plants. Cell Res 23:1043–1054

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chiwocha SDS, Cutler AJ, Abrams SR, Ambrose SJ, Yang J, Ross ARS, Kermode AR (2005) The etr1-2 mutation in Arabidopsis thaliana affects the abscisic acid, auxin, cytokinin and gibberellin metabolic pathways during maintenance of seed dormancy, moist-chilling and germination. Plant J 42:35–48

    Article  PubMed  CAS  Google Scholar 

  • Christmann A, Weiler EW, Steudle E, Grill E (2007) A hydraulic signal in root-to-shoot signalling of water shortage. Plant J 52:167–174

    Article  PubMed  CAS  Google Scholar 

  • Cohen P (1989) The structure and regulation of protein phosphatases. Annu Rev Biochem 58:453–508

    Article  PubMed  CAS  Google Scholar 

  • Creelman RA, Mason HS, Bensen RJ, Boyer JS (1990) Water deficit and abscisic acid cause differential inhibition of shoot versus root growth in soybean seedlings analysis of growth, sugar accumulation, and gene expression. Plant Physiology 92(1):205–214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Creelman RA, Bell E, Mullet JE (1992) Involvement of a lipoxygenase-like enzyme in abscisic acid biosynthesis. Plant Physiol 99:1258–1260

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cutler S, Ghassemian M, Bonetta D, Cooney S, McCourt P (1996) A protein farnesyl transferase involved in abscisic acid signal transduction in Arabidopsis. Science 273:1239–1241

    Article  PubMed  CAS  Google Scholar 

  • Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol 61:651–679

    Article  PubMed  CAS  Google Scholar 

  • De Smet I, Signora L, Beeckman T, Inzé D (2003) An abscisic acid-sensitive checkpoint in lateral root development of Arabidopsis. The Plant

    Google Scholar 

  • De Smet I, Zhang H, Inzé D, Beeckman T (2006) A novel role for abscisic acid emerges from underground. Trends Plant Sci 11:434–439

    Article  PubMed  CAS  Google Scholar 

  • Deak KI, Malamy J (2005) Osmotic regulation of root system architecture. Plant J 43:17–28

    Article  PubMed  CAS  Google Scholar 

  • Duan L, Dietrich D, Ng CH, Chan PMY, Bhalerao R, Bennett MJ, Dinneny JR (2013) Endodermal ABA signaling promotes lateral root quiescence during salt stress in Arabidopsis seedlings. Plant Cell 25:324–341

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dupeux F, Santiago J, Betz K, Twycross J, Park S-Y, Rodriguez L, Gonzalez-Guzman M, Jensen MR, Krasnogor N, Blackledge M, Holdsworth M, Cutler SR, Rodriguez PL, Márquez JA (2011a) A thermodynamic switch modulates abscisic acid receptor sensitivity. EMBO J 30:4171–4184

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dupeux F, Antoni R, Betz K, Santiago J, Gonzalez-Guzman M, Rodriguez L, Rubio S, Park S-Y, Cutler SR, Rodriguez PL, Márquez JA (2011b) Modulation of abscisic acid signaling in vivo by an engineered receptor-insensitive protein phosphatase type 2C allele. Plant Physiol 156:106–116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Endo A, Okamoto M, Koshiba T (2014) ABA biosynthetic and catabolic pathways. In: Zhang D-P (ed) Abscisic acid: metabolism, transport and signaling. Springer, Dordrecht, pp 21–45

    Google Scholar 

  • Fedoroff NV (2002) Cross-talk in abscisic acid signaling. Sci STKE 2002:re10

    PubMed  Google Scholar 

  • Fuchs S, Tischer SV, Wunschel C, Christmann A, Grill E (2014) Abscisic acid sensor RCAR7/PYL13, specific regulator of protein phosphatase coreceptors. Proc Natl Acad Sci U S A 111:5741–5746

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fujii H, Zhu J-K (2009) Arabidopsis mutant deficient in 3 abscisic acid-activated protein kinases reveals critical roles in growth, reproduction, and stress. Proc Natl Acad Sci U S A 106:8380–8385

    Article  PubMed  PubMed Central  Google Scholar 

  • Fujii H, Chinnusamy V, Rodrigues A, Rubio S, Antoni R, Park SY, Cutler SR, Sheen J, Rodriguez PL, Zhu JK (2009) In vitro reconstitution of an abscisic acid signalling pathway. Nature 462:660–664

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fujita Y, Nakashima K, Yoshida T, Katagiri T, Kidokoro S, Kanamori N, Umezawa T, Fujita M, Maruyama K, Ishiyama K, Kobayashi M, Nakasone S, Yamada K, Ito T, Shinozaki K, Yamaguchi-Shinozaki K (2009) Three SnRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis. Plant Cell Physiol 50:2123–2132

    Article  PubMed  CAS  Google Scholar 

  • Gao S, Gao J, Zhu X, Song Y, Li Z, Ren G, Zhou X, Kuai B (2016) ABF2, ABF3, and ABF4 promote ABA-mediated chlorophyll degradation and leaf senescence by transcriptional activation of chlorophyll catabolic genes and senescence-associated genes in Arabidopsis. Mol Plant 9:1272–1285

