Skip to main content

Heat Shock Proteins in Cardiovascular Diseases: From Bench to Bedside

  • Chapter
  • First Online:
HSP70 in Human Diseases and Disorders

Part of the book series: Heat Shock Proteins ((HESP,volume 14))

  • 640 Accesses

Abstract

Heat shock proteins (HSP) are stress proteins induced in response to a wide variety of physiological and environmental insults. HSP function as molecular chaperones and they are required to maintain the proteome in a folded and functional state, allowing the cells to survive stress conditions. These key proteins, which may be located intracellularly or extracellularly, have multiple functions that range from the regulation of essential cells function to the renaturation of misfolded proteins. In the last decades, the HSP involvement in both normal cell function and disease pathogenesis is widely studied, especially in the context of cardiovascular diseases (CVDs). This chapter covers the current knowledge on the function HSP in the cardiovascular system and particular in the relationship between these proteins and CVDs. Initially, the roles of HSP in cardiovascular health are outlined, followed by an evaluation of the role of HSP in CVDs key processes, such as atherosclerosis, vascular hypertrophy and heart failure. Finally, the therapeutic potential of roles HSP are examined in a CVDs context, considering how the knowledge actually gained may be capitalized in future clinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AIF:

apoptosis inducing factor

ApoE-/- :

apolipoproteinE knock out mice

Ca2+ :

calcium

CEL:

celastrol

CVDs:

cardiovascular diseases

GGA:

geranylgeranylacetone

HSEs:

heat shock elements

Hsf1:

heat transcription factor 1

HSP:

heat shock protein

LDL-C:

low-density lipoprotein-cholesterol

RIPC:

remote ischemic preconditioning

ROS:

reactive oxygen species

sHSP:

small heat shock protein

sHSP60:

soluble heat shock protein60

SMCs:

smooth muscle cells

TLR4s:

toll-like receptors 4

VSMCs:

vascular smooth muscle cells

References

  • Amour, J., Brzezinska, A. K., Weihrauch, D., et al. (2009). Role of heat shock protein 90 and endothelial nitric oxide synthase during early anaesthetic and ischemic preconditioning. Anesthesiology, 110, 317–325.

    PubMed  CAS  Google Scholar 

  • Anckar, J., & Sistonen, L. (2011). Regulation of HSF1 function in the heat stress response: Implications in aging and disease. Annual Review of Biochemistry, 80, 1089–1115.

    Article  PubMed  CAS  Google Scholar 

  • Arrigo, A. P., Virot, S., Chaufour, S., et al. (2005). Hsp27 consolidates intracellular redox homeostasis by upholding glutathione in its reduced form and by decreasing iron intracellular levels. Antioxidants & Redox Signaling, 7, 414–422.

    Article  CAS  Google Scholar 

  • Baruah, K., Norouzitallab, P., Linayati, L., et al. (2014). Reactive oxygen species generated by a heat shock protein (Hsp) inducing product contributes to Hsp70 production and Hsp70-mediated protective immunity in Artemia franciscana against pathogenic vibrios. Developmental and Comparative Immunology, 46, 470–474.

    Article  PubMed  CAS  Google Scholar 

  • Basha, E., Friedrich, K. L., & Vierling, E. (2006). The N-terminal arm of small heat shock proteins is important for both chaperone activity and substrate specificity. The Journal of Biological Chemistry, 281, 39943–39952.

    Article  PubMed  CAS  Google Scholar 

  • Boluyt, M. O., Brevick, J. L., Rogers, D. S., et al. (2006). Changes in the rat heart proteome induced by exercise training: Increased abundance of heat shock protein hsp20. Proteomics, 6, 3154–3169.

    Article  PubMed  CAS  Google Scholar 

  • Boncoraglio, A., Minoia, M., & Carra, S. (2012). The family of mammalian small heat shock proteins (HSPBs): Implications in protein deposit diseases and motor neuropathies. The International Journal of Biochemistry & Cell Biology, 44, 1657–1669.

    Article  CAS  Google Scholar 

  • Bond, U., & Schlesinger, M. J. (1985). Ubiquitin is a heat shock protein in chicken embryo fibroblasts. Molecular and Cellular Biology, 5, 949–956.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bova, M. P., Yaron, O., Huang, Q., et al. (1999). Mutation R120G in alphaB-crystallin, which is linked to a desmin-related myopathy, results in an irregular structure and defective chaperone-like function. Proceedings of the National Academy of Sciences of the United States of America, 96, 6137–6142.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brundel, B. J., Henning, R. H., Ke, L., et al. (2006a). Heat shock protein upregulation protects against pacing- induced myolysis in HL-1 atrial myocytes and in human atrial fibrillation. Journal of Molecular and Cellular Cardiology, 41, 555–562.

    Article  PubMed  CAS  Google Scholar 

  • Brundel, B. J., Shiroshita-Takeshita, A., Qi, X., et al. (2006b). Induction of heat shock response protects the heart against atrial fibrillation. Circulation Research, 99, 1394–1402.

    Article  PubMed  CAS  Google Scholar 

  • Budas, G. R., Churchill, E. N., Disatnik, M. H., et al. (2010). Mitochondrial import of PKCepsilon is mediated by HSP90: a role in cardioprotection from ischaemia and reperfusion injury. Cardiovascular Research, 88, 83–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bullard, B., Ferguson, C., Minajeva, A., et al. (2004). Association of the chaperone alphaB-crystallin with titin in heart muscle. The Journal of Biological Chemistry, 279, 7917–7924.

    Article  PubMed  CAS  Google Scholar 

  • Burian, K., Kis, Z., Virok, D., et al. (2001). Independent and joint effects of antibodies to human heat-shock protein 60 and Chlamydia pneumoniae infection in the development of coronary atherosclerosis. Circulation, 103, 1503–1508.

    Article  PubMed  CAS  Google Scholar 

  • Burniston, J. G. (2009). Adaptation of the rat cardiac proteome in response to intensity-controlled endurance exercise. Proteomics, 9, 106–115.

    Article  PubMed  CAS  Google Scholar 

  • Businaro, R., Profumo, E., Tagliani, A., et al. (2009). Heat-shock protein 90: A novel autoantigen in human carotid atherosclerosis. Atherosclerosis, 207, 74–83.

