Skip to main content

Contributors to Faecal Water Contamination in Urban Environments

  • Chapter
  • First Online:
Water Management and the Environment: Case Studies (WINEC 2017)

Part of the book series: Water Science and Technology Library ((WSTL,volume 86))

Included in the following conference series:

Abstract

Faecal contamination of water has both anthropogenic and zoogenic origins that can shade various point and nonpoint/diffuse sources of pollution. Due to the dual origin and number of sources of faecal contamination, there are immense challenges in the implementation of effective measures to protect water bodies from pollution that poses threats to human and environmental health. The main health threats refer to infections, illnesses and deaths caused by enteric pathogenic microbes, in particular those responsible for waterborne zoonoses. To detect and identify the origins and sources of faecal pollution simultaneously, various methods and indicators have been compiled into a comprehensive measuring toolbox. Molecular diagnostics using genetic markers derived from Bacteroidales 16S rRNA gene sequences are quite prevalent in the current methodological implementation for the identification of faecal contamination sources in water. For instance, a culture- and library-independent microbial source tracking toolbox combining micro- and molecular biology tests run as a three-step procedure has been implemented in Norway. Outcomes from the Norwegian studies have identified two general trends in dominance of contributors to faecal water contamination in urban environments. Firstly, there is a tendency of higher contributions from anthropogenic sources during the cold season. Secondly, the identification of the dominance of zoogenic sources in faecal water contamination during warm periods of the year.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aftenposten (2013) Opp mot en million rotter i Oslo. https://www.aftenposten.no/osloby/i/212oy/Opp-mot-en-million-rotter-i-Oslo. Accessed 6 Aug 2017

  • Ahmed W, Sritharan T, Palmer A, Sidhu JP, Toze S (2013) Evaluation of bovine feces-associated microbial source tracking markers and their correlations with fecal indicators and zoonotic pathogens in a Brisbane, Australia, reservoir. Appl Environ Microbiol 79(8):2682–2691

    Article  CAS  Google Scholar 

  • Åström J, Pettersson TJ, Reischer GH, Norberg T, Hermansson M (2015) Incorporating expert judgments in utility evaluation of Bacteroidales qPCR assays for microbial source tracking in a drinking water source. Environ Sci Technol 49(3):1311–1318

    Article  Google Scholar 

  • Bambic DG, Kildare-Hann BJ, Rajal VB, Sturm BS, Minton CB, Schriewer A, Wuertz S (2015) Spatial and hydrologic variation of Bacteroidales, adenovirus and enterovirus in a semi-arid wastewater effluent-impacted watershed. Water Res 15(75):83–94

    Article  Google Scholar 

  • Benskin CMcWH, Wilson K, Jones K, Hartley IR (2009) Bacterial pathogens in wild birds: a review of the frequency and effects of infection. Biol Rev 84:349–373. https://doi.org/10.1111/j.1469-185X.2008.00076.x

    Article  Google Scholar 

  • Böhm ME, Huptas C, Krey VM, Scherer S (2015) Massive horizontal gene transfer, strictly vertical inheritance and ancient duplications differentially shape the evolution of Bacillus cereus enterotoxin operons hbl, cytK and nhe. BMC Evol Biol 10(15):246. https://doi.org/10.1186/s12862-015-0529-4

    Article  Google Scholar 

  • Bolin C, Brown C, Rose J (2004) Emerging zoonotic diseases and water. In: Cotruvo J, Dufour A, Rees G, Bartram J, Carr R, Cliver DO, Craun GF, Fayer R, Gannonp VPJ (eds) Waterborne zoonoses: identification, causes, and control. WHO, London, UK, pp 21–26

    Google Scholar 

  • Carson CA, Shear BL, Ellersieck MR, Schnell JD (2003) Comparison of ribotyping and repetitive extragenic palindromic-PCR for identification of fecal Escherichia coli from humans and animals. Appl Environ Microbiol 69:1836–1839

    Article  CAS  Google Scholar 

  • Dick LK, Bernhard AE, Brodeur TJ, Santo Domingo JW, Simpson JM, Walters SP, Field KG (2005) Host distributions of uncultivated fecal Bacteroidales bacteria reveal genetic markers for fecal source identification. Appl Environ Microbiol 71(6):3184–3191

    Article  CAS  Google Scholar 

  • DN (2016) Dagens Nyheter, Råttinvasion i Stockholm—och de föredrar Östermalm. http://www.dn.se/sthlm/rattinvasion-i-stockholm-och-de-foredrar-ostermalm/. Accessed 21 Sept 2016

