Skip to main content

Nanosensors for Electronics Package Reliability

  • Chapter
  • First Online:
Nanopackaging

Abstract

Metal nanoparticle applications are proliferating in nanoelectronics, e.g., in single-electron transistors, and in nanoelectronics packaging, e.g., with the introduction of nanoparticle nanocomposites, carbon nanotubes, nanoparticle conductive inks and vias, and underfill fillers. Nanosensors comprise a major segment of the new nanotechnology developments, and there are opportunities to exploit some of these concepts and devices in electronics package diagnostics and reliability prognostics. This chapter concentrates on two potential applications of one basic type of sensor structure (a metal nanodot array) for corrosion detection (by hydrogen sensing) and strain monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Palmer DW, Benson DA, Peterson DW, Sweet JN (1998) IC chip stress during plastic package molding. In: Proc. electronic components and technology conference (ECTC), pp 1326–1331

    Google Scholar 

  2. Sweet JN, Tuck MR, Peterson DW Palmer DW (1990) Short and long loop manufacturing feedback using multi-sensor assembly test chip. In: Proceedings of IEEE/CHMT international electronics manufacturing symposium, pp 229–235

    Google Scholar 

  3. Oprins H, Cherman V, Van der Plas G, Maggioni F, De Vos J, Wang T, Daily R, Beyne E (2015) Experimental thermal characterization and thermal model validation of 3D packages using a programmable thermal test chip. In: Proceedings of 65th IEEE electronic components and technology conference (ECTC), https://doi.org/10.1109/ECTC.2015.7159737

  4. Morris JE, Radehaus C, Hietschold M, Kiesow A, Wu F (2004) Single electron transistors & discontinuous thin films. In: Michel B, Aschenbrenner R (eds) The world of electronic packaging and system integration. dpp goldenbogen, Dresden, pp 84–93

    Google Scholar 

  5. Morris JE, Wu F, Radehaus C, Hietschold M, Henning A, Hofmann K, Kiesow A (2004) Single electron transistors: modeling and fabrication. (Invited) 7th International conference solid state & integrated circuit technology (ICSICT), Beijing, 19–21 Oct, pp 634–639

    Google Scholar 

  6. Morris JE (2008) Nanopackaging: nanotechnologies and electronics packaging. In: Morris JE (ed) Nanopackaging: nanotechnologies and electronics packaging. Springer, New York

    Chapter  Google Scholar 

  7. Morris JE (2008) Nanoparticle properties. In: Morris JE (ed) Nanopackaging: nanotechnologies in electronics packaging. Springer, New York

    Chapter  Google Scholar 

  8. Morris JE (1972) Charge activation theory of conduction in discontinuous thin metal films. J Vac Sci Technol 9:437–441

    Article  CAS  Google Scholar 

  9. Morris JE (1972) Effects of charge on the structure of discontinuous thin gold films. Metallography 5:41–58

    Article  CAS  Google Scholar 

  10. Morris JE (1975) The post-deposition resistance increase in discontinuous metal films. Thin Solid Films 28:L21–L23

    Article  Google Scholar 

  11. Morris JE, Coutts TJ (1977) Electrical conduction inn discontinuous metal films; a discussion. Thin Solid Films 47:3–65

    Article  Google Scholar 

  12. Wu F, Morris JE (1998) Modeling conduction in asymmetrical discontinuous thin metal films. Thin Solid Films 317:178–182

    Article  Google Scholar 

  13. Morris JE (1972) Non-ohmic properties of discontinuous thin metal films. Thin Solid Films 11:81–89

    Article  CAS  Google Scholar 

  14. Morris JE (2006) Single electron transistors. In: Dorf R (ed) Electrical engineering handbook: electronics, power electronics, optoelectronics, microwaves, electromagnetics, and radar, 3rd edn. CRC/Taylor & Francis, Boca Raton, pp 3.53–3.64

    Google Scholar 

  15. Morris JE (1998) Recent progress in discontinuous thin metal film devices. Vacuum 50(1–2):107–113

    Article  CAS  Google Scholar 

  16. Borziak P, Kulyupin Y, Tomchuk P (1976) Electrical conductivity in structurally inhomogeneous discontinuous metal films. Thin Solid Films 36:235