    Article  PubMed  CAS  Google Scholar 

  • Campos, J. C., Queliconi, B. B., Dourado, P. M., et al. (2012). Exercise training restores cardiac protein quality control in heart failure. PLoS One, 7, e52764.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carra, S., Seguin, S. J., Lambert, H., et al. (2008a). HspB8 chaperone activity toward poly (Q)-containing proteins depends on its association with Bag3, a stimulator of macroautophagy. The Journal of Biological Chemistry, 283, 1437–1444.

    Article  PubMed  CAS  Google Scholar 

  • Carra, S., Seguin, S. J., & Landry, J. (2008b). HspB8 and Bag3: A new chaperone complex targeting misfolded proteins to macroautophagy. Autophagy, 4, 237–239.

    Article  PubMed  CAS  Google Scholar 

  • Carra, S., Brunsting, J. F., Lambert, H., et al. (2009). HspB8 participates in protein quality control by a non-chaperone-like mechanism that requires eIF2 {alpha} phosphorylation. The Journal of Biological Chemistry, 284, 5523–5532.

    Article  PubMed  Google Scholar 

  • Carra, S., Alberti, S., Arrigo, P. A., et al. (2017). The growing world of small heat shock proteins: From structure to functions. Cell Stress & Chaperones, 22, 601–611.

    Article  CAS  Google Scholar 

  • Chang, S. L., Chen, Y. C., Hsu, C. P., et al. (2013). Heat shock protein inducer modifies arrhythmogenic substrate and inhibits atrial fibrillation in the failing heart. International Journal of Cardiology, 168, 4019–4026.

    Article  PubMed  Google Scholar 

  • Charmpilas, N., Kyriakakis, E., & Tavernarakis, N. (2017). Small heat shock proteins in ageing and age-related diseases. Cell Stress & Chaperones, 22, 481–492.

    Article  Google Scholar 

  • Chebotareva, N., Bobkova, I., & Shilov, E. (2017). Heat shock proteins and kidney disease: Perspectives of HSP therapy. Cell Stress & Chaperones, 22, 319–343.

    Article  CAS  Google Scholar 

  • Chen, Y. S., Chien, C. T., Ma, M. C., et al. (2005). Protection “outside the box” (skeletal remote preconditioning) in rat model is triggered by free radical pathway. The Journal of Surgical Research, 126, 92–101.

    Article  PubMed  CAS  Google Scholar 

  • Chen, L., Lizano, P., Zhao, X., et al. (2011). Preemptive conditioning of the swine heart by H11 kinase/Hsp22 provides cardiac protection through inducible nitric oxide synthase. American Journal of Physiology. Heart and Circulatory Physiology, 300, H1303–H1310.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen, Y., Jiang, B., Zhuang, Y., et al. (2017). Differential effects of heat shock protein 90 and serine 1179 phosphorylation on endothelial nitric oxide synthase activity and on its cofactors. PLoS One, 12, e0179978.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Choudhury, S., Bae, S., Ke, Q., et al. (2011). Mitochondria to nucleus translocation of AIF in mice lacking Hsp70 during ischemia/reperfusion. Basic Research in Cardiology, 106, 397–407.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Clark, A. R., Lubsen, N. H., & Slingsby, C. (2012). sHSP in the eye lens: Crystallin mutations, cataract and proteostasis. The International Journal of Biochemistry & Cell Biology, 44, 1687–1697.

    Article  CAS  Google Scholar 

  • Cohen, I. R., & Young, D. B. (1991). Autoimmunity, microbial immunity and the immunological homunculus. Immunology Today, 12, 105–110.

    Article  PubMed  CAS  Google Scholar 

  • Connarn, J. N., Assimon, V. A., Reed, R. A., et al. (2014). The molecular chaperone Hsp70 activates protein phosphatase 5 (PP5) by binding the tetratricopeptide repeat (TPR) domain. The Journal of Biological Chemistry, 289, 2908–2917.

    Article  PubMed  CAS  Google Scholar 

  • Craig, E. A., Weissman, J. S., & Horwich, A. L. (1994). Heat shock proteins and molecular chaperones: Mediators of protein conformation and turnover in the cell. Cell, 78, 365–372.

    Article  PubMed  CAS  Google Scholar 

  • Crul, T., Toth, N., Piotto, S., et al. (2013). Hydroximic acid derivatives: Pleiotropic HSP co-inducers restoring homeostasis and robustness. Current Pharmaceutical Design, 19, 309–346.

    Article  PubMed  CAS  Google Scholar 

  • Csermely, P., Schnaider, T., Soti, C., et al. (1998). The 90-kDa molecular chaperone family: Structure, function, and clinical applications. A comprehensive review. Pharmacology & Therapeutics, 79, 129–168.

    Article  CAS  Google Scholar 

  • Cudkowicz, M. E., Shefner, J. M., Simpson, E., et al. (2008). Arimoclomol at dosages up to 300 mg/day is well tolerated and safe in amyotrophic lateral sclerosis. Muscle & Nerve, 38, 837–844.

    Article  CAS  Google Scholar 

  • de Graaf, R., Kloppenburg, G., Kitslaar, P. J., et al. (2006). Human heat shock protein 60 stimulates vascular smooth muscle cell proliferation through Toll-like receptors 2 and 4. Microbes and Infection, 8, 1859–1865.

    Article  PubMed  CAS  Google Scholar 

  • de Moraes, W. M., Melara, T. P., de Souza, P. R., et al. (2015). Impact of leucine supplementation on exercise training induced anti-cardiac remodeling effect in heart failure mice. Nutrients, 7, 3751–3766.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deane, C. A., & Brown, I. R. (2016). Induction of heat shock proteins in differentiated human neuronal cells following co-application of celastrol and arimoclomol. Cell Stress & Chaperones, 21, 837–848.

    Article  CAS  Google Scholar 

  • Depre, C., Hase, M., Gaussin, V., et al. (2002). H11 kinase is a novel mediator of myocardial hypertrophy in vivo. Circulation Research, 91, 1007–1014.