    Article  PubMed  CAS  Google Scholar 

  • Geng Y, Wu R, Wee CW, Xie F, Wei X, Chan PMY, Tham C, Duan L, Dinneny JR (2013) A spatio-temporal understanding of growth regulation during the salt stress response in Arabidopsis. Plant Cell 25:2132–2154

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gonzalez-Guzman M, Pizzio GA, Antoni R, Vera-Sirera F, Merilo E, Bassel GW, Fernández MA, Holdsworth MJ, Perez-Amador MA, Kollist H, Rodriguez PL (2012) Arabidopsis PYR/PYL/RCAR receptors play a major role in quantitative regulation of stomatal aperture and transcriptional response to abscisic acid. https://doi.org/10.1105/tpc.112.098574

  • Gonzalez-Guzman M, Rodriguez L, Lorenzo-Orts L, Pons C, Sarrion-Perdigones A, Fernandez MA, Peirats-Llobet M, Forment J, Moreno-Alvero M, Cutler SR, Albert A, Granell A, Rodriguez PL (2014) Tomato PYR/PYL/RCAR abscisic acid receptors show high expression in root, differential sensitivity to the abscisic acid agonist quinabactin, and the capability to enhance plant drought resistance. J Exp Bot 65(15):4451–4464

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gosti F, Beaudoin N, Serizet C, Webb AA, Vartanian N, Giraudat J (1999) ABI1 protein phosphatase 2C is a negative regulator of abscisic acid signaling. Plant Cell 11:1897–1910

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gusta LV, Trischuk R, Weiser CJ (2005) Plant cold acclimation: the role of Abscisic acid. J Plant Growth Regul 24:308–318

    Article  CAS  Google Scholar 

  • Han S-Y, Inoue H, Terada T, Kamoda S, Saburi Y, Sekimata K, Saito T, Kobayashi M, Shinozaki K, Yoshida S, Asami T (2002) Design and synthesis of lignostilbene-α,β-dioxygenase inhibitors. Bioorg Med Chem Lett 12:1139–1142

    Article  PubMed  CAS  Google Scholar 

  • Han S-Y, Inoue H, Terada T, Kamoda S, Saburi Y, Sekimata K, Saito T, Kobayashi M, Shinozaki K, Yoshida S, Asami T (2003) N -Benzylideneaniline and N -Benzylaniline are Potent Inhibitors of Lignostilbene-α,β-dioxygenase, a Key Enzyme in Oxidative Cleavage of the Central Double Bond of Lignostilbene. J Enzyme Inhib Med Chem 18:279–283

    Article  PubMed  CAS  Google Scholar 

  • Han S-Y, Kitahata N, Sekimata K, Saito T, Kobayashi M, Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K, Yoshida S, Asami T (2004) A novel inhibitor of 9-cis-epoxycarotenoid dioxygenase in abscisic acid biosynthesis in higher plants. Plant Physiol 135:1574–1582

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hao Q, Yin P, Yan C, Yuan X, Li W, Zhang Z, Liu L, Wang J, Yan N (2010) Functional mechanism of the abscisic acid agonist pyrabactin. J Biol Chem 285:28946–28952

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hao Q, Yin P, Li W, Wang L, Yan C, Lin Z, Wu JZ, Wang J, Yan SF, Yan N (2011) The molecular basis of ABA-independent inhibition of PP2Cs by a subclass of PYL proteins. Mol Cell 42:662–672

    Article  PubMed  CAS  Google Scholar 

  • Hardie DG (2007) AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol 8:774–785

    Article  PubMed  CAS  Google Scholar 

  • Harrison PJ, Bugg TDH (2014) Enzymology of the carotenoid cleavage dioxygenases: reaction mechanisms, inhibition and biochemical roles. Arch Biochem Biophys 544:105–111

    Article  PubMed  CAS  Google Scholar 

  • Hartung W (2010) The evolution of abscisic acid (ABA) and ABA function in lower plants, fungi and lichen. Funct Plant Biol 37:806–812

    Article  CAS  Google Scholar 

  • Hauser F, Waadt R, Schroeder JI (2011) Evolution of abscisic acid synthesis and signaling mechanisms. Curr Biol 21:R346–R355

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • He Y, Hao Q, Li W, Yan C, Yan N, Yin P (2014) Identification and characterization of ABA receptors in Oryza sativa. PLoS One 9:e95246

    Article  PubMed  PubMed Central  Google Scholar 

  • Hedbacker K, Carlson M (2008) SNF1/AMPK pathways in yeast. Front Biosci 13:2408–2420

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Helander JDM, Vaidya AS, Cutler SR (2016) Chemical manipulation of plant water use. Bioorg Med Chem 24:493–500

    Article  PubMed  CAS  Google Scholar 

  • Hilhorst HWM, Karssen CM (1992) Seed dormancy and germination: the role of abscisic acid and gibberellins and the importance of hormone mutants. Plant Growth Regul 11:225–238

    Article  CAS  Google Scholar 

  • Hrabak EM, Chan CWM, Gribskov M, Harper JF, Choi JH, Halford N, Kudla J, Luan S, Nimmo HG, Sussman MR, Thomas M, Walker-Simmons K, Zhu J-K, Harmon AC (2003) The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol 132:666–680

