Skip to main content

Antiproliferative and Cytotoxic Activities

  • Chapter
  • First Online:
Sesquiterpene Lactones

Abstract

Cancer is a genetic disease, affecting many people worldwide. Chemotherapy is routinely used for cancer treatment. However, this therapeutic approach is not always effective due to the development of cell resistance and toxic effects. Plants are a reservoir of natural chemicals with chemoprotective potential against cancer and with low adverse effects. While some drugs from natural origin are currently used for cancer treatment, others are being studied. Among the compounds isolated from plants, sesquiterpene lactones are very promising anticancer agents, which are widely being studied in different models of cancer in vitro and in vivo, and some clinical trials are being performed. Sesquiterpene lactones are very attractive compounds to be used as antitumoral therapy due to the diverse mechanisms of action through which they exert their effects. Among such mechanisms are their capacity to interfere with the generation of reactive oxygen species, the epigenetic modulation of gene expression, the targeting of the sarco-/endoplasmic reticulum calcium ATPase pump, and the activation of the NF-kB and the p53 signaling pathways. The latter mechanisms could be important to reduce the development of drug resistance by tumor cells. Sesquiterpene lactones can also inhibit angiogenesis and metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ALCLs:

Anaplastic large cell lymphomas

ALL:

Acute lymphoblastic leukemia

AML:

Acute myeloid leukemia

APL:

Acute promyelocytic leukemia

Bax:

Apoptosis regulator BAX

Bcl- 2:

B-cell CLL/lymphoma 2

Bid:

BH3 interacting domain death agonist

BL:

Burkitt lymphoma

BZLF1:

Human herpes virus (E′stein-Barr virus) gene

Caspases:

Cysteine aspartate-specific proteases

CCRF-CEM cells:

Cellosaurus acute lymphoblastic leukemia cell line

CCRF/ADR 5000:

Cellosaurus cell line, a doxorubicin-resistant sub-line derived from drug-sensitive, parental CCRF-CEM cells

Cdc2:

Cell division control protein 2

c-FLIP:

Cellular FLICE-like inhibitory protein

CLL:

Chronic lymphocytic leukemia

CML:

Chronic myeloid leukemia

c-Src:

Proto-oncogene tyrosine-protein kinase

C/EBP:

CHOP homologus protein

GADD 153:

DNA damage inducible gene 153

DU-145:

Human prostate carcinoma cell line

EGFR:

EGFR/PI3K/Akt signaling pathway

EBV:

Raji cell line: Epstein Barr virus (EBV)-positive Burkitt lymphoma (BL) cell line

ER:

Endoplasmic reticulum

ERK:

Extracellular signal-regulated kinase

HDAC1:

Histone deacetylase 1

HeLa:

Immortal cell line

HepG2:

Human liver cancer cell line

HIN-1:

Histidine nucleotide-binding protein 1

HL:

Hodgkin lymphoma

HL-60 :

Acute myeloid leukemia

HSCs:

Healthy hematopoietic stem cells

HT 29:

Human colorectal adenocarcinoma

CML:

Human chronic myeloid leukemia (CML) K562 cells

HL:

Human leukemia HL-60 cells

IkB:

Inhibitor of NF-kB

IKK:

NF-κB kinase

JNK:

C-Jun N-terminal kinase

Jun B:

Transcription factor of the tyrosine receptor kinase PDGF-Rβ

LSCs:

Leukemic stem cells

MAPK:

Mitogen activated protein kinases

MCF-7:

Breast cancer cells

MCF7:

Human breast adenocarcinoma cell line

MDA-MB 435:

Melanoma cell line

MDA-MB-231:

Human breast cancer cell line

MDM2:

Mouse double minute 2 homolog protein

MIA-PaCa-2 cells:

Human pancreatic carcinoma cell lines

MDR P-gp CEM/ADR5000 cells:

Multidrug-resistant P-gp over expressing CEM/ADR5000 leukemic cells

NF-κB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

NHL:

Non-Hodgkin lymphoma

NIH/3T3:

Normal fibroblast cell line

NPM-ALK:

Nucleophosmin-anaplastic lymphoma kinase

p21:

Protein P21

P-38:

Protein kinase P-38

p53:

Protein P53

PARP 1:

Poly-(ADP-ribose) polymerase1

PBMC:

Peripheral blood mononuclear cells

PC-3:

Human prostate grade IV adenocarcinoma cell line

PDGF-Rβ:

Beta-type platelet-derived growth factor receptor

PI3K:

Phosphatidylinositol-3-kinase

PKCα:

Protein kinase C alpha

PKCβII:

Protein kinase β

RIPK1:

Receptor interacting protein kinase 1

ROS:

Reactive oxygen species

SW872:

Cellosaurus cell line SW 872, liposarcoma

SW982:

Cellosaurus cell line SW 982, biphasic synovial sarcoma

TE-671:

Cellosaurus cell line T-671, a human rhabdomyosarcoma

SER:

Sarcoplasmic/endoplasmic reticulum

SERCA:

Sarco/endoplasmic reticulum calcium ATPase

Smac/Diablo:

Mitochondria-derived activator of caspases

SMMC-7721:

Human hepatocarcinoma cell line

STAT:

Signal transducer and activator of transcription

TNFα:

Tumor necrosis factor-α

TRAIL:

TNF-related apoptosis-inducing ligand

U251MG:

Glioblastoma cell line

U937:

Histiocytic lymphoma cell line

Ub:

Ubiquitin

UPR:

Unfolded protein response

Walker-256:

Rat breast carcinoma cell line

References

  • Adekenov SM (2016) Chemical modification of arglabin and biological activity of its new derivatives. Fitoterapia 110:196–205

    Article  CAS  PubMed  Google Scholar 

  • Anfosso L, Efferth T, Albini A et al (2006) Microarray expression profiles of angiogenesis-related genes predict tumor cell response to artemisinins. Pharmacogenomics J 6:269–278

    Article  CAS  PubMed  Google Scholar 

  • Armitage JO (2012) The aggressive peripheral T-cell lymphomas: update on diagnosis, risk stratification and management. Am J Hematol 87:511–519

    Article  PubMed  Google Scholar 

  • Balunas MJ, Kingborn AD (2005) Drug discovery from medicinal plants. Life Sci 78:431–441

    Article  CAS  PubMed  Google Scholar 

  • Bosio C, Tomasoni G, Martínez R et al (2015) Cytotoxic and apoptotic effects of leptocarpin, a plant-derived sesquiterpene lactone, on human cancer cell lines. Chem Biol Interact 242:415–421

    Article  CAS  PubMed  Google Scholar 

  • Bujnicki T, Wilczek C, Schomburg C et al (2012) Inhibition of Myb-dependent gene expression by the sesquiterpene lactone mexicanin-I. Leukemia 26(4):615–622

    Article  CAS  PubMed  Google Scholar 

  • Carlisi D, D’Anneo A, Angileri L et al (2011) Parthenolide sensitizes hepatocellular carcinoma cells to TRAIL by inducing the expression of death receptors through inhibition of STAT3activation. J Cell Physiol 226:1632–1641

    Article  CAS  PubMed  Google Scholar 

  • Carlisi D, Buttitta G, Di Fiore R et al (2016) Parthenolide and DMAPT exert cytotoxic effects on breast cancer stem-like cells by inducing oxidative stress, mitochondrial dysfunction and necrosis. Cell Death Dis 7(4):e2194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chabner BA, Amrein PC, Druker BJ et al (2006) Antineoplastic agents. In: Goodman, Gilman’s (eds) The pharmacological basis of the therapeutics, 11th edn. The McGraw-Hill Companies Inc, New York, pp 1731–1755