    Article  Google Scholar 

  17. Morris JE (1976) A.C. properties of discontinuous metal thin films. Thin Solid Films 36:29–32

    Article  CAS  Google Scholar 

  18. Morris JE (1990) AC effects in asymmetric discontinuous metal films. Thin Solid Films 193(194):110–116

    Article  Google Scholar 

  19. Kiesow A, Morris JE, Radehaus C, Heilmann A (2003) Switching behavior of plasma polymer films containing silver nanoparticles. J Appl Phys 94:6988–6990

    Article  CAS  Google Scholar 

  20. Wu F (2004) Microscopic and mesoscopic characteristics of granular metal films, Ph.D. dissertation, Binghamton University

    Google Scholar 

  21. Boiko BT et al (1972) Soviet Phys Dokl 17:395

    Google Scholar 

  22. Morris JE (1972) The effect of strain on the electrical properties of discontinuous thin metal films. Thin Solid Films 11:259–272

    Article  CAS  Google Scholar 

  23. Bishay AG, Fikry W, Hunter H, Ragai HF (2006) Effect of strain on the frequency-dependent resistance of island gold films. J Mater Sci Mater Electron 17:71–77. https://doi.org/10.1007/s10854-005-5144-5

    Article  CAS  Google Scholar 

  24. Bishay AG, Fikry W, Hunter H, Ragai HF (2006) Effect of strain on the frequency-independent parameters of the equivalent circuit of island gold films. J Mater Sci Mater Electron 17:489–496. https://doi.org/10.1007/s10854-006-8223-3

    Article  CAS  Google Scholar 

  25. Bishay AG, Abdelhady DA, Darwish AM (1992) Applicability of discontinuous palladium films as strain gauges. J Mater Sci Mater Electron 3:195–199. https://doi.org/10.1007/BF00695521

    Article  CAS  Google Scholar 

  26. Darwish AM, Bishay AG (1993) Ageing and piezoresistance of island manganese films. J Mater Sci Mater Electron 4:192–196. https://doi.org/10.1007/BF00224739

    Article  CAS  Google Scholar 

  27. Bishay AG, Darwish AM, Abdelhady DA (1995) Resistance-time dependence and gauge factor of two-dimensional granular gold films deposited on “Melinex”. J Mater Sci Mater Electron 6:419–423. https://doi.org/10.1007/BF00144645

    Article  CAS  Google Scholar 

  28. Chambers M, Zalar B, Remškar M, Finkelmann H, Žumer S (2008) Piezoresistivity and electro-thermomechanical degradation of a conducting layer of nanoparticles integrated at the liquid crystal elastomer surface. Nanotechnology 19:155501

    Article  Google Scholar 

  29. El-Gamal S (2013) Effect of strain on the I-V characteristics of discontinuous silver films and determination of their gauge factor. J Mater Sci Mater Electron 24:4311–4315. https://doi.org/10.1007/s10854-013-1403-z

    Article  CAS  Google Scholar 

  30. Lee J, Kim S, Lee J, Yang D, Park BC, Ryu S, Park I (2014) A stretchable strain sensor based on a metal nanoparticle thin film for human motion detection. Nanoscale 6:11932–11939. https://doi.org/10.1039/C4NR03295K

    Article  CAS  Google Scholar 

  31. Decorde N, Sangeetha NM, Viallet B, Viau G, Grisolia J, Coati A, Vlad A, Garreau Y, Ressier L (2014) Small angle X-ray scattering coupled with in situ electromechanical probing of nanoparticle-based resistive strain gauges. Nanoscale 6:15107–15116. https://doi.org/10.1039/C4NR04129A

    Article  CAS  Google Scholar 

  32. Schlicke H, Rebber M, Kunze S, Vossmeyer T (2016) Resistive pressure sensors based on freestanding membranes of gold nanoparticles. Nanoscale 8:183–186. https://doi.org/10.1039/C5NR06937H

    Article  CAS  Google Scholar 

  33. Hu N, Karube Y, Yan C, Masuda Z, Fukunaga H (2008) Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor. Acta Mater 56(13):2929–2936

    Article  CAS  Google Scholar 

  34. Rahman R, Servati P (2012) Effects of inter-tube distance and alignment on tunnelling resistance and strain sensitivity of nanotube/polymer composite films. Nanotechnology 23(5):055703. (9pp)

