Skip to main content

Improving the Safety Profile of ADCs

  • Chapter
  • First Online:
Innovations for Next-Generation Antibody-Drug Conjugates

Abstract

Antibody–drug conjugates (ADCs) take advantage of the specificity of a monoclonal antibody to deliver cytotoxic agents directly into tumor cells. The plethora of ADCs investigated in clinical trials in recent years has enabled characterization of the major challenges faced by this therapeutic modality. With regard to safety, non-target-mediated toxicities, which are independent of the targeted antigens and similar for ADCs with the same linker-payloads, often drive dose-limiting events in patients and at the same time question the targeting efficiency of current ADCs. Development-limiting target-mediated toxicities have only been reported for a few ADCs. This manuscript will provide an overview of the major clinically relevant toxicities of ADCs with a presentation of key ADC attributes influencing these toxicities and discussion of potential mechanisms. Current research efforts to mitigate ADC-associated toxicities, including among others site-specific conjugation chemistry and prevention of normal tissue binding, will be presented and could be critical to future ADC endeavors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schrama D, Reisfeld RA, Becker JC (2006) Antibody targeted drugs as cancer therapeutics. Nat Rev Drug Discov 5:147–159

    Article  CAS  PubMed  Google Scholar 

  2. Damelin M, Zhong W, Myers J, Sapra P (2015) Evolving strategies for target selection for antibody-drug conjugates. Pharm Res 32:3494–3507

    Article  CAS  PubMed  Google Scholar 

  3. Saber H, Leighton JK (2015) An FDA oncology analysis of antibody-drug conjugates. Regul Toxicol Pharmacol 71:444–452

    Article  CAS  PubMed  Google Scholar 

  4. Drake PM, Rabuka D (2015) An emerging playbook for antibody-drug conjugates: lessons from the laboratory and clinic suggest a strategy for improving efficacy and safety. Curr Opin Chem Biol 28:174–180

    Article  CAS  PubMed  Google Scholar 

  5. Gutierrez C, Schiff R (2011) HER2: biology, detection, and clinical implications. Arch Pathol Lab Med 135:55–62

    PubMed  PubMed Central  Google Scholar 

  6. Kim SB, Wildiers H, Krop IE, Smitt M, Yu R, Lysbet de Haas S et al (2016) Relationship between tumor biomarkers and efficacy in TH3RESA, a phase III study of trastuzumab emtansine (T-DM1) vs. treatment of physician’s choice in previously treated HER2-positive advanced breast cancer. Int J Cancer 139:2336–2342

    Article  CAS  PubMed  Google Scholar 

  7. Stinchcombe T, Stahel R, Bubendorf L, Bonomi F, Villegas AE, Kowalski D et al (2017) Efficacy, safety and biomarker results of trastuzumab emtansine (T-DM1) in patients with previously treated HER2-overexpressing locally advanced or metastatic non-small cell lung cancer (mNSCLC). J Clin Oncol 35(suppl):abstr 8509

    Article  Google Scholar 

  8. Sochaj AM, Świderska KW, Otlewski J (2015) Current methods for the synthesis of homogeneous antibody-drug conjugates. Biotechnol Adv 33:775–784

    Article  CAS  PubMed  Google Scholar 

  9. Jackson DY (2016) Processes for constructing homogeneous antibody drug conjugates. Org Process Res Dev 20:852–866

    Article  CAS  Google Scholar 

  10. Junutula JR, Raab H, Clark S, Bhakta S, Leipold DD, Weir S et al (2008) Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat Biotechnol 26:925–932

    Article  CAS  PubMed  Google Scholar 

  11. Beck A, Goetsch L, Dumontet C, Corvaïa N (2017) Strategies and challenges for the next generation of antibody-drug conjugates. Nat Rev Drug Discov (5):315–337

    Article  CAS  PubMed  Google Scholar 

  12. Polu KR, Lowman HB (2014) Probody therapeutics for targeting antibodies to diseased tissue. Expert Opin Biol Ther 14:1049–1053