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ito T, Kondoh Y, Yoshida K, Umezawa T, Shimizu T, Shinozaki K, Osada H (2015) Novel Abscisic acid antagonists identified with chemical Array screening. Chembiochem 16:2471–2478

    Article  PubMed  CAS  Google Scholar 

  • Iuchi S, Kobayashi M, Taji T, Naramoto M, Seki M, Kato T, Tabata S, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K (2001) Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J 27:325–333

    Article  PubMed  CAS  Google Scholar 

  • Iyer LM, Koonin EV, Aravind L (2001) Adaptations of the helix-grip fold for ligand binding and catalysis in the START domain superfamily. Proteins 43:134–144

    Article  PubMed  CAS  Google Scholar 

  • Jones AM, Danielson JA, Manojkumar SN, Lanquar V, Grossmann G, Frommer WB (2014) Abscisic acid dynamics in roots detected with genetically encoded FRET sensors. elife 3:e01741

    Article  PubMed  PubMed Central  Google Scholar 

  • Kerk D, Bulgrien J, Smith DW, Barsam B, Veretnik S, Gribskov M (2002) The complement of protein phosphatase catalytic subunits encoded in the genome of Arabidopsis. Plant Physiol 129:908–925

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khandelwal A, Cho SH, Marella H, Sakata Y, Perroud P-F, Pan A, Quatrano RS (2010) Role of ABA and ABI3 in desiccation tolerance. Science 327:546

    Article  PubMed  CAS  Google Scholar 

  • Kitahata N, Han S-Y, Noji N, Saito T, Kobayashi M, Nakano T, Kuchitsu K, Shinozaki K, Yoshida S, Matsumoto S, Tsujimoto M, Asami T (2006) A 9-cis-epoxycarotenoid dioxygenase inhibitor for use in the elucidation of abscisic acid action mechanisms. Bioorg Med Chem 14:5555–5561

    Article  PubMed  CAS  Google Scholar 

  • Koornneef M, Reuling G, Karssen CM (1984) The isolation and characterization of abscisic acid-insensitive mutants of Arabidopsis thaliana. Physiol Plant 61:377–383

    Article  CAS  Google Scholar 

  • Kulik A, Wawer I, Krzywińska E, Bucholc M, Dobrowolska G (2011) SnRK2 protein kinases—key regulators of plant response to abiotic stresses. OMICS 15:859–872

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kushiro T, Okamoto M, Nakabayashi K, Yamagishi K, Kitamura S, Asami T, Hirai N, Koshiba T, Kamiya Y, Nambara E (2004) The Arabidopsis cytochrome P450 CYP707A encodes ABA 8′-hydroxylases: key enzymes in ABA catabolism. EMBO J 23:1647–1656

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leube MP, Grill E, Amrhein N (1998) ABI1 of Arabidopsis is a protein serine/threonine phosphatase highly regulated by the proton and magnesium ion concentration. FEBS Lett 424:100–104

    Article  PubMed  CAS  Google Scholar 

  • Leung J, Bouvier-Durand M, Morris PC, Guerrier D, Chefdor F, Giraudat J (1994) Arabidopsis ABA response gene ABI1: features of a calcium-modulated protein phosphatase. Science 264:1448–1452

    Article  PubMed  CAS  Google Scholar 

  • Leung J, Merlot S, Giraudat J (1997) The Arabidopsis ABSCISIC ACID-INSENSITIVE2 (ABI2) and ABI1 genes encode homologous protein phosphatases 2C involved in abscisic acid signal transduction. Plant Cell 9:759–771

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li J, Assmann SM (1996) An Abscisic acid-activated and calcium-independent protein kinase from guard cells of fava bean. Plant Cell 8:2359–2368

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li J, Wang XQ, Watson MB, Assmann SM (2000) Regulation of abscisic acid-induced stomatal closure and anion channels by guard cell AAPK kinase. Science 287:300–303

    Article  PubMed  CAS  Google Scholar 

  • Li W, Wang L, Sheng X, Yan C, Zhou R, Hang J, Yin P, Yan N (2013) Molecular basis for the selective and ABA-independent inhibition of PP2CA by PYL13. Cell Res 23:1369–1379

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li J, Shi C, Sun D, He Y, Lai C, Lv P, Xiong Y, Zhang L, Wu F, Tian C (2015) The HAB1 PP2C is inhibited by ABA-dependent PYL10 interaction. Sci Rep 5:10890

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liang C, Wang Y, Zhu Y, Tang J, Hu B, Liu L, Ou S, Wu H, Sun X, Chu J, Chu C (2014) OsNAP connects abscisic acid and leaf senescence by fine-tuning abscisic acid biosynthesis and directly targeting senescence-associated genes in rice. Proc Natl Acad Sci U S A 111:10013–10018

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lind C, Dreyer I, López-Sanjurjo EJ, von Meyer K, Ishizaki K, Kohchi T, Lang D, Zhao Y, Kreuzer I, Al-Rasheid KAS, Ronne H, Reski R, Zhu J-K, Geiger D, Hedrich R (2015) Stomatal guard cells co-opted an ancient ABA-dependent desiccation survival system to regulate stomatal closure. Curr Biol. https://doi.org/10.1016/j.cub.2015.01.067