    Google Scholar 

  • Chen HH, Zhou HJ, Wu GD et al (2004) Inhibitory effects of artesunate on angiogenesis and on expressions of vascular endothelial growth factor and VEGF receptor KDR/flk-1. Pharmacology 71:1–9

    Article  CAS  PubMed  Google Scholar 

  • Cho JY, Kim AR, Jung JH et al (2004) Cytotoxic and pro-apoptotic activities of cynaropicrin, a sesquiterpene lactone on the viability of leukocyte cancer cell lines. Eur J Pharmacol 492:85–94

    Article  CAS  PubMed  Google Scholar 

  • Christensen SB, Skytte DM, Denmeade SR et al (2009) A trojan horse in drug development: targeting of thapsigargins towards prostate cancer cells. Anti Cancer Agents Med Chem 9:276–294

    Article  CAS  Google Scholar 

  • Cragg GM, Grothaus PG, Newman DJ (2009) Impact of natural products on developing new anti-cancer agents. Chem Rev 109:3012–3043

    Article  CAS  PubMed  Google Scholar 

  • De Ford C, Ulloa JL, Catalán CA et al (2015) The sesquiterpene lactone polymatin B from Smallanthus sonchifolius induces different cell death mechanisms in three cancer cell lines. Phytochemistry 117:332–339. https://doi.org/10.1016/j.phytochem.2015.06.020

    Article  PubMed  CAS  Google Scholar 

  • Degos L, Wang ZY (2001) All trans retinoic acid in acute promyelocytic leukemia. Oncogene 20:7140–7145. https://doi.org/10.1038/sj.onc.1204763

    Article  PubMed  CAS  Google Scholar 

  • Del Socorro Jimenez Usuga N, Malafronte N, Osorio Durango EJ et al (2016) Phytochemical investigation of Pseudelephantopus spiralis (Less.) Cronquist. Phytochem Lett 15:256–259

    Article  CAS  Google Scholar 

  • Denmeade SR, Isaacs JT (2005) The SERCA pump as a therapeutic target: making a ‘smart bomb’ for prostate cancer. Cancer Biol Ther 4:14–22

    Article  CAS  PubMed  Google Scholar 

  • Ferlay J, Soerjomataram I, Dikshit R et al (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136(5):E359–E386

    Article  CAS  PubMed  Google Scholar 

  • Ghantous A, Gali-Muhtasib H, Vuorela H et al (2010) What made sesquiterpene lactones reach cancer clinical trials? Drug Discov Today 15:668–678

    Article  CAS  PubMed  Google Scholar 

  • Gomes Martins G, dos Reis Lívero FA, Stolf AM et al (2015) Sesquiterpene lactones of Moquiniastrum polymorpha subsp. floccosum have antineoplastic effects in Walker-256 tumor-bearing rats. Chem Biol Interact 228:46–56

    Article  CAS  Google Scholar 

  • Gopal YN, Chanchorn E, Van Dyke MW (2009) Parthenolide promotes the ubiquitination of MDM2 and activates p53 cellular functions. Mol Cancer Ther 8:552–562

    Article  CAS  PubMed  Google Scholar 

  • Guzman ML, Rossi RM, Karnischky L et al (2005) The sesquiterpene lactone parthenolide induces apoptosis of human acute myelogenous leukemia stem and progenitor cells. Blood 105:4163–4169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guzman ML, Rossi RM, Neelakantan S et al (2007) An orally bioavailable parthenolide analog selectively eradicates acute myelogenous leukemia stem and progenitor cells. Blood 110:4427–4435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffmann R, von Schwarzenberg K, Lopez-Anton N et al (2011) Helenalin by passes Bcl-2-mediated cell death resistance by inhibiting NF-kappaB and promoting reactive oxygen species generation. Biochem Pharmacol 82:453–463

    Article  CAS  PubMed  Google Scholar 

  • Hopfinger G, Griessl R, Sifft E et al (2012) Novel treatment avenues for peripheral T-cell lymphomas. Expert Opin Drug Discovery 7:1149–1163