    Article  Google Scholar 

  35. Ho X, Cheng CK, Tey JN, Wei J (2015) Tunable strain gauges based on two-dimensional silver nanowire networks. Nanotechnology 26(19):195504. (8pp)

    Article  Google Scholar 

  36. Hu L, Gao J, Huang W, Dai K, Zheng G, Liu C, Shen C, Yan X, Gu J, Guo Z (2016) Electrically conductive strain sensing polyurethane nanocomposites with synergistic carbon nanotubes and graphene bifillers. Nanoscale 8:12977–12989. https://doi.org/10.1039/C6NR02216B

    Article  CAS  Google Scholar 

  37. Morris JE (1970) Resistance changes of discontinuous thin gold films in air. Thin Solid Films 5:339–353

    Article  CAS  Google Scholar 

  38. Morris JE, O’Krancy M (1972) Resistance increase of discontinuous gold films by substrate absorption of oxygen. Thin Solid Films 10:319–320

    Article  CAS  Google Scholar 

  39. Kazmerski LL, Racine DM (1975) Growth, environmental, and electrical properties of ultrathin metal films. J Appl Phys 46:791–795

    Article  CAS  Google Scholar 

  40. Barr A (1977) The effect of hydrogen absorption on the electrical conduction in discontinuous palladium films. Thin Solid Films 41:217–226

    Article  CAS  Google Scholar 

  41. Morris JE, Kiesow A, Hong M, Wu F (1996) The effect of hydrogen absorption on the electrical conduction of discontinuous palladium thin films. Int J Electron 81(4):441–447

    Article  CAS  Google Scholar 

  42. Wu F, Morris JE (1994) The effects of hydrogen absorption on the resistance of discontinuous palladium films. Thin Solid Films 246:17–23

    Article  CAS  Google Scholar 

  43. Dankert O, Pundt A (2002) Hydrogen-induced percolation in discontinuous films. Appl Phys Lett 81(1618). https://doi.org/10.1063/1.1501761

    Article  CAS  Google Scholar 

  44. Kiefer T, Favier F, Vazquez-Mena O, Villanueva G, Brugger J (2008) A single nanotrench in a palladium microwire for hydrogen detection. Nanotechnology 19(12):125502. 9pp

    Article  CAS  Google Scholar 

  45. Kiefer T, Villanueva LG, Fargier F, Favier F, Brugger J (2010) Fast and robust hydrogen sensors based on discontinuous palladium films on polyimide, fabricated on a wafer scale. Nanotechnology 21(50):505501. 5pp

    Article  CAS  Google Scholar 

  46. Khanuja M, Kala S, Mehta BR, Kruis FE (2009) Concentration-specific hydrogen sensing behavior in monosized Pd nanoparticle layers. Nanotechnology 20(1):015502. 7pp

    Article  Google Scholar 

  47. Ramanathan M, Skudlarek G, Wang HH, Darling SB (2010) Crossover behavior in the hydrogen sensing mechanism for palladium ultrathin films. Nanotechnology 21(12):125501. 6pp

    Article  CAS  Google Scholar 

  48. Kumar R, Varandani D, Mehta BR, Singh VN, Wen Z, Feng X, Müllen K (2011) Fast response and recovery of hydrogen sensing in Pd–Pt nanoparticle–graphene composite layers. Nanotechnology 22(27):275719. 7pp

    Article  Google Scholar 

  49. Kim BJ, Kim KS (2013) Highly sensitive hydrogen sensor with a nano bumpy structured Pd film. In: Proceedings of the IEEE international conference on nanotechnology (IEEE-NANO), Beijing, pp 679–681

    Google Scholar 

  50. Youngquist RC, Nurge MA, Fisher BH, Malocha DC (2015) A resistivity model for ultrathin films and sensors. IEEE Sensors J 15(4):2412–2418. https://doi.org/10.1109/JSEN.2014.2379012

    Article  CAS  Google Scholar 

  51. Pak Y, Lim N, Kumaresan Y, Lee R, Kim K, Kim TH, Kim S-M, Kim JT, Lee H, Ham M-H, Jung G-Y (2015) Palladium nanoribbon Array for fast hydrogen gas sensing with ultrahigh sensitivity. Adv Mater 27:6945–6952. https://doi.org/10.1002/adma.201502895