  • Littler DR, Walker JR, Davis T, Wybenga-Groot LE, Finerty PJ Jr, Newman E, Mackenzie F, Dhe-Paganon S (2010) A conserved mechanism of autoinhibition for the AMPK kinase domain: ATP-binding site and catalytic loop refolding as a means of regulation. Acta Crystallogr Sect F Struct Biol Cryst Commun 66:143–151

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Louis-Flamberg P, Krupinski-Olsen R, Shorter AL, Kemal C (1988) Reductive inhibition of soybean Lipoxygenase-1 by NDGA a possible mechanism for regulation of Lipoxygenase Activitya. Ann N Y Acad Sci 524:382–384

    Article  Google Scholar 

  • Lozano-Juste J, Cutler SR (2014) Plant genome engineering in full bloom. Trends Plant Sci 19:284–287

    Article  PubMed  CAS  Google Scholar 

  • Luan S (2003) Protein phosphatases in plants. Annu Rev Plant Biol 54:63–92

    Article  PubMed  CAS  Google Scholar 

  • Lumba S, Toh S, Handfield L-F, Swan M, Liu R, Youn J-Y, Cutler SR, Subramaniam R, Provart N, Moses A, Desveaux D, McCourt P (2014) A mesoscale abscisic acid hormone interactome reveals a dynamic signaling landscape in Arabidopsis. Dev Cell 29:360–372

    Article  PubMed  CAS  Google Scholar 

  • Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E (2009a) Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324:1064

    PubMed  CAS  Google Scholar 

  • Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E (2009b) Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324:1064

    PubMed  CAS  Google Scholar 

  • Mayak S, Halevy AH (1972) Interrelationships of ethylene and abscisic acid in the control of rose petal senescence. Plant Physiol 50:341–346

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McAdam SAM, Brodribb TJ, Banks JA, Hedrich R, Atallah NM, Cai C, Geringer MA, Lind C, Nichols DS, Stachowski K, Geiger D, Sussmilch FC (2016) Abscisic acid controlled sex before transpiration in vascular plants. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.1606614113

  • McAinsh MR, Brownlee C, Hetherington AM et al (1990) Abscisic acid-induced elevation of guard cell cytosolic Ca2+ precedes stomatal closure. Nature 343:186–188

    Article  CAS  Google Scholar 

  • Melcher K, Ng L-M, Zhou XE, Soon F-F, Xu Y, Suino-Powell KM, Park S-Y, Weiner JJ, Fujii H, Chinnusamy V, Kovach A, Li J, Wang Y, Li J, Peterson FC, Jensen DR, Yong E-L, Volkman BF, Cutler SR, Zhu J-K, Xu HE (2009) A gate-latch-lock mechanism for hormone signalling by abscisic acid receptors. Nature 462:602–608

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Melcher K, Xu Y, Ng L-M, Zhou XE, Soon F-F, Chinnusamy V, Suino-Powell KM, Kovach A, Tham FS, Cutler SR, Li J, Yong E-L, Zhu J-K, Xu HE (2010) Identification and mechanism of ABA receptor antagonism. Nat Struct Mol Biol 17:1102–1108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Melotto M, Underwood W, Koczan J, Nomura K, He SY (2006) Plant stomata function in innate immunity against bacterial invasion. Cell 126:969–980

    Article  PubMed  CAS  Google Scholar 

  • Menges M, Hennig L, Gruissem W, Murray JAH (2002) Cell cycle-regulated gene expression in Arabidopsis. J Biol Chem 277:41987–42002

    Article  PubMed  CAS  Google Scholar 

  • Messing SAJ, Gabelli SB, Echeverria I, Vogel JT, Guan JC, Tan BC, Klee HJ, McCarty DR, Mario Amzel L (2010) Structural insights into maize viviparous14, a key enzyme in the biosynthesis of the phytohormone abscisic acid. https://doi.org/10.1105/tpc.110.074815

  • Meyer K, Leube MP, Grill E (1994) A protein phosphatase 2C involved in ABA signal transduction in Arabidopsis thaliana. Science 264:1452–1455

    Article  PubMed  CAS  Google Scholar 

  • Milborrow BV (1974) The chemistry and physiology of Abscisic acid. Annu Rev Plant Physiol 25:259–307

    Article  CAS  Google Scholar 

  • Miyazono K-I, Miyakawa T, Sawano Y, Kubota K, Kang H-J, Asano A, Miyauchi Y, Takahashi M, Zhi Y, Fujita Y, Yoshida T, Kodaira K-S, Yamaguchi-Shinozaki K, Tanokura M (2009) Structural basis of abscisic acid signalling. Nature 462:609–614

    Article  PubMed  CAS  Google Scholar 

  • Mosquna A, Peterson FC, Park S-Y, Lozano-Juste J, Volkman BF, Cutler SR (2011) Potent and selective activation of abscisic acid receptors in vivo by mutational stabilization of their agonist-bound conformation. Proc Natl Acad Sci U S A 108:20838–20843