    Article  CAS  Google Scholar 

  • Huang CC, Lo CP, Chiu CY et al (2010) Deoxyelephantopin, a novel multifunctional agent, suppresses mammary tumour growth and lungmetastasis and doubles survival time in mice. Br J Pharmacol 159:856–871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hung JY, Hsu YL, Ni WC et al (2010) Oxidative and endoplasmic reticulum stress signaling are involved in dehydrocostuslactone-mediated apoptosis in human non-small cell lungcancer cells. Lung Cancer 68:355–365

    Article  PubMed  Google Scholar 

  • Idris AI, Libouban H, Nyangoga H et al (2009) Pharmacologic inhibitors of IkappaB kinase suppress growth and migration of mammary carcinosarcoma cells in vitro and prevent osteolyticbone metastasis in vivo. Mol Cancer Ther 8:2339–2347

    Article  CAS  PubMed  Google Scholar 

  • Jaffe ES (2009) The 2008 WHO classification of lymphomas: implications for clinical practice and translational research. Hematology Am Soc Hematol Educ Program:523–531. https://doi.org/10.1182/asheducation-2009.1.523

    Article  Google Scholar 

  • JoungYoun U, Miklossy G, Chai X et al (2014) Bioactive sesquiterpene lactones and other compounds isolated from Vernonia cinerea. Fitoterapia 93:194–200

    Article  CAS  Google Scholar 

  • Kempema AM, Widen JC, Hexum JK et al (2015) Synthesis and antileukemic activities of C1–C10-modifiedparthenolide analogues. Bioorg Med Chem 23:4737–4745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiss I, Unger C, Huu CN et al (2015) Lobatin B inhibits NPM/ALK and NF-κB attenuating anaplastic-large cell-lymphomagenesis and lymph endothelial tumour in travasation. Cancer Lett 356:994–1006

    Article  CAS  PubMed  Google Scholar 

  • Kreuger M, Grootjans S, Biavatti MW et al (2012) Sesquiterpene lactones as drugs with multiple targets in cancer treatment: focus on parthenolide. Anti-Cancer Drugs 23(9):883–896

    PubMed  Google Scholar 

  • Krysko DV, Vandenabeele P (2009) Part I-molecular mechanisms of phagocytosis of dying cells. In: Krysko DV, Vandenabeele P (eds) Phagocytosis of dying cells from molecular mechanisms to human diseases. Springer, Dordrecht, pp 3–31

    Chapter  Google Scholar 

  • Krysko DV, Brouckaert G, Kalai M et al (2003) Mechanisms of internalization of apoptotic and necrotic L929 cells by amacrophage cell line studied by electron microscopy. J Morphol 258:336–345

    Article  PubMed  Google Scholar 

  • Kweon SH, Song JH, Kim HJ et al (2015) Induction of human leukemia cell differentiation via PKC/MAPK pathways by arsantin, a sesquiterpene lactone from Artemisia santolina. Arch Pharm Res 38(11):2020–2028. https://doi.org/10.1007/s12272-015-0609-4

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Hwangbo C, Lee JJ et al (2010) The sesquiterpene lactone eupatolide sensitizes breast cancer cells to TRAIL through down-regulationof c-FLIP expression. Oncol Rep 23:229–237

    PubMed  CAS  Google Scholar 

  • Li Y, Zhang Y, Fu M et al (2012) Parthenolide induces apoptosis and lytic cytotoxicity in Epstein-Barr virus-positive Burkitt lymphoma. Mol Med Rep 6:477–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Li M, Wang G et al (2016) EM23, a natural sesquiterpene lactone from Elephantopus mollis, induces apoptosis in human myeloid leukemia cells through thioredoxin- and reactive oxygen species-mediated signaling pathways. Front Pharmacol. https://doi.org/10.3389/fphar.2016.00077