  • Duran M, Yurtsever D, Dunaev T (2009) Choice of indicator organism and library size considerations for phenotypic microbial source tracking by FAME profiling. Water Sci Technol 60(10):2659–2668

    Article  CAS  Google Scholar 

  • Edberg SC, Rice EW, Karlin RJ, Allen MJ (2000) Escherichia coli: the best biological drinking water indicator for public health protection. Symp Ser Soc Appl Microbiol 29:106S–116S

    Article  Google Scholar 

  • Farnleitner AH, Ryzinska-Paier G, Reischer GH, Burtscher MM, Knetsch S, Kirschner AKT, Dirnböck T, Kuschnig G, Mach LR, Sommer R (2010) Escherichia coli and enterococci are sensitive and reliable indicators for human, livestock and wildlife faecal pollution in alpine mountainous water resources. J Appl Microbiol 109:1599–1608

    CAS  Google Scholar 

  • Fettvett (2016) Rotterace i avløpsnettet. http://fettvett.no/rotterace.html. Accessed 6 Aug 2017

  • Field KG (2004) Faecal source identification. In: Cotruvo J, Dufour A, Rees G, Bartram J, Carr R, Cliver DO, Craun GF, Fayer R, Gannonp VPJ (eds) Waterborne zoonoses: identification, causes, and control. WHO, London, UK, pp 349–366

    Google Scholar 

  • Field KG, Samadpour M (2007) Fecal source tracking, the indicator paradigm, and managing water quality. Water Res 41:3517–3538

    Article  CAS  Google Scholar 

  • Gerardi MH (2006) Wastewater bacteria. John Wiley and Sons Inc, Hoboken, NJ, USA

    Book  Google Scholar 

  • Guenther S, Wuttke J, Bethe A, Vojtěch J, Schaufler K, Semmler T, Ulrich RG, Wieler LH, Ewers C (2013) Is fecal carriage of extended-spectrum-β-lactamase-producing Escherichia coli in urban rats a risk for public health? Antimicrob Agents Chemother 57(5):2424–2425. https://doi.org/10.1128/AAC.02321-12

    Article  CAS  Google Scholar 

  • Hagedorn C, Harwood VJ, Blanch A (2011) Microbial source tracking: methods, applications and case studies. Springer, New York

    Book  Google Scholar 

  • Harrault L, Jarde E, Jeanneau L, Petitjean P (2014) Development of the analysis of fecal stanols in the oyster Crassostrea gigas and identification of fecal contamination in shellfish harvesting areas. Lipids 49(6):597–607

    Article  CAS  Google Scholar 

  • Hartel PG, Rodgers K, Moody GL, Hemmings SN, Fisher JA, McDonald JL (2008) Combining targeted sampling and fluorometry to identify human fecal contamination in a freshwater creek. J Water Health 6(1):105–116

    Article  CAS  Google Scholar 

  • Harwood VJ, Staley C, Badgley BD, Borges K, Korajkic A (2014) Microbial source tracking markers for detection of fecal contamination in environmental waters: relationships between pathogens and human health outcomes. FEMS Microbiol Rev 38:1–40

    Article  CAS  Google Scholar 

  • IWFA (2017) Institute Water for Africa, Water and health. https://www.water-for-africa.org/en/health.html. Accessed 26 June 2017

  • Kanarat S (2004) What are the criteria for determining whether a disease is zoonotic and water related? In: Cotruvo J, Dufour A, Rees G, Bartram J, Carr R, Cliver DO, Craun GF, Fayer R, Gannonp VPJ (eds) Waterborne zoonoses: identification, causes, and control. WHO, London, UK, pp 136–150

    Google Scholar 

  • Khatib LA, Tsai YL, Olson BH (2003) A biomarker for the identification of swine fecal pollution in water using the STII toxin gene from enterotoxigenic Escherichia coli. Appl Microbiol Biotechnol 63(2):231–238

    Article  CAS  Google Scholar 

  • Kobayashi A, Sano D, Okabe S (2013) Effects of temperature and predator on the persistence of host-specific Bacteroides-Prevotella genetic markers in water. Water Sci Technol 67(4):838–845

