Skip to main content

Nitrogen Fixing Endophytes in Forest Trees

  • Chapter
  • First Online:
Endophytes of Forest Trees

Part of the book series: Forestry Sciences ((FOSC,volume 86))

Abstract

Nitrogen (N) is the most growth-limiting nutrient in most terrestrial and aquatic ecosystems, with new nitrogen is brought in primarily through biological nitrogen fixation (BNF) performed by bacteria and archaea. In addition to the well-studied nodulating symbioses between bacteria and legumes or actinorhizal plants, many plants, from grasses to trees, appear to meet some of their N demand by hosting N2-fixing endophytes above- or belowground. Most studies on endophytic N2 fixation come from grasses, but knowledge about endophytic N2 fixation in forest trees, including both conifers and woody angiosperms, is emerging. Studies of how the diazotroph Paenibacillus polymyxa strain P2b-2R, interacts with its host lodgepole pine as well as other plants, suggest that diazotrophs can colonize their host intracellulary; that conifers can derive a significant part of N from the atmosphere; and that the association can take months to establish and may depend on N soil content. P. polymyxa strain P2b-2R has also been shown to colonize, promote growth and fix N2 in crops, demonstrating that endophytic diazotrophs can be generalists. Culture independent studies suggest that conifers growing in N limited high altitude environments consistently host foliar endophytes related to the diazotroph Gluconacetobacter in their needles, and that nitrogenase is active within pine foliage, suggesting that endophytes may represent an N2-fixing strategy for long-living conifers to meet their N demand in N limited subalpine ecosystems. Diazotrophs have also been isolated from poplar and willow growing in N limited riparian ecosystems. These strains are also generalists and can promote growth and provide N to both poplar clones and crops. Direct evidence of N2 fixation and incorporation by native endophytes has been demonstrated in poplar using labelling with the stable nitrogen isotope 15N2. Enrichment of 15N was highly variable among samples, potentially as a result of differences in the endophyte community structure and abundance. We provide suggestions for research efforts that can take advantage of this new knowledge with the goal of reducing the use of chemical fertilizer in agriculture and forestry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ-Sci 26(1):1–20

    Article  Google Scholar 

  • Anand R, Chanway CP (2013a) Detection of GFP-labeled Paenibacillus polymyxa in auto-fluorescing pine seedling tissues. Biol Fertil Soils 49:111–118

    Article  CAS  Google Scholar 

  • Anand R, Chanway CP (2013b) N2-fixation and growth promotion in cedar colonized by an endophytic strain of Paenibacillus polymyxa. Biol Fertil Soils 49:235–239

    Article  CAS  Google Scholar 

  • Anand R, Grayston S, Chanway CP (2013) N2-fixation and seedling growth promotion of lodgepole pine by endophytic Paenibacillus polymyxa. Microb Ecol 66:369–374

    Article  CAS  PubMed  Google Scholar 

  • Bacon CW, White JF (2000) Microbial endophytes. Marcel Dekker Inc., New York

    Google Scholar 

  • Bal AS, Anand R, Berge O, Chanway CP (2012) Isolation and identification of diazotrophic bacteria from internal tissues of Pinus contorta and Thuja plicata. Can J For Res 42:807–813

    Article  CAS  Google Scholar 

  • Bal AS, Chanway CP (2012a) Evidence of nitrogen fixation in lodgepole pine inoculated with diazotrophic Paenibacillus polymyxa. Botany 90:891–896

    Article  CAS  Google Scholar 

  • Bal A, Chanway CP (2012b) 15N foliar dilution of western red cedar in response to seed inoculation with diazotrophic Paenibacillus polymyxa. Biol Fertil Soils 48:967–971

    Article  Google Scholar 

  • Baldotto LEB, Olivares FL, Bressan-Smith R (2011) Structural interaction between GFP-labeled diazotrophic endophytic bacterium Herbaspirillum seropedicae RAM10 and pineapple plantlets’ Vitória’. Braz J Microbiol 42(1):114–125

    Article  Google Scholar 

  • Bezdicek DF, Kennedy AC (1998) In: Lynch JM, Hobbie JE (eds) Microorganisms in action. Blackwell, Oxford

    Google Scholar 

  • Bhattacharjee RB, Singh A, Mukhopadhyay SN (2008) Use of nitrogen-fixing bacteria as biofertilizer for non-legumes: prospects and challenges. Appl Microbiol Biotechnol 80:199–209

    Article  CAS  PubMed  Google Scholar 

  • Binkley D, Son Y, Valentine D (2000) Do forest receive occult inputs of nitrogen? Ecosystems 3:321–331