    Article  CAS  PubMed  Google Scholar 

  13. Chang C, Frey G, Boyle WJ, Sharp LL, Short JM (2016) Novel conditionally active biologic anti-Axl antibody-drug conjugate demonstrates anti-tumor efficacy and improved safety profile. In: Proceedings of the 107th annual meeting of the American Association for Cancer Research, 16–20 Apr 2016, New Orleans. Cancer Res 76 (14 Suppl): Abstract nr 3836

    Article  Google Scholar 

  14. Mazor Y, Hansen A, Yang C, Chowdhury PS, Wang J, Stephens G et al (2015) Insights into the molecular basis of a bispecific antibody’s target selectivity. MAbs 7:461–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bander NH (2013) Antibody–drug conjugate target selection: critical factors. In: Ducry L (ed) Antibody-drug conjugates. Methods in molecular biology (Methods and protocols), vol 1045. Humana Press, Totowa, pp 29–40

    Chapter  Google Scholar 

  16. Carter P, Smith L, Ryan M (2004) Identification and validation of cell surface antigens for antibody targeting in oncology. Endocr Relat Cancer 11:659–687

    Article  CAS  PubMed  Google Scholar 

  17. Weinstein JN, Collisson EA, Mills GB, Shaw KM, Ozenberger BA, Ellrott K et al (2013) The cancer genome atlas pan-cancer analysis project. Nat Genet 45:1113–1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. The GTEx Consortium (2013) The genotype-tissue expression (GTEx) project. Nat Genet 45:580–585

    Article  CAS  PubMed Central  Google Scholar 

  19. www.illumina.com; ArrayExpress ID: E-MTAB-513

  20. Kim MS, Pinto SM, Getnet D, Nirujogi RS, Manda SS, Chaerkady R et al (2014) A draft map of the human proteome. Nature 509:575–581

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Balakrishnan A, Goodpaster T, Randolph-Habecker J, Hoffstrom BG, Jalikis FG, Koch LK et al (2017) Analysis of ROR1 protein expression in human cancer and normal tissues. Clin Cancer Res 23:3061–3071

    Article  CAS  PubMed  Google Scholar 

  22. Stepan LP, Trueblood ES, Hale K, Babcook J, Borges L, Sutherland CL (2011) Expression of Trop2 cell surface glycoprotein in normal and tumor tissues: potential implications as a cancer therapeutic target. J Histochem Cytochem 59:701–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nolan-Stevaux O, Fajardo F, Liu L, Coberly S, McElroy P, Nazarian A, et al (2016) Assessing ENPP3 as a renal cancer target for bispecific T-cell engager (BiTE) therapy. In: Proceedings of the 107th annual meeting of the American Association for Cancer Research, 16–20 Apr 2016, New Orleans. Cancer Res 76 (14 Suppl): Abstract nr 585

    Article  Google Scholar 

  24. Kim EG, Kim KM (2015) Strategies and advancement in antibody-drug conjugate optimization for targeted cancer therapeutics. Biomol Ther (Seoul) 23:493–509

    Article  CAS  Google Scholar 

  25. Salfeld JG (2007) Isotype selection in antibody engineering. Nat Biotechnol 25:1369–1372

    Article  CAS  PubMed  Google Scholar 

  26. Junttila TT, Li G, Parsons K, Phillips GL, Sliwkowski MX (2011) Trastuzumab-DM1 (T-DM1) retains all the mechanisms of action of trastuzumab and efficiently inhibits growth of lapatinib insensitive breast cancer. Breast Cancer Res Treat 128:347–356

    Article  CAS  PubMed  Google Scholar 

  27. McDonagh CF, Kim KM, Turcott E, Brown LL, Westendorf L, Feist T et al (2008) Engineered anti-CD70 antibody-drug conjugate with increased therapeutic index. Mol Cancer Ther 7:2913–2923

