Skip to main content
Log in

Characterization of the potency, selectivity, and pharmacokinetic profile for six adenosine A2A receptor antagonists

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Antagonists of adenosine A2A receptors (A2A-antagonists) with different chemical structures have been developed by several pharmaceutical companies for the potential treatment of Parkinson’s disease. Pharmacological characterization of these antagonists was incomplete, and different assay conditions were used in different labs. Therefore, we characterized the potencies, selectivities, and pharmacokinetic profiles of six prototypical A2A-antagonists. Displacements of [3H]MSX-2 and of [3H]CGS21680 binding to the human cloned and rat A2A receptors were performed. The rank order of potency of antagonists to displace [3H]MSX-2 binding to the human A2A was SCH58261 ≥ Biogen-34 ≥ Ver-6623 ≥ MSX-2 > KW-6002 > > DMPX. For the rat striatal A2A, the order of potency was Biogen-34 ≥ SCH58261 ≥ Ver-6623 ≥ MSX-2 ≥ KW-6002 > > DMPX. SCH58261 was the most potent antagonist of the human A2A with a K i value of 4 nM, whereas Biogen-34 was the most potent antagonist of the rat A2A with a K i value of 1.2 nM. Similar results were obtained from cAMP assays. Selectivities of A2A-antagonists were determined using radioligands [3H]DPCPX, [3H]ZM241385, and [125I]-AB-MECA for A1, A2B, and A3 receptors, respectively. KW-6002 and Biogen-34 exhibited the highest selectivity for A2A vs A1 (human and rat), respectively. The pharmacokinetic profiles of antagonists were evaluated in vivo in rats. DMPX and KW-6002 had the greatest oral bioavailability. In contrast, SCH58261, MSX-2, and Ver-6623 had low or poor oral bioavailability. In summary, SCH58261, Biogen-34, MSX-2, and Ver-6623 had high affinities for both human and rat A2A receptors, with reasonable selectivity for A2A over A1 and A2B receptors. They are suitable as A2A-antagonists for in vitro pharmacological studies. Among the six A2A-antagonists, KW-6002 is the best for use in in vivo animal studies, particularly for a CNS target, based on its bioavailability, half life, and brain penetration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

DPCPX:

1,3-dipropyl-8-cyclopentylxanthine

CGS21680:

2-p-(2-carboxyethylamine-5′-N-ethylcarboxamide) adenosine

DMPX:

3,7-dimethyl-1-propargylxanthine

MSX-2:

3-(3-hydroxypropyl)-7-methyl-8-(m-methoxystyryl)-1-propargylxanthine

ZM241385:

4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol

Biogen-34:

5-[4-[[5-chlorol-1-methyl-3-(trifluoromethyl)-1H-pyrazol-4-yl]methyl]-1-piperazinyl]-2-(2-furanyl)-[1,2,4]triazolo[1,5-α][1,3,5]triazin-7-amine

KW-6002:

(E)1,3-diethyl-8-(3,4-dimethoxystyryl)-7-methylxanthine

Ver-6623:

2-isopropyl-4-(thiazol-2-yl)thieno[3,2-d]pyrimidine

SCH58261:

2-(2-furanyl)-7-(2-phenylethyl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine

AB-MECA:

4-aminobenzyl-5′-N-ethylcarboxamidoadenosine

IB-MECA:

N6-(3-iodobenzyl)-5′-N-methylcarboxamidoadenosine

References

  • Aoyama S, Koga K, Mori A, Miyaji H, Sekine S, Kase H, Uchimura T, Kobayashi H, Kuwana Y (2002) Distribution of adenosine A(2A) receptor antagonist KW-6002 and its effect on gene expression in the rat brain. Brain Res 953:119–125

    Article  PubMed  CAS  Google Scholar 

  • Cacciari B, Pastorin G, Spalluto G (2003) Medicinal chemistry of A2A adenosine receptor antagonists. Curr Top Med Chem 3:403–411

    Article  PubMed  CAS  Google Scholar 

  • Cunha RA, Johansson B, Constantino MD, Sebastiao AM, Fredholm BB (1996) Evidence for high-affinity binding sites for the adenosine A2A receptor agonist [3H] CGS 21680 in the rat hippocampus and cerebral cortex that are different from striatal A2A receptors. Naunyn-Schmiedebergs Arch Pharmacol 353:261–271