    Article  CAS  Google Scholar 

  • Boddey RM, Urquiaga S, Reis VM, Döbereiner J (1991) Biological nitrogen fixation associated with sugarcane. Plant Soil 37:111–117

    Article  Google Scholar 

  • Bormann B, Keller C, Wang D, Bormann H (2002) Lessons from the sandbox: is unexplained nitrogen real? Ecosystems 5:727–733

    Article  CAS  Google Scholar 

  • Boyd ES, Peters JW (2013) New insights into the evolutionary history of biological nitrogen fixation. Front Microbiol 4:201

    PubMed  PubMed Central  Google Scholar 

  • Carrell AA, Frank AC (2014) Pinus flexilis and Picea engelmannii share a simple and consistent needle endophyte microbiota with a potential role in nitrogen fixation. Front Microbiol 5:333

    Article  PubMed  PubMed Central  Google Scholar 

  • Carrell AA, Frank AC (2015) Bacterial endophyte communities in the foliage of coast redwood and giant sequoia. Front Microbiol 6:1008

    Article  PubMed  PubMed Central  Google Scholar 

  • Carrell AA, Carper DL, Frank AC (2016). Subalpine conifers in different geographical locations host highly similar foliar bacterial endophyte communities. FEMS Microbiol Ecol 92(8), fiw124

    Article  CAS  PubMed  Google Scholar 

  • Chanway CP, Anand R, Yang H (2014). Nitrogen Fixation Outside and Inside Plant Tissues. In: Ohyama T (ed) Advances in biology and ecology of nitrogen fixation InTech, ISBN: 978-953-51-1216-7

    Google Scholar 

  • Chanway CP, Holl FB (1991) Biomass increase and associative nitrogen fixation of mycorrhizal Pinus contorta seedlings inoculated with a plant growth promoting Bacillus strain. Can J Bot 69:507–511

    Article  CAS  Google Scholar 

  • Chapman WK, Paul L (2012) Evidence that northern pioneering pines with tuberculate mycorrhizae are unaffected by varying soil nitrogen levels. Microbiol Ecol 64:964–972

    Article  CAS  Google Scholar 

  • Compant S, Reiter B, Sessitsch A, Nowak J, Clement C, Aitsa E (2005) Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Appl Environ Microbiol 71:1685–1693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo-and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42(5):669–678

    Article  CAS  Google Scholar 

  • Da Siva Fonseca E, Peixoto RS, Rosado AS, de Carvalho Balieiro F, Tiedje JM, da Costa Rachid CTC (2017) The Microbiome of eucalyptus roots under different management conditions and its potential for biological nitrogen fixation. Microbiol Ecol: 1–9

    Google Scholar 

  • Dalton DA, Kramer S (2006) Nitrogen-fixing bacteria in non-legumes. Springer, Dordrecht, pp 105–130

    Google Scholar 

  • Dos Santos P, Fang Z, Mason S, Setubal J, Dixon R (2012) Distribution of nitrogen fixation and nitrogenase-like sequences amongst microbial genomes. BMC Genom 13:162

    Article  CAS  Google Scholar 

  • Doty SL, Oakley B, Xin G, Kang JW, Singleton G, Khan Z, Vajzovic A, Staley JT (2009) Diazotrophic endophytes of native black cottonwood and willow. Symbiosis 47(1):23–33

    Article  CAS  Google Scholar 

  • Doty SL, Sher AW, Fleck ND, Khorasani M, Bumgarner RE, Khan Z, DeLuca TH (2016) Variable nitrogen fixation in wild Populus. PLoS ONE 11(5):e0155979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elbeltagy A, Nishioka K, Sato T, Suzuki H, Ye B, Hamada T, Isawa T, Mitsui H, Minamisawa K (2001) Endophytic colonization and in planta nitrogen fixation by a Herbaspirillum sp. isolated from wild rice species. Appl Environ Microbiol 67:5285–5293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eskin N, Vessey K, Tian L (2014). Research progress and perspectives of nitrogen fixing bacterium, Gluconacetobacter diazotrophicus, in monocot plants. Int J Agron ID 208383

    Google Scholar 

  • Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–892

    Article  CAS  PubMed  Google Scholar 

  • Gruber N, Galloway JN (2008) An Earth-system perspective of the global nitrogen cycle. Nature 451:293

    Article  CAS  PubMed  Google Scholar 

  • Haber F (1922) Naturwissenschaften 10:1041

    Article  CAS  Google Scholar 

  • Hardoim PR, van Overbeek LS, Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471