    Article  CAS  PubMed  Google Scholar 

  28. Kim KM, McDonagh CF, Westendorf L, Brown LL, Sussman D, Feist T et al (2008) Anti-CD30 diabody-drug conjugates with potent antitumor activity. Mol Cancer Ther 7:2486–2497

    Article  CAS  PubMed  Google Scholar 

  29. Chen H, Lin Z, Arnst KE, Miller DD, Li W (2017) Tubulin inhibitor-based antibody-drug conjugates for cancer therapy. Molecules 22(8):1281. https://doi.org/10.3390/molecules22081281

    Article  CAS  Google Scholar 

  30. Dumontet C, Jordan MA (2010) Microtubule-binding agents: a dynamic field of cancer therapeutics. Nat Rev Drug Discov 9:790–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yang H, Ganguly A, Cabral F (2010) Inhibition of cell migration and cell division correlates with distinct effects of microtubule inhibiting drugs. J Biol Chem 285:32242–32250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cashman CR, Höke A (2015) Mechanisms of distal axonal degeneration in peripheral neuropathies. Neurosci Lett 596:33–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schutten MM (2014) Antibody-drug conjugates: key challenges in safety assessment. Oral presentation at 2014 annual meeting of the American College of Veterinary Pathologists (ACVP). In: Industrial and toxicologic pathology focused scientific session II. Available via http://acvp2014.cmiav.com/schutten/

  34. Tan C (2015) Payloads of antibody-drug conjugates. In: Wang J, Shen WC, Zaro J (eds) Antibody-drug conjugates, AAPS advances in the pharmaceutical sciences Series, vol 17. Springer, Cham

    Google Scholar 

  35. Junttila MR, Mao W, Wang X, Wang B-E, Pham T, Flygare J, Yu S-F, Yee S, Goldenberg D, Fields C et al (2015) Targeting LGR5+ cells with an antibody-drug conjugate for the treatment of colon cancer. Sci Transl Med 7:314ra186. https://doi.org/10.1126/scitranslmed.aac7433

    Article  PubMed  Google Scholar 

  36. Guffroy M, Falahatpisheh H, Biddle K, Kreeger J, Obert L, Walters K et al (2017) Liver microvascular injury and thrombocytopenia of antibody-calicheamicin conjugates in cynomolgus monkeys – mechanism and monitoring. Clin Cancer Res 23:1760–1770

    Article  CAS  PubMed  Google Scholar 

  37. Hamblett KJ, Senter PD, Chace DF, Sun MM, Lenox J, Cerveny CG et al (2004) Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin Cancer Res 10:7063–7070

    Article  CAS  PubMed  Google Scholar 

  38. McCombs JR, Owen SC (2015) Antibody drug conjugates: design and selection of linker, payload and conjugation chemistry. AAPS J 17:339–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li F, Emmerton KK, Jonas M, Zhang X, Miyamoto JB, Setter JR et al (2016) Intracellular released payload influences potency and bystander-killing effects of antibody-drug conjugates in preclinical models. Cancer Res 76(9):2710–2719

    Article  CAS  PubMed  Google Scholar 

  40. Nakada T, Masuda T, Naito H, Yoshida M, Ashida S, Morita K et al (2016) Novel antibody drug conjugates containing exatecan derivative-based cytotoxic payloads. Bioorg Med Chem Lett 26:1542–1545

    Article  CAS  PubMed  Google Scholar 

  41. Burke PJ, Hamilton JZ, Jeffrey SC, Hunter JH, Doronina SO, Okeley NM et al (2017) Optimization of a PEGylated glucuronide-monomethylauristatin E linker for antibody-drug conjugates. Mol Cancer Ther 16:116–123

    Article  CAS  PubMed  Google Scholar 

  42. Castañeda L, Maruani A, Schumacher FF, Miranda E, Chudasama V, Chester KA et al (2013) Acid-cleavable thiomaleamic acid linker for homogeneous antibody-drug conjugation. Chem Commun (Camb) 49:8187–8189