    Article  PubMed  CAS  Google Scholar 

  • Cunha RA, Constantino MD, Ribeiro JA (1999) G protein coupling of CGS 21680 binding sites in the rat hippocampus and cortex is different from that of adenosine A1 and striatal A2A receptors. Naunyn-Schmiedebergs Arch Pharmacol 359:295–302

    Article  PubMed  CAS  Google Scholar 

  • Daly JW, Padgett WL, ShamimMT (1986) Analogues of 1,3-dipropyl-8-phenylxanthine: enhancement of selectivity at A1-adenosine receptors by aryl substituents. J Med Chem 29:1254–1520

    Google Scholar 

  • Dionisotti S, Ongini E, Zocchi C, Kull B, Arslan G, Fredholm BB (1997) Characterization of human A2A adenosine receptors with the antagonist radioligand [3H]-SCH 58261. Br J Pharmacol 121:353–360

    Article  PubMed  CAS  Google Scholar 

  • Fredholm BB, AP IJ, Jacobson KA, Klotz KN, Linden J (2001) International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 53:527–552

    PubMed  CAS  Google Scholar 

  • Halldner L, Lopes LV, Dare E, Lindstrom K, Johansson B, Ledent C, Cunha RA, Fredholm BB (2004) Binding of adenosine receptor ligands to brain of adenosine receptor knock-out mice: evidence that CGS 21680 binds to A1 receptors in hippocampus. Naunyn-Schmiedebergs Arch Pharmacol 370:270–280

    Article  PubMed  CAS  Google Scholar 

  • Hauber W, Nagel J, Sauer R, Muller CE (1998) Motor effects induced by a blockade of adenosine A2A receptors in the caudate-putamen. NeuroReport 9:1803–1806

    Article  PubMed  CAS  Google Scholar 

  • Hockemeyer J, Burbiel JC, Muller CE (2004) Multigram-scale syntheses, stability, and photoreactions of A2A adenosine receptor antagonists with 8-styrylxanthine structure: potential drugs for Parkinson’s disease. J Org Chem 69:3308–3318

    Article  PubMed  CAS  Google Scholar 

  • Hunter JC (2006) SCH420814: a novel adenosine A2A antagonist. Exploring Parkinson’s disease and beyond. In: Targeting adenosine A2A receptors in Parkinson’s disease and other CNS disorders, MassGeneral Institute for Neurodegenerative Disease, Boston, May 17–19

  • Jiang Q, Van Rhee AM, Kim J, Yehle S, Wess J, Jacobson KA (1996) Hydrophilic side chains in the third and seventh transmembrane helical domains of human A2A adenosine receptors are required for ligand recognition. Mol Pharmacol 50:512–521

    PubMed  CAS  Google Scholar 

  • Klotz KN (2000) Adenosine receptors and their ligands. Naunyn-Schmiedebergs Arch Pharmacol 362:382–391

    Article  PubMed  CAS  Google Scholar 

  • Knutsen LJ, Weiss SM (2001) KW-6002 (Kyowa Hakko Kogyo). Curr Opin Investig Drugs 2:668

    PubMed  CAS  Google Scholar 

  • Kull B, Arslan G, Nilsson C, Owman C, Lorenzen A, Schwabe U, Fredholm BB (1999) Differences in the order of potency for agonists but not antagonists at human and rat adenosine A2A receptors. Biochem Pharmacol 57:65–75

    Article  PubMed  CAS  Google Scholar 

  • Merighi S, Varani K, Gessi S, Cattabriga E, Iannotta V, Ulouglu C, Leung E and Borea PA (2001) Pharmacological and biochemical characterization of adenosine receptors in the human malignant melanoma A375 cell line. Br J Pharmacol 134:1215–1226

    Article  PubMed  CAS  Google Scholar 

  • Muller CE, Sandoval-Ramirez J, Schobert U, Geis U, Frobenius W, Klotz KN (1998) 8-(Sulfostyryl)xanthines: water-soluble A2A-selective adenosine receptor antagonists. Bioorg Med Chem 6:707–719

    Article  PubMed  CAS  Google Scholar 

  • Muller CE, Maurinsh J, Sauer R (2000) Binding of [3H]MSX-2 (3-(3-hydroxypropyl)-7-methyl-8-(m-methoxystyryl)-1-propargylxanthine) to rat striatal membranes—a new, selective antagonist radioligand for A(2A) adenosine receptors. Eur J Pharm Sci 10:259–265