    Article  PubMed  PubMed Central  Google Scholar 

  • Mustilli A-C, Merlot S, Vavasseur A, Fenzi F, Giraudat J (2002) Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell 14:3089–3099

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nakagawa M, Kagiyama M, Shibata N, Hirano Y, Hakoshima T (2014) Mechanism of high-affinity abscisic acid binding to PYL9/RCAR1. Genes Cells 19:386–404

    Article  PubMed  CAS  Google Scholar 

  • Nakashima K, Fujita Y, Kanamori N, Katagiri T, Umezawa T, Kidokoro S, Maruyama K, Yoshida T, Ishiyama K, Kobayashi M, Shinozaki K, Yamaguchi-Shinozaki K (2009) Three Arabidopsis SnRK2 protein kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, involved in ABA signaling are essential for the control of seed development and dormancy. Plant Cell Physiol 50:1345–1363

    Article  PubMed  CAS  Google Scholar 

  • Nambara E, Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol 56:165–185

    Article  PubMed  CAS  Google Scholar 

  • Ng L-M, Soon F-F, Zhou XE, West GM, Kovach A, Suino-Powell KM, Chalmers MJ, Li J, Yong E-L, Zhu J-K, Griffin PR, Melcher K, Xu HE (2011) Structural basis for basal activity and autoactivation of abscisic acid (ABA) signaling SnRK2 kinases. Proc Natl Acad Sci U S A 108:21259–21264

    Article  PubMed  PubMed Central  Google Scholar 

  • Nishimura N, Yoshida T, Kitahata N, Asami T, Shinozaki K, Hirayama T (2007) ABA-hypersensitive Germination1 encodes a protein phosphatase 2C, an essential component of abscisic acid signaling in Arabidopsis seed. Plant J 50:935–949

    Article  PubMed  CAS  Google Scholar 

  • Nishimura N, Hitomi K, Arvai AS, Rambo RP, Hitomi C, Cutler SR, Schroeder JI, Getzoff ED (2009) Structural mechanism of abscisic acid binding and signaling by dimeric PYR1. Science 326:1373–1379

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nyangulu JM, Nelson KM, Rose PA, Gai Y, Loewen M, Lougheed B, Wilson Quail J, Cutler AJ, Abrams SR (2006) Synthesis and biological activity of tetralone abscisic acid analogues. Org Biomol Chem 4:1400–1412

    Article  PubMed  CAS  Google Scholar 

  • Ofek P, Ben-Meir D, Kariv-Inbal Z, Oren M, Lavi S (2003) Cell cycle regulation and p53 activation by protein phosphatase 2Cα. J Biol Chem 278:14299–14305

    Article  PubMed  CAS  Google Scholar 

  • Okamoto M, Peterson FC, Defries A, Park S-Y, Endo A, Nambara E, Volkman BF, Cutler SR (2013) Activation of dimeric ABA receptors elicits guard cell closure, ABA-regulated gene expression, and drought tolerance. Proc Natl Acad Sci U S A 110:12132–12137

    Article  PubMed  PubMed Central  Google Scholar 

  • Park S-Y, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Chow T-FF, Alfred SE, Bonetta D, Finkelstein R, Provart NJ, Desveaux D, Rodriguez PL, McCourt P, Zhu J-K, Schroeder JI, Volkman BF, Cutler SR (2009) Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324:1068–1071

    PubMed  PubMed Central  CAS  Google Scholar 

  • Park S-Y, Peterson FC, Mosquna A, Yao J, Volkman BF, Cutler SR (2015) Agrochemical control of plant water use using engineered abscisic acid receptors. Nature 520:545–548

    Article  PubMed  CAS  Google Scholar 

  • Pearce LR, Komander D, Alessi DR (2010) The nuts and bolts of AGC protein kinases. Nat Rev Mol Cell Biol 11:9–22

    Article  PubMed  CAS  Google Scholar 

  • Penfield S, Gilday AD, Halliday KJ, Graham IA (2006) DELLA-mediated cotyledon expansion breaks coat-imposed seed dormancy. Curr Biol 16:2366–2370

    Article  PubMed  CAS  Google Scholar 

  • Peterson FC, Burgie ES, Park S-Y, Jensen DR, Weiner JJ, Bingman CA, Chang C-EA, Cutler SR, Phillips GN Jr, Volkman BF (2010) Structural basis for selective activation of ABA receptors. Nat Struct Mol Biol 17:1109–1113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Provart NJ, Alonso J, Assmann SM, Bergmann D, Brady SM, Brkljacic J, Browse J, Chapple C, Colot V, Cutler S, Dangl J, Ehrhardt D, Friesner JD, Frommer WB, Grotewold E, Meyerowitz E, Nemhauser J, Nordborg M, Pikaard C, Shanklin J, Somerville C, Stitt M, Torii KU, Waese J, Wagner D, McCourt P (2015) 50 years of Arabidopsis research: highlights and future directions. New Phytol. https://doi.org/10.1111/nph.13687

  • Qin X, Zeevaart JA (1999) The 9-cis-epoxycarotenoid cleavage reaction is the key regulatory step of abscisic acid biosynthesis in water-stressed bean. Proc Natl Acad Sci U S A 96:15354–15361