  • Liu Z, Liu S, Xie Z et al (2009) Modulation of DNA methylation by a sesquiterpene lactone parthenolide. J Pharmacol Exp Ther 329:505–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu W, Wang X, Sun J et al (2017) Parthenolide suppresses pancreatic cell growth by autophagy-mediated apoptosis. Onco Targets Ther 10:453–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lohberger B, Rinner B, Stuendl N et al (2013) Sesquiterpene lactones downregulate G2/M cell cycle regulator proteins and affect the invasive potential of human soft tissue sarcoma cells. PLoS One 8:1–9

    Article  CAS  Google Scholar 

  • Mahalingam D, Wilding G, Denmeade S et al (2016) Mipsagargin, a novel thapsigargin-based PSMA-activated prodrug: results of a first-in-man phase I clinical trial in patients with refractory, advanced or metastatic solid tumours. Br J Cancer 114:986–994. https://doi.org/10.1038/bjc.2016.72

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marin GH, Mansilla E, Ciocchini S et al (2013) Sesquiterpene lactone extract from native American herbs demonstrated antineoplastic activity against non Hodgkin lymphoma cells. Annalen der Chemi Forschung 1(2):50–55

    Google Scholar 

  • Martino R, Beer MF, Anesini C et al (2015) Sesquiterpene lactones from Ambrosia spp.are active against a murine lymphoma cell line by inducing apoptosis and cell cycle arrest. Toxicol In Vitro 29:1529–1536

    Article  CAS  PubMed  Google Scholar 

  • Merfort I (2011) Perspectives on sesquiterpene lactones in inflammation and cancer. Curr Drug Targets 12:1560–1573

    Article  CAS  PubMed  Google Scholar 

  • Muñoz Acuña U, Shen Q, Ren Y et al (2013) Goyazensolide induces apoptosis in cancer cells in vitro and in vivo. Int J Cancer Res 9(2):36–53. https://doi.org/10.3923/ijcr.2013.36.53

    Article  CAS  Google Scholar 

  • Nakase I, Gallis B, Takatani-Nakase T et al (2009) Transferrin receptor-dependent cytotoxicity of artemisinin–transferrin conjugates on prostate cancer cells and induction of apoptosis. Cancer Lett 274:290–298

    Article  CAS  PubMed  Google Scholar 

  • Oh GS, Pae HO, Chung HT et al (2004) Dehydrocostuslactone enhances tumor necrosis factor-alpha-inducedapoptosis of human leukemia HL-60 cells. Immunopharmacol Immunotoxicol 26:163–175

    Article  CAS  PubMed  Google Scholar 

  • Oka D, Nishimura K, Shiba M et al (2007) Sesquiterpene lactone parthenolide suppresses tumor growth in axenograft model of renal cell carcinoma by inhibiting the activation of NF-kappaB. Int J Cancer 120:2576–2581

    Article  CAS  PubMed  Google Scholar 

  • Ordóñez PE, Sharma KK, Bystrom LM et al (2016) Dehydroleucodine, a sesquiterpene lactone from Gynoxys verrucosa, demonstrates cytotoxic activity against Human Leukemia Cells. J Nat Prod 79(4):691–696

    Article  CAS  PubMed  Google Scholar 

  • Quynh D NT, Christensen SB (2015). Thapsigargin, Origin, Chemistry, Structure-Activity Relationships and Prodrug Development. Curr Pharm Des. 21(38):5501–5517

    Article  CAS  Google Scholar 

  • Ralstin MC, Gage EA, Yip-Schneider MT et al (2006) Parthenolide cooperates with NS398 to inhibit growth of humanhepatocellular carcinoma cells through effects on apoptosis and G0-G1 cellcycle arrest. Mol Cancer Res 4:387–399

    Article  CAS  PubMed  Google Scholar 

  • Rozenblat S, Grossman S, Bergman M et al (2008) Induction of G2/M arrest and apoptosis by sesquiterpene lactones inhuman melanoma cell lines. Biochem Pharmacol 75:369–382