    Article  PubMed  CAS  Google Scholar 

  • Depre, C., Wang, L., Sui, X., et al. (2006). H11 kinase prevents myocardial infarction by preemptive preconditioning of the heart. Circulation Research, 98, 280–288.

    Article  PubMed  CAS  Google Scholar 

  • Doran, P., Gannon, J., O’Connell, K., et al. (2007). Aging skeletal muscle shows a drastic increase in the small heat shock proteins alphaB-crystallin/HspB5 and cvHsp/HspB7. European Journal of Cell Biology, 86, 629–640.

    Article  PubMed  CAS  Google Scholar 

  • Dybdahl, B., Slørdahl, S. A., Waage, A., et al. (2005). Myocardial ischaemia and the inflammatory response: Release of heat shock protein 70 after myocardial infarction. Heart, 91, 299–304.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Edwards, H. V., Cameron, R. T., & Baillie, G. S. (2011). The emerging role of HSP20 as a multifunctional protective agent. Cellular Signalling, 23, 1447–1454.

    Article  PubMed  CAS  Google Scholar 

  • Fan, G. C., Chu, G., Mitton, B., et al. (2004). Small heat-shock protein Hsp20 phosphorylation inhibits beta-agonist-induced cardiac apoptosis. Circulation Research, 94, 1474–1482.

    Article  PubMed  CAS  Google Scholar 

  • Fan, G. C., Ren, X., Qian, J., et al. (2005). Novel cardioprotective role of a small heat-shock protein, Hsp20, against ischemia/reperfusion injury. Circulation, 111, 1792–1799.

    Article  PubMed  CAS  Google Scholar 

  • Feng, Y., Huang, W., Meng, W., et al. (2014). Heat shock improves Sca-1 + stem cell survival and directs ischemic cardiomyocytes toward a pro survival phenotype via exosomal transfer: A critical role for HSF1/miR-34a/HSP70 pathway. Stem Cells, 32, 462–472.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fontaine, J. M., Rest, J. S., Welsh, M. J., et al. (2003). The sperm outer dense fiber protein is the 10th member of the superfamily of mammalian small stress proteins. Cell Stress & Chaperones, 8, 62–69.

    Article  CAS  Google Scholar 

  • Franklin, T. B., Krueger-Naug, A. M., Clarke, D. B., et al. (2005). The role of heat shock proteins Hsp70 and Hsp27 in cellular protection of the central nervous system. International Journal of Hyperthermia, 21, 379–392.

    Article  PubMed  CAS  Google Scholar 

  • Frostegård, J., Zhang, Y., Sun, J., et al. (2016). Oxidized low-density lipoprotein (OxLDL)-treated dendritic cells promote activation of T cells in human atherosclerotic plaque and blood, which is repressed by statins: MicroRNA let-7c is integral to the effect. J Am Heart Assoc, 5, e003976.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fukuoka, K., Sawabe, A., & Sugimoto, T. (2004). Inhibitory actions of several natural products on proliferation of rat vascular smooth muscle cells induced by Hsp60 from Chlamydia pneumoniae J138. Journal of Agricultural and Food Chemistry, 52, 6326–6329.

    Article  PubMed  CAS  Google Scholar 

  • Fuster, V., Badimon, L., Badimon, J. J., et al. (1992a). The pathogenesis of coronary artery disease and the acute coronary syndromes (1). The New England Journal of Medicine, 326, 242–250.

    Article  PubMed  CAS  Google Scholar 

  • Fuster, V., Badimon, L., Badimon, J. J., et al. (1992b). The pathogenesis of coronary artery disease and the acute coronary syndromes (2). The New England Journal of Medicine, 326, 310–318.

    Article  PubMed  CAS  Google Scholar 

  • Gabai, V. L., Meriin, A. B., Yaglom, J. A., et al. (2000). Suppression of stress kinase JNK is involved in HSP72-mediated protection of myogenic cells from transient energy deprivation. HSP72 alleviates the stress-induced inhibition of JNK dephosphorylation. The Journal of Biological Chemistry, 275, 38088–38094.

    Article  PubMed  CAS  Google Scholar 

  • Garrido, C., Brunet, M., Didelot, C., et al. (2006). Heat shock proteins 27 and 70: Anti-apoptotic proteins with tumorigenic properties. Cell Cycle, 5, 2592–2601.

    Article  CAS  PubMed  Google Scholar 

  • Gething, M. J., & Sambrook, J. (1992). Protein folding in the cell. Nature, 355, 33–45.

    Article  PubMed  CAS  Google Scholar 

  • Ghayour-Mobarhan, M., Lamb, D. J., Tavallaie, S., et al. (2007). Relationship between plasma cholesterol, von Willebrand factor concentrations, extent of atherosclerosis and antibody titers to heat shock proteins-60, -65 and -70 in cholesterol-fed rabbits. International Journal of Experimental Pathology, 88, 249–255.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghayour-Mobarhan, M., Saber, H., & Ferns, G. A. (2012). The potential role of heat shock protein 27 in cardiovascular disease. Clinica Chimica Acta, 413, 15–24.

    Article  CAS  Google Scholar 

  • Ghosh, J. G., Houck, S. A., & Clark, J. I. (2007). Interactive domains in the molecular chaperone human alphaB crystallin modulate microtubule assembly and disassembly. PLoS One, 2, e498.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Golenhofen, N., Perng, M. D., Quinlan, R. A., et al. (2004). Comparison of the small heat shock proteins alphaB-crystallin, MKBP, HSP25, HSP20, and cvHSP in heart and skeletal muscle. Histochemistry and Cell Biology, 122, 415–425.

    Article  PubMed  CAS  Google Scholar 

  • Golenhofen, N., Redel, A., Wawrousek, E. F., et al. (2006). Ischemia- induced increase of stiffness of alphaB-crystallin/HSPB2-deficient myocardium. Pflügers Archiv, 451, 518–525.

    Article  PubMed  CAS  Google Scholar 

  • Grose, J. H., Langston, K., Wang, X., et al. (2015). Characterization of the cardiac overexpression of HSPB2 reveals mitochondrial and myogenic roles supported by a cardiac HspB2 interactome. PLoS One, 10, e0133994.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gupta, S., & Knowlton, A. A. (2007). HSP60 trafficking in adult cardiac myocytes: role of the exosomal pathway. American Journal of Physiology. Heart and Circulatory Physiology, 292, H3052–H3056.