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Raghavendra AS, Gonugunta VK, Christmann A, Grill E (2010) ABA perception and signalling. Trends Plant Sci 15:395–401

    Article  PubMed  CAS  Google Scholar 

  • Rajagopalan N, Nelson KM, Douglas AF, Jheengut V, Alarcon IQ, McKenna SA, Surpin M, Loewen MC, Abrams SR (2016) Abscisic acid analogues that act as universal or selective antagonists of Phytohormone receptors. Biochemistry 55:5155–5164

    Article  PubMed  CAS  Google Scholar 

  • Reinoso H, Travaglia C, Bottini R (2011) ABA Increased Soybean Yield by Enhancing Production of Carbohydrates and Their Allocation in Seed. Soybean–Biochemistry, Chemistry and Physiology InTech, Rijeka, pp 577–598

    Google Scholar 

  • Robaglia C, Thomas M, Meyer C (2012) Sensing nutrient and energy status by SnRK1 and TOR kinases. Curr Opin Plant Biol 15:301–307

    Article  PubMed  CAS  Google Scholar 

  • Robert N, Merlot S, N’Guyen V, Boisson-Dernier A, Schroeder JI (2006) A hypermorphic mutation in the protein phosphatase 2C HAB1 strongly affects ABA signaling in Arabidopsis. FEBS Lett 580:4691–4696

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez PL, Leube MP, Grill E (1998a) Molecular cloning in Arabidopsis thaliana of a new protein phosphatase 2C (PP2C) with homology to ABI1 and ABI2. Plant Mol Biol 38:879–883

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez PL, Benning G, Grill E (1998b) ABI2, a second protein phosphatase 2C involved in abscisic acid signal transduction in Arabidopsis. FEBS Lett 421:185–190

    Article  PubMed  CAS  Google Scholar 

  • Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 57:675–709

    Article  PubMed  CAS  Google Scholar 

  • Rubio S, Rodrigues A, Saez A, Dizon MB, Galle A, Kim T-H, Santiago J, Flexas J, Schroeder JI, Rodriguez PL (2009) Triple loss of function of protein phosphatases type 2C leads to partial constitutive response to endogenous abscisic acid. Plant Physiol 150:1345–1355

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saab IN, Sharp RE, Pritchard J, Voetberg GS (1990) Increased endogenous abscisic acid maintains primary root growth and inhibits shoot growth of maize seedlings at low water potentials. Plant Physiol 93:1329–1336

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saez A, Apostolova N, Gonzalez-Guzman M, Gonzalez-Garcia MP, Nicolas C, Lorenzo O, Rodriguez PL (2004) Gain-of-function and loss-of-function phenotypes of the protein phosphatase 2C HAB1 reveal its role as a negative regulator of abscisic acid signalling. Plant J 37:354–369

    Article  PubMed  CAS  Google Scholar 

  • Santiago J, Rodrigues A, Saez A, Rubio S, Antoni R, Dupeux F, Park S-Y, Márquez JA, Cutler SR, Rodriguez PL (2009a) Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade a PP2Cs. Plant J 60:575–588

    Article  PubMed  CAS  Google Scholar 

  • Santiago J, Dupeux F, Round A, Antoni R, Park S-Y, Jamin M, Cutler SR, Rodriguez PL, Márquez JA (2009b) The abscisic acid receptor PYR1 in complex with abscisic acid. Nature 462:665–668

    Article  PubMed  CAS  Google Scholar 

  • Schmidt H, Kurtzer R, Eisenreich W, Schwab W (2006) The Carotenase AtCCD1 from Arabidopsis thaliana is a Dioxygenase. J Biol Chem 281:9845–9851

    Article  PubMed  CAS  Google Scholar 

  • Schwartz SH, Zeevaart JAD (2010) Abscisic acid biosynthesis and metabolism. In: Davies PJ (ed) Plant hormones. Springer, Dordrecht, pp 137–155

    Chapter  Google Scholar 

  • Schwartz SH, Tan BC, Gage DA, Zeevaart JAD, McCarty DR (1997) Specific oxidative cleavage of carotenoids by VP14 of maize. Science 276:1872–1874

    Article  PubMed  CAS  Google Scholar 

  • Schweighofer A, Hirt H, Meskiene I (2004) Plant PP2C phosphatases: emerging functions in stress signaling. Trends Plant Sci 9:236–243

    Article  PubMed  CAS  Google Scholar 

  • Seo M (2014) ABA transmembrane transport and transporters. In: Zhang D-P (ed) Abscisic acid: metabolism, transport and signaling. Springer, Dordrecht, pp 47–59

    Google Scholar 

  • Sharp RE, Poroyko V, Hejlek LG, Spollen WG, Springer GK, Bohnert HJ, Nguyen HT (2004) Root growth maintenance during water deficits: physiology to functional genomics. J Exp Bot 55:2343–2351

    Article  PubMed  CAS  Google Scholar 

  • Shimizu T, Rådmark O, Samuelsson B (1984) Enzyme with dual lipoxygenase activities catalyzes leukotriene A4 synthesis from arachidonic acid. Proc Natl Acad Sci U S A 81:689–693