    Article  CAS  Google Scholar 

  52. Xu T, Zach MP, Xiao ZL, Rosenmann D, Welp U, Kwok WK, Crabtree GW (2016) Self-assembled monolayer-enhanced hydrogen sensing with ultrathin palladium films. Appl Phys Lett 86:203104. https://doi.org/10.1063/1.1929075

    Article  Google Scholar 

  53. van Lith J, Lassesson A, Brown SA, Schulze M, Partridge JG, Ayesh A (2016) A hydrogen sensor based on tunneling between palladium clusters. Appl Phys Lett 91:181910. https://doi.org/10.1063/1.2802730

    Article  Google Scholar 

  54. Lee SB, Lee E, Lee W Joo YC (2008) Dendritic palladium-silver nano-structure grown by electrochemical migration method for hydrogen sensing device. In: Proceedings of 58th IEEE electronic components and technology conference (ECTC). https://doi.org/10.1109/ECTC.2008.4550009

  55. Wongwiriyapan W, Okabayashi Y, Minami S, Itabashi K, Ueda T, Shimazaki R, Ito T, Oura K, Honda S, Tabata H, Katayama M (2010) Hydrogen sensing properties of protective-layer-coated single-walled carbon nanotubes with palladium nanoparticle decoration. Nanotechnology 22(5):055501. 5pp

    Article  Google Scholar 

  56. Banerjee N, Roy S, Sark CK Bhattacharyya P (2013) Pd modified ZnO nanorod based high dynamic range Hydrogen sensor. In: Proceedings of IEEE international conference in nanotechnology (IEEE-NANO), Beijing, pp. 682–685

    Google Scholar 

  57. Lee YT, Jung H, Nam SH, Jeon PJ, Kim JS, Jang B, Lee W, Im S (2013) Sensing extremely limited H2 contents by Pd nanogap connected to an amorphous InGaZnO thin-film transistor. Nanoscale 5:8915–8920. https://doi.org/10.1039/C3NR01847D

    Article  CAS  Google Scholar 

  58. Pavlovsky I(2008) Hydrogen sensor for oil transformer health monitoring. In: Proceedings of 8th IEEE conference on nanotechnology (IEEE-NANO), https://doi.org/10.1109/NANO.69

  59. Morris JE (1972) Post-deposition resistance changes in cermet and discontinuous thin films. Vacuum 22:153–155

    Article  CAS  Google Scholar 

  60. Hui S, Lee J, Morris JE (2006) Chromium nanodot-array deposition using atomic force microscopy. In: Proc. 6th IEEE Conference on nanotechnology (IEEE-NANO), Cincinnati, July 16–20

    Google Scholar 

  61. Stavrov V, Stavreva G, Tomerov E, Dikov C, Vitanov P (2017) Self-sensing cantilevers with nano-laminated dielectric-metal-dielectric resistors. In: Proceedings of 40th international spring seminar on electronics technology (ISSE), Sofia, Bulgaria, Paper I06

    Google Scholar 

  62. Farcau C, Sangeetha NM, Moreira H, Viallet B, Grisolia J, Ciuculescu-Pradines D, Amiens C, Ressier L (2011) High-sensitivity nanoparticle-based strain gauges fabricated by convective self-assembly. ACS Nano 5(9):7137–7149

    Article  CAS  Google Scholar 

  63. Sangeetha NM, Decorde N, Viallet B, Viau G, Ressier L (2013) Nanoparticle-based strain gauges fabricated by convective self assembly: strain sensitivity and hysteresis with respect to nanoparticle sizes. J Phys Chem C 117(4):1935–1940. https://doi.org/10.1021/jp310077r

    Article  CAS  Google Scholar 

  64. Digianantonio L, Gauvin M, Alnasser T, Babonneau D, Viallet B, Grisolia J, Viau G, Coati A, Garreau Y, Ressier L (2016) Influence of the humidity on nanoparticle-based resistive strain gauges. J Phys Chem. https://doi.org/10.1021/acs.jpcc.6b00822

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James E. Morris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Morris, J.E. (2018). Nanosensors for Electronics Package Reliability. In: Morris, J. (eds) Nanopackaging. Springer, Cham. https://doi.org/10.1007/978-3-319-90362-0_29

Download citation

Publish with us

Policies and ethics