    Article  CAS  PubMed  Google Scholar 

  • Saeed M, Jacob S, Sandjo LP et al (2015) Cytotoxicity of the sesquiterpene lactones neoambrosin and damsin from Ambrosia maritime against multidrug-resistant cancer cells. Front Pharmacol 6:267. https://doi.org/10.3389/fphar.2015.00267

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shukla N, Freeman N, Gadsdon P et al (2001) Thapsigargin inhibits angiogenesis in the rat isolated aorta:studies on the role of intracellular calcium pools. Cardiovasc Res 49:681–689

    Article  CAS  PubMed  Google Scholar 

  • Singh NP, Panwar VK (2006) Case report of a pituitary macro adenoma treated with artemether. Integr Cancer Ther 5:391–394

    Article  PubMed  Google Scholar 

  • Sturgeon CM, Craig K, Brown C et al (2005) Modulation of the G2 cell cycle checkpoint by sesquiterpene lactones psilostachyins A and C isolated from the common ragweed Ambrosia artemisiifolia. Planta Med 71(10):938–943

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, St Clair DK, Xu Y et al (2010) A NADPH oxidase dependent redox signaling pathway mediates the selective radio sensitization effect of parthenolide in prostate cancer cells. Cancer Res 70:2880–2890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sweeney CJ, Mehrotra S, Sadaria MR et al (2005) The sesquiterpene lactone parthenolide in combination with docetaxel reduces metastasis and improves survival in a xenograft model of breast cancer. Mol Cancer Ther 4:1004–1012

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140:805–820

    Article  CAS  PubMed  Google Scholar 

  • Villagomez R, Rodrigo GC, Collado IG et al (2013) Multiple anticancer effects of damsin and coronopilin isolated from Ambrosia arborescens on cell cultures. Int J Anticancer Res 33:3799–3806

    CAS  Google Scholar 

  • Wang GW, Qin JJ, Cheng XR et al (2014) Inula sesquiterpenoids: structural diversity, cytotoxicity and anti-tumor activity. Expert Opin Investig Drugs 23(3):317–345. https://doi.org/10.1517/13543784.2014.868882

    Article  PubMed  CAS  Google Scholar 

  • World Health Organization (WHO) (2005) Preventing chronic diseases: a vital investment. Geneva: WHO Global report. http://www.who.int/chp/chronic_disease_report/en/. Accessed 14 Aug 2017

  • World Health Organization (WHO) (2017) http://www.who.int/cancer/en/. Accessed 14 Aug 2017

  • Yang YJ, Yao J, Jin X et al (2016) Sesquiterpenoids and tirucallane triterpenoids from the roots of Scorzonera divaricata. Phytochemistry 124:86–98

    Article  CAS  PubMed  Google Scholar 

  • Yip-Schneider MT, Nakshatri H, Sweeney CJ et al (2005) Parthenolide and sulindac cooperate to mediate growth suppression and inhibit the nuclear factor-kB pathway in pancreatic carcinoma cells. Mol Cancer Ther 4:587–594

    Article  CAS  PubMed  Google Scholar 

  • Zeisig BB, Kulasekararaj AG, Mufti GJ et al (2012) Snap shot: acute myeloid leukemia. Cancer Cell 22:691–698. https://doi.org/10.1016/j.ccr.2012.10.017

    Article  CAS  Google Scholar 

  • Zhang C, Lu T, Wang GD et al (2016) Costunolide, an active sesquiterpene lactone, induced apoptosis via ROS-mediated ER stress and JNK pathway in human U2OS cells. Biomed Pharmacother 80:253–259

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Anesini, C.A., Alonso, M.R., Martino, R.F. (2018). Antiproliferative and Cytotoxic Activities. In: Sülsen, V., Martino, V. (eds) Sesquiterpene Lactones. Springer, Cham. https://doi.org/10.1007/978-3-319-78274-4_13

Download citation

Publish with us

Policies and ethics