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Soon F-F, Ng L-M, Zhou XE, West GM, Kovach A, Tan MHE, Suino-Powell KM, He Y, Xu Y, Chalmers MJ, Brunzelle JS, Zhang H, Yang H, Jiang H, Li J, Yong E-L, Cutler S, Zhu J-K, Griffin PR, Melcher K, Xu HE (2012) Molecular mimicry regulates ABA signaling by SnRK2 kinases and PP2C phosphatases. Science 335:85–88

    Article  PubMed  CAS  Google Scholar 

  • Sussmilch FC, Brodribb TJ, McAdam SAM (2017) What are the evolutionary origins of stomatal responses to abscisic acid in land plants? J Integr Plant Biol 59:240–260

    Article  PubMed  CAS  Google Scholar 

  • Takahashi S, Oritani T, Yamashita K (1986) Synthesis and biological activities of (±)-Deoxy-abscisic acid isomers. Agric Biol Chem 50:3205–3206

    CAS  Google Scholar 

  • Takeuchi J, Okamoto M, Akiyama T, Muto T, Yajima S, Sue M, Seo M, Kanno Y, Kamo T, Endo A, Nambara E, Hirai N, Ohnishi T, Cutler SR, Todoroki Y (2014) Designed abscisic acid analogs as antagonists of PYL-PP2C receptor interactions. Nat Chem Biol 10:477–482

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi J, Ohnishi T, Okamoto M, Todoroki Y (2015a) The selectivity of 6-nor-ABA and 7′-nor-ABA for abscisic acid receptor subtypes. Bioorg Med Chem Lett 25:3507–3510

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi J, Ohnishi T, Okamoto M, Todoroki Y (2015b) Conformationally restricted 3′-modified ABA analogs for controlling ABA receptors. Org Biomol Chem 13:4278–4288

    Article  PubMed  CAS  Google Scholar 

  • Tan B-C, Joseph LM, Deng W-T, Liu L, Li Q-B, Cline K, McCarty DR (2003) Molecular characterization of the Arabidopsis 9-cis epoxycarotenoid dioxygenase gene family. Plant J 35:44–56

    Article  PubMed  CAS  Google Scholar 

  • Todoroki Y, Hirai N, Koshimizu K (1995) 8′,8′-Difluoro- and 8′,8′,8′-trifluoroabscisic acids as highly potent, long-lasting analogues of abscisic acid. Phytochemistry 38:561–568

    Article  CAS  Google Scholar 

  • Todoroki Y, Tanaka T, Kisamori M, Hirai N (2001) 3′-Azidoabscisic acid as a photoaffinity reagent for abscisic acid binding proteins. Bioorg Med Chem Lett 11:2381–2384

    Article  PubMed  CAS  Google Scholar 

  • Ton J, Flors V, Mauch-Mani B (2009) The multifaceted role of ABA in disease resistance. Trends Plant Sci 14:310–317

    Article  PubMed  CAS  Google Scholar 

  • Travaglia C, Reinoso H, Cohen A, Luna C, Tommasino E, Castillo C, Bottini R (2010) Exogenous ABA increases yield in field-grown wheat with moderate water restriction. J Plant Growth Regul 29:366–374

    Article  CAS  Google Scholar 

  • Umezawa T, Nakashima K, Miyakawa T, Kuromori T, Tanokura M, Shinozaki K, Yamaguchi-Shinozaki K (2010a) Molecular basis of the core regulatory network in ABA responses: sensing, signaling and transport. Plant Cell Physiol 51:1821–1839

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Umezawa T, Nakashima K, Miyakawa T, Kuromori T, Tanokura M, Shinozaki K, Yamaguchi-Shinozaki K (2010b) Molecular basis of the core regulatory network in ABA responses: sensing, signaling and transport. Plant Cell Physiol 51:1821–1839

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Overtveldt M, TSA H, Verstraeten I, Geelen D, Stevens CV (2015) Phosphonamide pyrabactin analogues as abscisic acid agonists. Org Biomol Chem 13:5260–5264

    Article  PubMed  CAS  Google Scholar 

  • Waadt R, Hitomi K, Nishimura N, Hitomi C, Adams SR, Getzoff ED, Schroeder JI (2014) FRET-based reporters for the direct visualization of abscisic acid concentration changes and distribution in Arabidopsis. elife 3:e01739

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Ying J, Kuzma M, Chalifoux M, Sample A, McArthur C, Uchacz T, Sarvas C, Wan J, Dennis DT, McCourt P, Huang Y (2005) Molecular tailoring of farnesylation for plant drought tolerance and yield protection. Plant J 43:413–424

    Article  PubMed  CAS  Google Scholar 

  • Wang P, Xue L, Batelli G, Lee S, Hou Y-J, Van Oosten MJ, Zhang H, Tao WA, Zhu J-K (2013) Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action. Proc Natl Acad Sci U S A 110:11205–11210

    Article  PubMed  PubMed Central  Google Scholar 

  • Watts S, Rodriguez JL, Evans SE, Davies WJ (1981) Root and shoot growth of plants treated with Abscisic acid. Ann Bot 47:595–602

    Article  CAS  Google Scholar 

  • Weiner JJ, Peterson FC, Volkman BF, Cutler SR (2010) Structural and functional insights into core ABA signaling. Curr Opin Plant Biol 13:495–502