    Article  PubMed  CAS  Google Scholar 

  • Gurbuxani, S., Schmitt, E., & Cande, C. (2003). Heat shock protein 70 binding inhibits the nuclear import of apoptosis-inducing factor. Oncogene, 22, 6669–6678.

    Article  PubMed  CAS  Google Scholar 

  • Gwag, T., Park, K., Kim, E., et al. (2013). Inhibition of C2C12 myotube atrophy by a novel HSP70 inducer, celastrol, via activation of Akt1 and ERK1/2 pathways. Archives of Biochemistry and Biophysics, 537, 21–30.

    Article  PubMed  CAS  Google Scholar 

  • Harris, M. B., & Starnes, J. W. (2001). Effects of body temperature during exercise training on myocardial adaptations. American Journal of Physiology. Heart and Circulatory Physiology, 280, H2271–H2280.

    Article  PubMed  CAS  Google Scholar 

  • Hattori, K., Ozaki, Y., Ismail, T. F., et al. (2012). Impact of statin therapy on plaque characteristics as assessed by serial OCT, grayscale and integrated backscatter-IVUS. JACC Cardiovascular Imaging, 5, 169–177.

    Article  PubMed  Google Scholar 

  • Hayashi, M., Imanaka-Yoshida, K., et al. (2006). A crucial role of mitochondrial Hsp40 in preventing dilated cardiomyopathy. Nature Medicine, 12, 128–132.

    Article  PubMed  CAS  Google Scholar 

  • Hedhli, N., Lizano, P., Hong, C., et al. (2008). Proteasome inhibition decreases cardiac remodeling after initiation of pressure overload. American Journal of Physiology. Heart and Circulatory Physiology, 295, H1385–H1393.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Henderson, B., & Pockley, A. G. (2012). Proteotoxic stress and circulating cell stress proteins in the cardiovascular diseases. Cell Stress & Chaperones, 17, 303–311.

    Article  CAS  Google Scholar 

  • Hirakawa, T., Rokutan, K., Nikawa, T., et al. (1996). Geranylgeranylacetone induces heat shock proteins in cultured guinea pig gastric mucosal cells and rat gastric mucosa. Gastroenterology, 111, 345–357.

    Article  PubMed  CAS  Google Scholar 

  • Hu, X., Van Marion, D. M. S., Wiersma, M., et al. (2017). The protective role of small heat shock proteins in cardiac diseases: Key role in atrial fibrillation. Cell Stress & Chaperones, 22, 665–674.

    Article  CAS  Google Scholar 

  • Ishiwata, T., Orosz, A., Wang, X., et al. (2012). HSPB2 is dispensable for the cardiac hypertrophic response but reduces mitochondrial energetics following pressure overload in mice. PLoS One, 7, e42118.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jee, H. (2016). Size dependent classification of heat shock proteins: A mini-review. Journal Exercise Rehabilitation, 12, 255–259.

    Article  Google Scholar 

  • Jessup, M., Greenberg, B., Mancini, D., et al. (2011). Calcium upregulation by percutaneous administration of gene therapy in cardiac disease (CUPID) investigators. Calcium upregulation by percutaneous administration of gene therapy in cardiac disease (CUPID): A phase 2 trial of intracoronary gene therapy of sarcoplasmic reticulum Ca2+-ATPase in patients with advanced heart failure. Circulation, 124, 304–313.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jimenez, S. K., Small, B. A., Hsu, A. K., et al. (2014). Heat shock proteins HSP90 and HSP70 mediate opioid- and GSK3β-induced cardioprotection. Circulation Research, 115, 340.

    Google Scholar 

  • Johnson, A. D., Berberian, P. A., Tytell, M., et al. (1993). Atherosclerosis alters the localization of HSP70 in human and macaque aortas. Experimental and Molecular Pathology, 58, 155–168.

    Article  PubMed  CAS  Google Scholar 

  • Kampinga, H. H., & Craig, E. A. (2010). The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nature Reviews Molecular Cell Biology, 11, 579–592.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kappe, G., Franck, E., Verschuure, P., et al. (2003). The human genome encodes 10 alpha-crystallin-related small heat shock proteins: HspB1-10. Cell Stress & Chaperones, 8, 53–61.

    Article  CAS  Google Scholar 

  • Kessing, D., Denollet, J., Widdershoven, J., et al. (2016). Self-care and all-cause mortality in patients with chronic heart failure. JACC Heart Failure, 4, 176–183.

    Article  PubMed  Google Scholar 

  • Khalil, A. A., Kabapy, N. F., Deraz, S. F., et al. (2011). Heat shock proteins in oncology: Diagnostic biomarkers or therapeutic targets? Biochimica et Biophysica Acta, 1816, 89–104.

    PubMed  CAS  Google Scholar 

  • Khan, I. U., Wallin, R., Gupta, R. S., et al. (1998). Protein kinase A-catalyzed phosphorylation of heat shock protein 60 chaperone regulates its attachment to histone 2B in the T lymphocyte plasma membrane. Proceedings of the National Academy of Sciences of the United States of America, 95, 10425–10430.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kieran, D., Kalmar, B., Dick, J. R., et al. (2004). Treatment with arimoclomol, a coinducer of heat shock proteins, delays disease progression in ALS mice. Nature Medicine, 10, 402–405.

    Article  CAS  PubMed  Google Scholar 

  • Kim, K. K., Kim, R., & Kim, S. H. (1998). Crystal structure of a small heat-shock protein. Nature, 394, 595–599.

    Article  PubMed  CAS  Google Scholar 

  • Kirkegaard, T., Gray, J., Priestman, D. A., et al. (2016). Heat shock protein-based therapy as a potential candidate for treating the sphingolipidoses. Science Translational Medicine, 8, 355ra118.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kleindienst, R., Xu, Q., Willeit, J., et al. (1993). Immunology of atherosclerosis. Demonstration of heat shock protein 60 expression and T lymphocytes bearing alpha/beta or gamma/delta receptor in human atherosclerotic lesions. The American Journal of Pathology, 142, 1927–1937.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kliková, K., Pilchova, I., Stefanikova, A., et al. (2016). The role of heat shock proteins in leukemia. Klinická Onkologie, 29, 29–38.