    Article  CAS  PubMed  Google Scholar 

  • Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79(3):293–320

    Article  PubMed  PubMed Central  Google Scholar 

  • Hurek TB, Reinhold-Hurek B, Montagu MB, Kellenberger E (1994) Root colonization and systematic spreading of Azoarcus sp strain BH72 in grasses. J Bacteriol 176:1913–1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Izumi H (2011) Diversity of endophytic bacteria in forest trees. In: Endophytes of forest trees. Springer, Dordrecht, pp 95–105

    Chapter  Google Scholar 

  • James K, Olivares FL (1997) Infection and colonization of sugar cane and other Graminaceous plants by endophytic diazotrophs. Crit Rev Plant Sci 17:77–119

    Article  Google Scholar 

  • Khan Z, Guelich G, Phan H, Redman R, Doty S (2012) Bacterial and yeast endophytes from poplar and willow promote growth in crop plants and grasses. ISRN Agron 11

    Google Scholar 

  • Khan Z, Rho H, Firrincieli A, Hung SH, Luna V, Masciarelli O, Kim SH, Doty SL (2016) Growth enhancement and drought tolerance of hybrid poplar upon inoculation with endophyte consortia. Curr Opin Plant Biol 6:38–47

    Article  Google Scholar 

  • Knoth JL, Kim SH, Ettl GJ, Doty SL (2013) Effects of cross host species inoculation of nitrogen-fixing endophytes on growth and leaf physiology of maize. Glob Change Biol Bioenergy 5(4):408–418

    Article  CAS  Google Scholar 

  • Knoth JL, Kim SH, Ettl GJ, Doty SL (2014) Biological nitrogen fixation and biomass accumulation within poplar clones as a result of inoculations with diazotrophic endophyte consortia. New Phytol 201(2):599–609

    Article  CAS  PubMed  Google Scholar 

  • Koskimäki JJ, Pirttilä AM, Ihantola E-L, Halonen O, Frank AC (2015) The intracellular scots pine shoot symbiont Methylobacterium extorquens DSM13060 aggregates around the host nucleus and encodes eukaryote-like proteins. MBio. 6(2):e00039–15. https://doi.org/10.1128/mBio.00039-15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moyes AB, Kueppers LM, Pett-Ridge J, Carper DL, Vandehey N, O’Neil J, Frank AC (2016) Evidence for foliar endophytic nitrogen fixation in a widely distributed subalpine conifer. New Phytol 210(2):657–668

    Article  CAS  PubMed  Google Scholar 

  • Myrold DD, Bottomley PJ (2007) Biological N inputs. Soil microbiology, ecology and biochemistry. Elsevier, Burlington, pp 365–388

    Google Scholar 

  • Mus F, Crook MB, Garcia K, Costas AG, Geddes BA, Kouri ED, Udvardi MK et al (2016) Symbiotic nitrogen fixation and the challenges to its extension to nonlegumes. Appl Environ Microbiol 82(13):3698–3710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nair DN, Padmavathy S (2014) Impact of endophytic microorganisms on plants, environment and humans. Sci World J 250693

    Google Scholar 

  • Oliveira ALM, Urquiaga S, Dobereiner J, Baldani JI (2002) The effect of inoculating endophytic N2-fixing bacteria on micropropagated sugarcane plants. Plant Soil 242:205–215

    Article  CAS  Google Scholar 

  • Pirttilä AM, Laukkanen H, Pospiech H, Myllylä R, Hohtola A (2000) Detection of intracellular bacteria in the buds of Scotch Pine (Pinus sylvestris L.) by In Situ Hybridization. Appl Environ Microbiol 66(7):3073–3077

    Article  PubMed  PubMed Central  Google Scholar 

  • Padda KP, Puri A, Chanway CP (2016a) Plant growth promotion and nitrogen fixation in canola by an endophytic strain of Paenibacillus polymyxa and its GFP-tagged derivative in a long-term study. Botany 94:1209–1217

    Article  CAS  Google Scholar 

  • Padda KP, Puri A, Chanway CP (2016b) Effect of GFP tagging of Paenibacillus polymyxa P2b-2R on its ability to promote growth of canola and tomato seedlings. Biol Fertil Soils 52:377–387

    Article  CAS  Google Scholar 

  • Puri A, Padda KP, Chanway CP (2016) Seedling growth promotion and nitrogen fixation by a bacterial endophyte Paenibacillus polymyxa P2b-2R and its GFP derivative in corn in a long-term trial. Symbiosis 69:123–129

    Article  CAS  Google Scholar 

  • Remigi P, Zhu J, Young JPW, Masson-Boivin C (2016) Symbiosis within symbiosis: evolving nitrogen-fixing legume symbionts. Trends Microbiol 24(1):63–75