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weng J-K, Ye M, Li B, Noel JP (2016) Co-evolution of hormone metabolism and signaling networks expands plant adaptive plasticity. Cell 166:881–893

    Article  PubMed  CAS  Google Scholar 

  • Wenjian L, Xiaoqiang H, Yumei X, Jinlong F, Yuanzhi Z, Huizhe L, Mingan W, Zhaohai Q (2013) Synthesis, photostability and bioactivity of 2,3-cyclopropanated abscisic acid. Phytochemistry 96:72–80

    Article  PubMed  CAS  Google Scholar 

  • Whitman S, Gezginci M, Timmermann BN, Holman TR (2002) Structure−activity relationship studies of Nordihydroguaiaretic acid inhibitors toward soybean, 12-human, and 15-human Lipoxygenase. J Med Chem 45:2659–2661

    Article  PubMed  CAS  Google Scholar 

  • Xu Z-J, Nakajima M, Suzuki Y, Yamaguchi I (2002) Cloning and characterization of the abscisic acid-specific glucosyltransferase gene from adzuki bean seedlings. Plant Physiol 129:1285–1295

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang Y, Costa A, Leonhardt N, Siegel RS, Schroeder JI (2008) Isolation of a strong Arabidopsis guard cell promoter and its potential as a research tool. Plant Methods 4:6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang J, Worley E, Udvardi M (2014) A NAP-AAO3 regulatory module promotes chlorophyll degradation via ABA biosynthesis in Arabidopsis leaves. Plant Cell. https://doi.org/10.1105/tpc.114.133769

  • Yin P, Fan H, Hao Q, Yuan X, Wu D, Pang Y, Yan C, Li W, Wang J, Yan N (2009) Structural insights into the mechanism of abscisic acid signaling by PYL proteins. Nat Struct Mol Biol 16:1230–1236

    Article  PubMed  CAS  Google Scholar 

  • Yoshida T, Nishimura N, Kitahata N, Kuromori T, Ito T, Asami T, Shinozaki K, Hirayama T (2006a) ABA-hypersensitive germination3 encodes a protein phosphatase 2C (AtPP2CA) that strongly regulates abscisic acid signaling during germination among Arabidopsis protein phosphatase 2Cs. Plant Physiol 140:115–126

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yoshida R, Umezawa T, Mizoguchi T, Takahashi S, Takahashi F, Shinozaki K (2006b) The regulatory domain of SRK2E/OST1/SnRK2.6 interacts with ABI1 and integrates abscisic acid (ABA) and osmotic stress signals controlling stomatal closure in Arabidopsis. J Biol Chem 281:5310–5318

    Article  PubMed  CAS  Google Scholar 

  • Yoshida R, Umezawa T, Mizoguchi T, Takahashi S, Takahashi F, Shinozaki K (2006c) The regulatory domain of SRK2E/OST1/SnRK2. 6 interacts with ABI1 and integrates abscisic acid (ABA) and osmotic stress signals controlling stomatal closure in Arabidopsis. J Biol Chem 281:5310–5318

    Article  PubMed  CAS  Google Scholar 

  • Yuan X, Yin P, Hao Q, Yan C, Wang J, Yan N (2010) Single amino acid alteration between valine and isoleucine determines the distinct pyrabactin selectivity by PYL1 and PYL2. J Biol Chem 285:28953–28958

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yuan F, Yang H, Xue Y, Kong D, Ye R, Li C, Zhang J, Theprungsirikul L, Shrift T, Krichilsky B, Johnson DM, Swift GB, He Y, Siedow JN, Pei Z-M (2014) OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis. Nature 514:367–371

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Zhang Q, Xin Q, Yu L, Wang Z, Wu W, Jiang L, Wang G, Tian W, Deng Z, Wang Y, Liu Z, Long J, Gong Z, Chen Z (2012) Complex structures of the abscisic acid receptor PYL3/RCAR13 reveal a unique regulatory mechanism. Structure 20:780–790

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Jiang L, Wang G, Yu L, Zhang Q, Xin Q, Wu W, Gong Z, Chen Z (2013) Structural insights into the abscisic acid stereospecificity by the ABA receptors PYR/PYL/RCAR. PLoS One 8:e67477

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang X, Zhang X, Liu X, Shao L, Sun H, Chen S (2016) Improving winter wheat performance by foliar spray of ABA and FA under water deficit conditions. J Plant Growth Regul 35:83–96

    Article  CAS  Google Scholar 

  • Zhao Y, Xing L, Wang X, Hou Y-J, Gao J, Wang P, Duan C-G, Zhu X, Zhu J-K (2014) The ABA receptor PYL8 promotes lateral root growth by enhancing MYB77-dependent transcription of auxin-responsive genes. Sci Signal 7:ra53

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean R. Cutler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Helander, J.D.M., Cutler, S.R. (2018). Abscisic Acid Signaling and Biosynthesis: Protein Structures and Molecular Probes. In: Hejátko, J., Hakoshima, T. (eds) Plant Structural Biology: Hormonal Regulations. Springer, Cham. https://doi.org/10.1007/978-3-319-91352-0_8

Download citation

Publish with us

Policies and ethics