    Article  PubMed  Google Scholar 

  • Knowlton, A. A., Kapadia, S., & Torre-Amione, G. (1998). Differential expression of heat shock proteins in normal and failing human hearts. Journal of Molecular and Cellular Cardiology, 30, 811–818.

    Article  PubMed  CAS  Google Scholar 

  • Komukai, K., Kubo, T., Kitabata, H., et al. (2014). Effect of atorvastatin therapy on fibrous cap thickness in coronary atherosclerotic plaque as assessed by optical coherence tomography: The EASY-FIT study. Journal of the American College of Cardiology, 64, 2207–2217.

    Article  PubMed  CAS  Google Scholar 

  • Kupatt, C., Dessy, C., Hinkel, R., et al. (2004). Heat shock protein 90 transfection reduces ischemia-reperfusion-induced myocardial dysfunction via reciprocal endothelial NO synthase serine 1177 phosphorylation and threonine 495 dephosphorylation. Arteriosclerosis, Thrombosis, and Vascular Biology, 24, 1435–1441.

    Article  PubMed  CAS  Google Scholar 

  • Lamb, D. J., El-Sankary, W., & Ferns, G. A. (2002). Molecular mimicry in atherosclerosis: A role for heat shock proteins in immunization. Atherosclerosis, 167, 177–185.

    Article  Google Scholar 

  • Lambert, H., Charette, S. J., Bernier, A. F., et al. (1999). HSP27 multimerization mediated by phosphorylation-sensitive intermolecular interactions at the amino terminus. The Journal of Biological Chemistry, 274, 9378–9385.

    Article  PubMed  CAS  Google Scholar 

  • Lanka, V., Wieland, S., Barber, J., et al. (2009). Arimoclomol: A potential therapy under development for ALS. Expert Opinion on Investigational Drugs, 18, 1907–1918.

    Article  PubMed  CAS  Google Scholar 

  • Lee, J. H., Koo, T. H., Yoon, H., et al. (2006). Inhibition of NF-kappa B activation through targeting I kappa B kinase by celastrol, a quinone methide triterpenoid. Biochemical Pharmacology, 72, 1311–1321.

    Article  PubMed  CAS  Google Scholar 

  • Li, Y., Si, R., Feng, Y., et al. (2011). Myocardial ischemia activates an injurious innate immune signaling via cardiac heat shock protein 60 and Toll-like receptor 4. The Journal of Biological Chemistry, 286, 31308–31319.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lin, L., Kim, S. C., Wang, Y., et al. (2007). HSP60 in heart failure: Abnormal distribution and role in cardiac myocyte apoptosis. American Journal of Physiology. Heart and Circulatory Physiology, 293, H2238–H2247.

    Article  PubMed  CAS  Google Scholar 

  • Madamanchi, N. R., Patterson, C., Li, S., & Runge, S. M. (2001). Reactive oxygen species regulate heat-shock protein 70 via the JAK/STAT pathway. Arteriosclerosis, Thrombosis, and Vascular Biology, 21, 321–326.

    Article  PubMed  CAS  Google Scholar 

  • Malik, Z. A., Kott, K. S., Poe, A. J., et al. (2013). Cardiac myocyte exosomes: Stability, HSP60, and proteomics. American Journal of Physiology Heart and Circulatory Physiology, 304, H954–H965.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mamipour, M., Yousefi, M., & Hasanzadeh, M. (2017). An overview on molecular chaperones enhancing solubility of expressed recombinant proteins with correct folding. International Journal of Biological Macromolecules, 102, 367–375.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marber, M. S., Latchman, D. S., Walker, J. M., et al. (1993). Cardiac stress protein elevation 24 hours after brief ischemia or heat stress is associated with resistance to myocardial infarction. Circulation, 88, 1264–1272.

    Article  PubMed  CAS  Google Scholar 

  • Martin, T. P., Currie, S., & Baillie, G. S. (2014). The cardioprotective role of small heat-shock protein 20. Biochemical Society Transactions, 42, 270–273.

    Article  PubMed  CAS  Google Scholar 

  • Martin-Ventura, J. L., Duran, M. C., Blanco-Colio, L. M., et al. (2004). Identification by a differential proteomic approach of heat shock protein 27 as a potential marker of atherosclerosis. Circulation, 110, 2216–2219.

    Article  PubMed  CAS  Google Scholar 

  • Marunouchi, T., Inomata, S., Sanbe, A., et al. (2014). Protective effect of geranylgeranylacetone via enhanced induction of HSPB1 and HSPB8 in mitochondria of the failing heart following myocardial infarction in rats. European Journal of Pharmacology, 730, 140–147.

    Article  PubMed  CAS  Google Scholar 

  • Mayr, M., Metzler, B., Kiechl, S., et al. (1999). Endothelial cytotoxicity mediated by serum antibodies to heat shock proteins of Escherichia coli and Chlamydia pneumoniae: Immune reactions to heat shock proteins as a possible link between infection and atherosclerosis. Circulation, 99, 1560–1566.

    Article  PubMed  CAS  Google Scholar 

  • Mazzaferro, V., Coppa, J., Carrabba, M. G., et al. (2003). Vaccination with autologous tumor-derived heat-shock protein gp96after liver resection for metastatic colorectal cancer. Clinical Cancer Research, 9, 3235–3245.

    PubMed  CAS  Google Scholar 

  • Mu, H., Wang, L., & Zhao, L. (2017). HSP90 inhibition suppresses inflammatory response and reduces carotid atherosclerotic plaque formation in ApoE mice. Cardiovascular Therapy, 35(2), 1–9.

    Article  CAS  Google Scholar 

  • Multhoff, G., Pockley, A. G., Schmida, T. E., et al. (2015). The role of heat shock protein 70 (Hsp70) in radiation-induced immunomodulation. Cancer Letters, 368, 179–184.