    Article  CAS  Google Scholar 

  • Lamendella R, Santo Domingo JW, Yannarell AC, Ghosh S, Di Giovanni G, Mackie RI, Oerther DB (2009) Evaluation of swine-specific PCR assays used for fecal source tracking and analysis of molecular diversity of swine-specific “Bacteroidales” populations. Appl Environ Microbiol 75:5787–5796

    Article  CAS  Google Scholar 

  • Layton A, McKay L, Williams D, Garrett V, Gentry R, Sayler G (2006) Development of Bacteroides 16S rRNA gene TaqMan-based real-time PCR assays for estimation of total, human, and bovine fecal pollution in water. Appl Environ Microbiol 72(6):4214–4224

    Article  CAS  Google Scholar 

  • Marotz CA, Zarrinpar A (2016) Treating obesity and metabolic syndrome with fecal microbiota transplantation. Yale J Biol Med 89(3):383–388

    Google Scholar 

  • McQuaig S, Griffith J, Harwood VJ (2012) Association of fecal indicator bacteria with human viruses and microbial source tracking markers at coastal beaches impacted by nonpoint source pollution. Appl Environ Microbiol 78(18):6423–6432

    Article  CAS  Google Scholar 

  • Mieszkin S, Caprais MP, Le Mennec C, Le Goff M, Edge TA, Gourmelon M (2013) Identification of the origin of faecal contamination in estuarine oysters using Bacteroidales and F-specific RNA bacteriophage markers. J Appl Microbiol 115(3):897–907

    Article  CAS  Google Scholar 

  • Moe CL (2004) What are the criteria for determining whether a disease is zoonotic and water related? In: Cotruvo J, Dufour A, Rees G, Bartram J, Carr R, Cliver DO, Craun GF, Fayer R, Gannonp VPJ (eds) Waterborne zoonoses: identification, causes, and control. WHO, London, UK, pp 27–45

    Google Scholar 

  • Moyo SJ, Maselle SY, Matee MI, Langeland N, Mylvaganam H (2007) Identification of diarrheagenic Escherichia coli isolated from infants and children in Dar es Salaam, Tanzania. BMC Infect Dis 9(7):92. https://doi.org/10.1186/1471-2334-7-92

    Article  CAS  Google Scholar 

  • Olivas Y, Faulkner BR (2008) Fecal source tracking by antibiotic resistance analysis on a watershed exhibiting low resistance. Environ Monit Assess 139:15–25

    Article  CAS  Google Scholar 

  • Paruch AM, Mæhlum T (2012) Specific features of Escherichia coli that distinguish it from coliform and thermotolerant coliform bacteria and define it as the most accurate indicator of faecal contamination in the environment. Ecol Indic 23:140–142

    Article  Google Scholar 

  • Paruch L, Paruch AM (2017) The importance of melting curve analysis in discriminating faecal and environmental Bacteroidales bacteria. Microbiol 86(4):536–538. https://doi.org/10.1134/S0026261717040117

    Article  CAS  Google Scholar 

  • Paruch AM, Mæhlum T, Robertson L (2015a) Changes in microbial quality of irrigation water under different weather conditions in Southeast Norway. Environ Process 2:115–124. https://doi.org/10.1007/s40710-014-0054-2

    Article  CAS  Google Scholar 

  • Paruch L, Paruch AM, Blankenberg A-GB, Bechmann M, Mæhlum T (2015b) Application of host-specific genetic markers for microbial source tracking of faecal water contamination in an agricultural catchment. Acta Agric Scand 65(S2):164–172

    Google Scholar 

  • Paruch AM, Paruch L, Mæhlum T (2017) Kildesporing av fekal vannforurensing med molekylærbiologiske metoder—Eksempler på undersøkelser i Norge (Source tracking of fecal water contamination by molecular biology methods—Examples of surveys in Norway). NIBIO Rapport 3/66, Aas, Norway

    Google Scholar 

  • Pond K (2005) Water recreation and disease: plausibility of associated infections, acute effects, sequelae and mortality. WHO/IWA, London

    Google Scholar 

  • Quigley EM (2013) Gut bacteria in health and disease. Gastroenterol Hepatol (NY) 9(9):560–569

    Google Scholar 

  • Reischer GH, Kasper DC, Steinborn R, Farnleitner AH, Mach RL (2007) A quantitative real-time PCR assay for the highly sensitive and specific detection of human faecal influence in spring water from a large alpine catchment area. Lett Appl Microbiol 44(4):351–356

    Article  CAS  Google Scholar 

  • Scheffe L (2007) Reducing risk of E. coli O157: H7 contamination. Nutrient Management Technical Note No 7. USDA, NRCS, Washington, DC, USA