    Article  PubMed  CAS  Google Scholar 

  • Nagel J, Schladebach H, Koch M, Schwienbacher I, Muller CE, Hauber W (2003) Effects of an adenosine A2A receptor blockade in the nucleus accumbens on locomotion, feeding, and prepulse inhibition in rats. Synapse 49:279–286

    Article  PubMed  CAS  Google Scholar 

  • Olah ME, Gallo-Rodriguez C, Jacobson KA, Stiles GL (1994) 125I-4-aminobenzyl-5′-N-methylcarboxamidoadenosine, a high affinity radioligand for the rat A3 adenosine receptor. Mol Pharmacol 45:978–982

    PubMed  CAS  Google Scholar 

  • Ongini E, Monopoli A, Cacciari B, Baraldi PG (2001) Selective adenosine A2A receptor antagonists. Farmaco 56:87–90

    Article  PubMed  CAS  Google Scholar 

  • Poucher SM, Keddie RJ, Brooks R, Shaw GR, McKillop D (1996) Pharmacodynamics of ZM 241385, a potent A2a adenosine receptor antagonist, after enteric administration in rat, cat and dog. J Pharm Pharmacol 48:601–606

    PubMed  CAS  Google Scholar 

  • Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50:413–492

    PubMed  CAS  Google Scholar 

  • Sauer R, Maurinsh J, Reith U, Fulle F, Klotz KN, Muller CE (2000) Water-soluble phosphate prodrugs of 1-propargyl-8-styrylxanthine derivatives, A(2A)-selective adenosine receptor antagonists. J Med Chem 43:440–448

    Article  PubMed  CAS  Google Scholar 

  • Seale TW, Abla KA, Shamim MT, Carney JM, Daly JW (1988) 3,7-Dimethyl-1-propargylxanthine: a potent and selective in vivo antagonist of adenosine analogs. Life Sci 43:1671–1684

    Article  PubMed  CAS  Google Scholar 

  • Shi D, Daly JW (1999) Chronic effects of xanthines on levels of central receptors in mice. Cell Mol Neurobiol 19:719–732

    Article  PubMed  CAS  Google Scholar 

  • Shimada J, Koike N, Nonaka H, Shiozaki S, Yanagawa K, Kanda Yomoyuki, Kobayahi H, Ichimura M (1997) Adenosine A2A antagonists with potent anti-cataleptic activity. Bioorg Med Chem Lett 7:2349–2352

    Article  CAS  Google Scholar 

  • Vu CB, Pan D, Peng B, Sha L, Kumaravel G, Jin X, Phadke D, Engber T, Huang C, Reilly J, Tam S, Petter RC (2004a) Studies on adenosine A2a receptor antagonists: comparison of three core heterocycles. Bioorg Med Chem Lett 14:4831–4834

    Article  PubMed  CAS  Google Scholar 

  • Vu CB, Peng B, Kumaravel G, Smits G, Jin X, Phadke D, Engber T, Huang C, Reilly J, Tam S, Grant D, Hetu G, Chen L, Zhang J, Petter RC (2004b) Piperazine derivatives of [1,2,4]triazolo[1,5-a][1,3,5]triazine as potent and selective adenosine A2a receptor antagonists. J Med Chem 47:4291–4299

    Article  PubMed  CAS  Google Scholar 

  • Weiss SM, Benwell K, Cliffe IA, Gillespie RJ, Knight AR, Lerpiniere J, Misra A, Pratt RM, Revell D, Upton R, Dourish CT (2003) Discovery of nonxanthine adenosine A2A receptor antagonists for the treatment of Parkinson’s disease. Neurology 61:S101–S106

    PubMed  CAS  Google Scholar 

  • Zocchi C, Ongini E, Conti A, Monopoli A, Negretti A, Baraldi PG, Dionisotti S (1996) The non-xanthine heterocyclic compound SCH 58261 is a new potent and selective A2a adenosine receptor antagonist. J Pharmacol Exp Ther 276:398–404

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank Dr Peidong Fan for advice on the isolation of rat striatum.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, M., Soohoo, D., Soelaiman, S. et al. Characterization of the potency, selectivity, and pharmacokinetic profile for six adenosine A2A receptor antagonists. Naunyn-Schmied Arch Pharmacol 375, 133–144 (2007). https://doi.org/10.1007/s00210-007-0135-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-007-0135-0

Keywords

Navigation