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa, M., Tsujimoto, N., Nakagawa, H., et al. (2001). Association of HSPB2, a member of the small heat shock protein family, with mitochondria. Experimental Cell Research, 271, 161–168.

    Article  PubMed  CAS  Google Scholar 

  • Nakai, A., & Ishikawa, T. (2001). Cell cycle transition under stress conditions controlled by vertebrate heat shock factors. The EMBO Journal, 20, 2885–2895.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Neef, D. W., Jaeger, A. M., & Thiele, D. J. (2011). Heat shock transcription factor 1 as a therapeutic target in neurodegenerative diseases. Nature Reviews Drug Discovery, 10, 930–944.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Noguchi, T., Tanaka, A., Kawasaki, T., et al. (2015). Effect of intensive statin therapy on coronary high-intensity plaques detected by noncontrast T1-weighted imaging: The AQUAMARINE pilot study. Journal of the American College of Cardiology, 66, 245–256.

    Article  PubMed  CAS  Google Scholar 

  • Ooie, T., Takahashi, N., Saikawa, T., et al. (2001). Single oral dose of geranylgeranylacetone induces heat-shock protein 72 and renders protection against ischemia/reperfusion injury in rat heart. Circulation, 104, 1837–1843.

    Article  PubMed  CAS  Google Scholar 

  • Panneerselvam, L., Raghunath, A., & Perumal, E. (2017). Differential expression of myocardial heat shock proteins in rats acutely exposed to fluoride. Cell Stress Chaperones, 22, 743–750. [Epub ahead of print].

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parfitt, D. A., Aguila, M., McCulley, C. H., et al. (2014). The heat-shock response co-inducer arimoclomol protects against retinal degeneration in rhodopsin retinitis pigmentosa. Cell Death & Disease, 5, e1236.

    Article  CAS  Google Scholar 

  • Pearl, L. H., & Prodromou, C. (2001). Structure, function, and mechanism of the Hsp90 molecular chaperone. Advances in Protein Chemistry, 59, 157–186.

    Article  PubMed  CAS  Google Scholar 

  • Perng, M. D., Cairns, L., van den Ijssel, P., et al. (1999). Intermediate filament interactions can be altered by HSP27 and alphaB-crystallin. Journal of Cell Science, 112, 2099–2112.

    PubMed  CAS  Google Scholar 

  • Pfister, G., Stroh, C. M., & Perschinka, H. (2005). Detection of HSP60 on the membrane surface of stressed human endothelial cells by atomic force and confocal microscopy. Journal of Cell Science, 118, 1587–1594.

    Article  PubMed  CAS  Google Scholar 

  • Picard, D. (2002). Heat-shock protein 90, a chaperone for folding and regulation. Cellular and Molecular Life Sciences, 59, 1640–1648.

    Article  PubMed  CAS  Google Scholar 

  • Pipkin, W., Johnson, J. A., Creazzo, T. L., et al. (2003). Localization, macromolecular associations, and function of the small heat shock-related protein HSP20 in rat heart. Circulation, 107, 469–476.

    Article  PubMed  CAS  Google Scholar 

  • Pockley, A. G. (2002). Heat shock proteins, inflammation, and cardiovascular disease. Circulation, 105, 1012–1017.

    Article  PubMed  CAS  Google Scholar 

  • Pockley, A. G., Georgiades, A., Thulin, T., et al. (2003). Serum heat shock protein 70 levels predict the development of atherosclerosis in subjects with established hypertension. Hypertension, 42, 235–238.

    Article  PubMed  CAS  Google Scholar 

  • Powers, S. K., Lennon, S. L., Quindry, J., et al. (2002). Exercise and cardioprotection. Current Opinion in Cardiology, 17, 495–502.

    Article  PubMed  Google Scholar 

  • Pratt, W. B., & Toft, D. O. (2003). Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Experimental Biology and Medicine (Maywood, N.J.), 228, 111–133.

    Article  CAS  Google Scholar 

  • Prohászka, Z., Duba, J., Horváth, L., et al. (2001). Comparative study on antibodies to human and bacterial 60 kDa heat shock proteins in a large cohort of patients with coronary heart disease and healthy subjects. European Journal of Clinical Investigation, 31, 285–292.

    Article  PubMed  Google Scholar 

  • Puato, M., Faggin, E., Rattazzi, M., et al. (2010). Atorvastatin reduces macrophage accumulation in atherosclerotic plaques: A comparison of a nonstatin-based regimen in patients undergoing carotid endarterectomy. Stroke, 41, 1163–1168.

    Article  PubMed  CAS  Google Scholar 

  • Qian, J., Ren, X., Wang, X., et al. (2009). Blockade of Hsp20 phosphorylation exacerbates cardiac ischemia/reperfusion injury by suppressed autophagy and increased cell death. Circulation Research, 105, 1223–1231.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qian, J., Vafiadaki, E., Florea, S. M., et al. (2011). Small heat shock protein 20 interacts with protein phosphatase-1 and enhances sarcoplasmic reticulum calcium cycling. Circulation Research, 108, 1429–1438.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qiu, H., Lizano, P., Laure, L., et al. (2011). H11 kinase/heat shock protein 22 deletion impairs both nuclear and mitochondrial functions of STAT3 and accelerates the transition into heart failure on cardiac overload. Circulation, 124, 406–415.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rayner, K., Chen, Y. X., McNulty, M., et al. (2008). Extracellular release of the atheroprotective heat shock protein 27 is mediated by estrogen and competitively inhibits acLDL binding to scavenger receptor-A. Circulation Research, 103, 133–141.

    Article  PubMed  CAS  Google Scholar 

  • Richter, K., & Buchner, J. (2001). Hsp90: Chaperoning signal transduction. Journal of Cellular Physiology, 188, 281–290.

    Article  PubMed  CAS  Google Scholar 

  • Rigano, R., Profumo, E., Buttari, B., et al. (2007). Heat shock proteins and autoimmunity in patients with carotid atherosclerosis. Annals of the New York Academy of Sciences, 1107, 1–10.

    Article  PubMed  CAS  Google Scholar 

  • Rinaldi, B., Corbi, G., Boccuti, S., et al. (2006). Exercise training affects age-induced changes in SOD and heat shock protein expression in rat heart. Experimental Gerontology, 41, 764–770.