    Google Scholar 

  • Schueler TR (2000) Microbes and urban watersheds: concentrations, sources, and pathways. In: Schueler TR, Holland HK (eds) The practice of watershed protection. Center for Watershed Protection, Ellicott City, Md, pp 68–78

    Google Scholar 

  • Scott TM, Jenkins TM, Lukasik J, Rose JB (2005) Potential use of a host associated molecular marker in Enterococcus faecium as an index of human pollution. Environ Sci Technol 39(1):283–287

    Article  CAS  Google Scholar 

  • Shahryari A, Nikaeen M, Khiadani Hajian M, Nabavi F, Hatamzadeh M, Hassanzadeh A (2014) Applicability of universal Bacteroidales genetic marker for microbial monitoring of drinking water sources in comparison to conventional indicators. Environ Monit Assess 186(11):7055–7062. https://doi.org/10.1007/s10661-014-3910-7

    Article  CAS  Google Scholar 

  • Shanks OC, Atikovic E, Blackwood AD, Lu J, Noble RT, Santo Domingo J, Seifring S, Sivaganesan M, Huagland RA (2008) Quantitative PCR for detection and enumeration of genetic markers of bovine fecal pollution. Appl Environ Microbiol 74(3):745–752

    Article  CAS  Google Scholar 

  • Smith A, Sterba-Boatwright B, Mott J (2010) Novel application of a statistical technique, random forests in a bacterial source tracking study. Water Res 44(14):4067–4076

    Article  CAS  Google Scholar 

  • Sowah RA, Habteselassie MY, Radcliffe DE, Bauske E, Risse M (2017) Isolating the impact of septic systems on fecal pollution in streams of suburban watersheds in Georgia, United States. Water Res 108:330–338

    Article  CAS  Google Scholar 

  • Staley ZR, Grabuski J, Sverko E, Edge TA (2016) Comparison of microbial and chemical source tracking markers to identify fecal contamination sources in Humber River (Toronto, Ontario, Canada) and associated storm water outfalls. Appl Environ Microbiol 82(21):6357–6366

    Article  CAS  Google Scholar 

  • Suresh K, Smith HV (2004) Tropical organisms in Asia/Africa/South America. In: Cotruvo J, Dufour A, Rees G, Bartram J, Carr R, Cliver DO, Craun GF, Fayer R, Gannonp VPJ (eds) Waterborne zoonoses: identification, causes, and control. WHO, London, UK, pp 93–112

    Google Scholar 

  • Tambalo DD, Fremaux B, Boa T, Yost CK (2012) Persistence of host-associated Bacteroidales gene markers and their quantitative detection in an urban and agricultural mixed prairie watershed. Water Res 46(9):2891–2904

    Article  CAS  Google Scholar 

  • Tran NH, Gin KY, Ngo HH (2015) Fecal pollution source tracking toolbox for identification, evaluation and characterization of fecal contamination in receiving urban surface waters and groundwater. Sci Total Environ 15(538):38–57

    Article  Google Scholar 

  • USEPA (2005) United States Environmental Protection Agency, Microbial source tracking guide document. Office of Research and Development, EPA-600/R-05/064, Washington, DC

    Google Scholar 

  • Venegas C, Diez H, Blanch AR, Jofre J, Campos C (2015) Microbial source markers assessment in the Bogota River basin (Colombia). J Water Health 13(3):801–810

    Article  Google Scholar 

  • WHO (2006) World Health Organization, Guidelines for the safe use of wastewater, excreta and greywater. In: Wastewater and excreta use in aquaculture, vol 3. WHO Press, Geneva, Switzerland

    Google Scholar 

  • WHO (2011) World Health Organization, Guidelines for drinking-water quality, 4th edn. WHO Press, Geneva, Switzerland

    Google Scholar 

  • WHO (2017) World Health Organization, Mortality and burden of disease from water and sanitation. http://www.who.int/gho/phe/water_sanitation/burden/en/index2.html. Accessed 26 June 2017

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam M. Paruch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Paruch, L., Paruch, A.M. (2018). Contributors to Faecal Water Contamination in Urban Environments. In: Zelenakova, M. (eds) Water Management and the Environment: Case Studies. WINEC 2017. Water Science and Technology Library, vol 86. Springer, Cham. https://doi.org/10.1007/978-3-319-79014-5_10

Download citation

Publish with us

Policies and ethics