    Article  CAS  PubMed  Google Scholar 

  • Rubio LM, Ludden PW (2008) Biosynthesis of the iron-molybdenum cofactor of nitrogenase. Annu Rev Microbiol 62:93–111

    Article  CAS  PubMed  Google Scholar 

  • Santi C, Bogusz D, Franche C (2013) Biological nitrogen fixation in non-legume plants. Ann Bot 111(5):743–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmid M, Hartmann A (2007) Molecular phylogeny and ecology of root associated diazotrophic α-and β-proteobacteria. In: Associative and endophytic nitrogen-fixing bacteria and cyanobacterial associations. Springer, Dordrecht, pp. 21–40

    Google Scholar 

  • Sevilla M, Burris RH, Gunapala N, Kennedy C (2001) Comparison of benefit to sugarcane plant growth and 15N2 incorporation following inoculation of sterile plants with wild-type and nif¯ mutant strains. Mol Plant-Microbe Interact 14(3):358–366

    Google Scholar 

  • Shishido M, Chanway CP (1999) Spruce growth response specificity after treatment with plant growth-promoting pseudomonads. Can J Bot 77:22–31

    Google Scholar 

  • Smil V (2004) Enriching the earth: Fritz Haber, Carl Bosch, and the transformation of world food production. MIT Press, Cambridge

    Google Scholar 

  • Tanabe Y, Nishibayashi Y (2013) Developing more sustainable processes for ammonia synthesis. Coord Chem Rev 257:2551–2564

    Article  CAS  Google Scholar 

  • Tang Q, Puri A, Padda KP, Chanway CP (2017) Biological nitrogen fixation and plant growth promotion of lodgepole pine by an endophytic diazotroph Paenibacillus polymyxa and its GFP-tagged derivative. Botany 95(6):611–619

    Article  CAS  Google Scholar 

  • Thamdrup B (2012) New pathways and processes in the global nitrogen cycle. Annu Rev Ecol Evol Syst 43:407–428

    Article  Google Scholar 

  • Thomas P, Sekhar AC (2014) Live cell imaging reveals extensive intracellular cytoplasmic colonization of banana by normally non-cultivable endophytic bacteria. AoB Plants 6: plu002

    Google Scholar 

  • Urquiaga S, Cruz KHS, Boddey RM (1992) Contribution of nitrogen fixation to sugar cane: nitrogen-15 and nitrogen-balance estimates. Soil Sci Soc Am J 56:105–114

    Article  Google Scholar 

  • Van der Lelie D, Taghavi S, Monchy S, Schwender J, Miller L, Ferrieri R, Vangronsveld J (2009) Poplar and its bacterial endophytes: coexistence and harmony. Crit Rev Plant Sci 28(5):346–358

    Article  CAS  Google Scholar 

  • Van Nguyen T, Pawlowski K (2017) Frankia and Actinorhizal Plants: Symbiotic Nitrogen Fixation. In: Rhizotrophs: plant growth promotion to bioremediation. Springer, Singapore, pp 237–261

    Google Scholar 

  • Vitousek PM, Menge DN, Reed SC, Cleveland CC (2013) Biological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystems. Philos Trans R Soc Lond B Biol Sci: Biol Sci 368(1621):20130119

    Article  CAS  Google Scholar 

  • Werner GD, Cornwell WK, Sprent JI, Kattge J, Kiers ET (2014) A single evolutionary innovation drives the deep evolution of symbiotic N2-fixation in angiosperms. Nat Commun 5:4087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson D (1993) Fungal endophytes: out of sight but should not be out of mind. Oikos 68(2):379–384

    Article  Google Scholar 

  • Wurzburger N (2016) Old-growth temperate forests harbor hidden nitrogen-fixing bacteria. New Phytol 210(2):374–376

    Article  PubMed  Google Scholar 

  • Yang H, Puri A, Padda KP, Chanway CP (2016) Effects of Paenibacillus polymyxa inoculation and different soil nitrogen treatments on lodgepole pine seedling growth. Can J For Res 46(6):816–821

    Article  CAS  Google Scholar 

  • Yang H, Puri A, Padda KP, Chanway CP (2017) Substrate utilization by endophytic bacteria Paenibacillus polymyxa P2b-2R that may facilitate bacterial entrance and survival inside diverse plant hosts. Facets 2(1):120–130

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sofía Valenzuela .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Oses, R., Frank, A.C., Valenzuela, S., Rodríguez, J. (2018). Nitrogen Fixing Endophytes in Forest Trees. In: Pirttilä, A., Frank, A. (eds) Endophytes of Forest Trees. Forestry Sciences, vol 86. Springer, Cham. https://doi.org/10.1007/978-3-319-89833-9_9

Download citation

Publish with us

Policies and ethics