    Article  PubMed  CAS  Google Scholar 

  • Ritossa, F. (1962). A new puffing pattern induced by heat shock and DNP in drosophila. Experientia, 18, 571–573.

    Article  CAS  Google Scholar 

  • Sakamoto, M., Minamino, T., Toko, H., et al. (2006). Upregulation of heat shock transcription factor 1 plays a critical role in adaptive cardiac hypertrophy. Circulation Research, 99, 1411–1418.

    Article  PubMed  CAS  Google Scholar 

  • Sassa, H., Takaishi, Y., & Terada, H. (1990). The triterpene celastrol as a very potent inhibitor of lipid peroxidation in mitochondria. Biochemical Biophysical Research Communications, 172, 890–897.

    Article  PubMed  CAS  Google Scholar 

  • Sasu, S., LaVerda, D., Qureshi, N., et al. (2001). Chlamydia pneumoniae and chlamydial heat shock protein 60 stimulate proliferation of human vascular smooth muscle cells via toll-like receptor 4 and p44/p42 mitogen-activated protein kinase activation. Circulation Research, 89, 244–250.

    Article  PubMed  CAS  Google Scholar 

  • Schönbeck, U., & Libby, P. (2004). Inflammation, immunity, and HMG-CoA reductase inhibitors: Statins as antiinflammatory agents? Circulation, 109, II18–II26.

    Article  PubMed  CAS  Google Scholar 

  • Seibert, T. A., Hibbert, B., Chen, Y. X., et al. (2013). Serum heat shock protein 27 levels represent a potential therapeutic target for atherosclerosis: Observations from a human cohort and treatment of female mice. Journal of the American College of Cardiology, 62, 1446–1454.

    Article  PubMed  CAS  Google Scholar 

  • Selcen, D., & Engel, A. G. (2003). Myofibrillar myopathy caused by novel dominant negative alpha B-crystallin mutations. Annals of Neurology, 54, 804–810.

    Article  PubMed  CAS  Google Scholar 

  • Singh, L., Randhawa, P. K., Singh, N., et al. (2017). Redox signaling in remote ischemic preconditioning-induced cardioprotection: Evidences and mechanisms. European Journal of Pharmacology, 809, 151–155.

    Article  PubMed  CAS  Google Scholar 

  • Smith, S. C., Jr., Benjamin, E. J., Bonow, R. O., et al. (2011). AHA/ACCF secondary prevention and risk reduction therapy for patients with coronary and other atherosclerotic vascular disease: 2011 update: a guideline from the American Heart Association and American College of Cardiology Foundation endorsed by the World Heart Federation and the Preventive Cardiovascular Nurses Association. Journal of the American College of Cardiology, 58, 2432–2446.

    Article  PubMed  Google Scholar 

  • Sreedhar, A. S., Kalmár, E., Csermely, P., et al. (2004). Hsp90 isoforms: Functions, expression and clinical importance. FEBS Letters, 562, 11–15.

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama, Y., Suzuki, A., Kishikawa, M., et al. (2000). Muscle develops a specific form of small heat shock protein complex composed of MKBP/HSPB2 and HSPB3 during myogenic differentiation. The Journal of Biological Chemistry, 275, 1095–1104.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, A., Sugiyama, Y., Hayashi, Y., et al. (1998). MKBP, a novel member of the small heat shock protein family, binds and activates the myotonic dystrophy protein kinase. The Journal of Cell Biology, 140, 1113–1124.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Trott, A., West, J. D., Klaić, L., et al. (2008). Activation of heat shock and antioxidant responses by the natural product celastrol: Transcriptional signatures of a thiol-targeted molecule. Molecular Biology of the Cell, 19, 1104–1112.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Uchiyama, T., Atsuta, H., Utsugi, T., et al. (2007). HSF1 and constitutively active HSF1 improve vascular endothelial function (heat shock proteins improve vascular endothelial function). Atherosclerosis, 190, 321–329.

    Article  PubMed  CAS  Google Scholar 

  • van de Klundert, F. A., Gijsen, M. L., van den Ijssel, P. R., et al. (1998). alpha B-crystallin and hsp25 in neonatal cardiac cells-differences in cellular localization under stress conditions. European Journal of Cell Biology, 75, 38–45.

    Article  PubMed  Google Scholar 

  • Van Montfort, R. L., Basha, E., Friedrich, K. L., et al. (2001a). Crystal structure and assembly of a eukaryotic small heat shock protein. Nature Structural Biology, 8, 1025–1030.

    Article  PubMed  CAS  Google Scholar 

  • Van Montfort, R., Slingsby, C., & Vierling, E. (2001b). Structure and function of the small heat shock protein/alpha-crystallin family of molecular chaperones. Advances in Protein Chemistry, 59, 105–156.

    Article  PubMed  Google Scholar 

  • Veres, A., Füst, G., Smieja, M., et al. (2002). Heart Outcomes Prevention Evaluation (HOPE) study investigators. Relationship of anti-60 kDa heat shock protein and anti-cholesterol antibodies to cardiovascular events. Circulation, 106, 2775–2780.

    Article  PubMed  CAS  Google Scholar 

  • Verschuure, P., Tatard, C., Boelens, W. C., et al. (2003). Expression of small heat shock proteins HspB2, HspB8, Hsp20 and cvHsp in different tissues of the perinatal developing pig. European Journal of Cell Biology, 82, 523–530.

    Article  PubMed  CAS  Google Scholar 

  • Vicart, P., Caron, A., Guicheney, P., et al. (1998). A missense mutation in the alphaB-crystallin chaperone gene causes a desmin-related myopathy. Nature Genetics, 20, 92–95.

    Article  PubMed  CAS  Google Scholar 

  • Vicencio, J. M., Yellon, D. M., Sivaraman, V., et al. (2015). Plasma exosomes protect the myocardium from ischemia-reperfusion injury. Journal of the American College of Cardiology, 65, 1525–1536.

    Article  PubMed  CAS  Google Scholar 

  • Vígh, L., Literáti, P. N., Horváth, I., et al. (1997). Bimoclomol: A nontoxic, hydroxylamine derivative with stress protein-inducing activity and cytoprotective effects. Nature Medicine, 3, 1150–1154.

    Article  PubMed  Google Scholar 

  • Vos, M. J., Hageman, J., Carra, S., et al. (2008). Structural and functional diversities between members of the human HSPB, HSPH, HSPA, and DNAJ chaperone families. Biochemistry, 47, 7001–7011.

    Article  PubMed  CAS  Google Scholar 

  • Vos, M. J., Kanon, B., & Kampinga, H. H. (2009). HSPB7 is a SC35 speckle resident small heat shock protein. Biochimica et Biophysica Acta, 1793, 1343–1353.

    Article  PubMed  CAS  Google Scholar 

  • Vos, M. J., Zijlstra, M. P., & Kanon, B. (2010). HSPB7 is the most potent polyQ aggregation suppressor within the HSPB family of molecular chaperones. Human Molecular Genetics, 19, 4677–4693.

    Article  PubMed  CAS  Google Scholar 

  • Vos, M. J., Zijlstra, M. P., Carra, S., et al. (2011). Small heat shock proteins, protein degradation and protein aggregation diseases. Autophagy, 7, 101–103.

    Article  PubMed  Google Scholar 

  • Wang, W., Peng, Y., Wang, Y., et al. (2009). Anti-apoptotic effect of heat shock protein 90 on hypoxia-mediated cardiomyocyte damage is mediated via the phosphatidylinositol 3-kinase/AKT pathway. Clinical and Experimental Pharmacology & Physiology, 36, 899–903.

    Article  CAS  Google Scholar 

  • Wang, Y., Chen, L., Hagiwara, N., et al. (2010). Regulation of heat shock protein 60 and 72 expression in the failing heart. Journal of Molecular and Cellular Cardiology, 48, 360–366.

    Article  PubMed  CAS  Google Scholar 

  • Wei, H., Campbell, W., & Vander Heide, R. S. (2006). Heat shock-induced cardioprotection activates cytoskeletal-based cell survival pathways. American Journal of Physiology. Heart and Circulatory Physiology, 291, H638–H647.

    Article  PubMed  CAS  Google Scholar 

  • Weintraub, N. L., & Rubinstein, J. (2013). Cooling the fire of atherosclerosis with heat shock protein 27. Journal of the American College of Cardiology, 62, 1455–1456.

    Article  PubMed  PubMed Central  Google Scholar 

  • Weintraub, W. S., Daniels, S. R., Burke, L. E., et al. (2011). Value of primordial and primary prevention for cardiovascular disease: A policy statement from the American Heart Association. Circulation, 124, 967–990.

    Article  PubMed  CAS  Google Scholar 

  • Westerheide, S. D., Bosman, J. D., Mbadugha, B. N., et al. (2004). Celastrols as inducers of the heat shock response and cytoprotection. The Journal of Biological Chemistry, 279, 56053–56060.

    Article  PubMed  CAS  Google Scholar 

  • Westerheide, S. D., Raynes, R., Powell, C., et al. (2012). HSF transcription factor family, heat shock response, and protein intrinsic disorder. Current Protein & Peptide Science, 13, 86–103.

    Article  CAS  Google Scholar 

  • Willis, M. S., & Patterson, C. (2010). Hold me tight: Role of the heat shock protein family of chaperones in cardiac disease. Circulation, 122, 1740–1751.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu, K., Xu, W., You, Q., et al. (2012). Increased expression of heat shock protein 90 under chemical hypoxic conditions protects cardiomyocytes against injury induced by serum and glucose deprivation. International Journal of Molecular Medicine, 30, 1138–1144.

    Article  PubMed  CAS  Google Scholar 

  • Xiao, Q., Mandal, K., Schett, G., et al. (2005). Association of serum-soluble heat shock protein 60 with carotid atherosclerosis: Clinical significance determined in a follow-up study. Stroke, 36, 2571–2576.

    Article  PubMed  CAS  Google Scholar 

  • Xu, Q., Schett, G., Perschinka, H., et al. (2000). Serum soluble heat shock protein 60 is elevated in subjects with atherosclerosis in a general population. Circulation, 102, 14–20.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, X., Min, X., Li, C., et al. (2010). Involvement of reductive stress in the cardiomyopathy in transgenic mice with cardiac-specific overexpression of heat shock protein 27. Hypertension, 55, 1412–1417.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, C., Liu, X., Miao, J., et al. (2017). Heat shock protein 70 protects cardiomyocytes through suppressing SUMOylation and nucleus translocation of phosphorylated eukaryotic elongation factor 2 during myocardial ischemia and reperfusion. Apoptosis, 22, 608–625.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, Y., Zhang, C., Wei, X., et al. (2015). Heat shock protein 60 stimulates the migration of vascular smooth muscle cells via Toll-like receptor 4 and ERK MAPK activation. Scientific Reports, 5, 15352.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhong, G. Q., Tu, R. H., Zeng, Z. Y., et al. (2014). Novel functional role of heat shock protein 90 in protein kinase C-mediated ischemic post- conditioning. The Journal of Surgical Research, 189, 198–206.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, J., Quyyumi, A. A., Rott, D., et al. (2001). Antibodies to human heat-shock protein 60 are associated with the presence and severity of coronary artery disease: Evidence for an autoimmune component of atherogenesis. Circulation, 103, 1071–1075.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, J., Quyyumi, A. A., Wu, H., et al. (2003). Increased serum levels of heat shock protein 70 are associated with low risk of coronary artery disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 23, 1055–1059.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the grant (ex-60%) of the University of Brescia, Italy. The Authors sincerely thanks also Fondazione Cariplo e Regione Lombardia “New opportunities and ways towards ERC” (Project 2014-2256).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita Rezzani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bonomini, F., Favero, G., Trapletti, V., Rezzani, R. (2018). Heat Shock Proteins in Cardiovascular Diseases: From Bench to Bedside. In: Asea, A., Kaur, P. (eds) HSP70 in Human Diseases and Disorders. Heat Shock Proteins, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-319-89551-2_11

Download citation

Publish with us

Policies and ethics