    Article  CAS  Google Scholar 

  43. Kim MT, Chen Y, Marhoul J, Jacobson F (2014) Statistical modeling of the drug load distribution on trastuzumab emtansine (Kadcyla), a lysine-linked antibody drug conjugate. Bioconjug Chem 25:1223–1232

    Article  CAS  PubMed  Google Scholar 

  44. Strop P, Liu SH, Dorywalska M, Delaria K, Dushin RG, Tran TT et al (2013) Location matters: site of conjugation modulates stability and pharmacokinetics of antibody drug conjugates. Chem Biol 20:161–167

    Article  CAS  PubMed  Google Scholar 

  45. Shen BQ, Xu K, Liu L, Raab H, Bhakta S, Kenrick M et al (2012) Conjugation site modulates the in vivo stability and therapeutic activity of antibody-drug conjugates. Nat Biotechnol 30:184–189

    Article  CAS  PubMed  Google Scholar 

  46. Tijink BM, Buter J, de Bree R, Giaccone G, Lang MS, Staab A et al (2008) A phase I dose escalation study with anti-CD44v6 bivatuzumab mertansine in patients with incurable squamous cell carcinoma of the head and neck or esophagus. Clin Cancer Res 12(20 Pt 1):6064–6072

    Google Scholar 

  47. Riechelmann H, Sauter A, Golze W, Hanft G, Schroen C, Hoermann K et al (2008) Phase I trial with the CD44v6-targeting immunoconjugate bivatuzumab mertansine in head and neck squamous cell carcinoma. Oral Oncol 44(9):823

    Article  CAS  Google Scholar 

  48. Fox SB, Fawcett J, Jackson DG, Collins I, Gatter KC, Harris AL et al (1994) Normal human tissues, in addition to some tumors, express multiple different CD44 isoforms. Cancer Res 54:4539–4546

    PubMed  CAS  Google Scholar 

  49. Tolcher AW, Ochoa L, Hammond LA, Patnaik A, Edwards T, Takimoto C et al (2003) Cantuzumab mertansine, a maytansinoid immunoconjugate directed to the CanAg antigen: a phase I, pharmacokinetic, and biologic correlative study. J Clin Oncol 21:211–222

    Article  CAS  PubMed  Google Scholar 

  50. Ott PA, Hamid O, Pavlick AC, Kluger H, Kim KB, Boasberg PD et al (2014) Phase I/II study of the antibody-drug conjugate glembatumumab vedotin in patients with advanced melanoma. J Clin Oncol 32:3659–3666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rose AAN, Biondini M, Curiel R, Siegel PM (2017) Targeting GPNMB with glembatumumab vedotin: current developments and future opportunities for the treatment of cancer. Pharmacol Ther 179:127–141

    Article  CAS  PubMed  Google Scholar 

  52. Tomihari M, Hwang SH, Chung JS, Cruz PD Jr, Ariizumi K (2009) Gpnmb is a melanosome-associated glycoprotein that contributes to melanocyte/keratinocyte adhesion in a RGD-dependent fashion. Exp Dermatol 18:586–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Naumovski L, Junutula JR (2010) Glembatumumab vedotin, a conjugate of an anti-glycoprotein non-metastatic melanoma protein B mAb and monomethyl auristatin E for the treatment of melanoma and breast cancer. Curr Opin Mol Ther 12:248–257

    PubMed  CAS  Google Scholar 

  54. Press MF, Cordon-Cardo C, Slamon DJ (1990) Expression of the HER-2/neu proto-oncogene in normal human adult and fetal tissues. Oncogene 5:953–962

    CAS  PubMed  Google Scholar 

  55. Peddi PF, Hurvitz SA (2014) Ado-trastuzumab emtansine (T-DM1) in human epidermal growth factor receptor 2 (HER2)-positive metastatic breast cancer: latest evidence and clinical potential. Ther Adv Med Oncol 6:202–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Stathis A, Freedman AS, Flinn IW, Maddocks KJ, Weitman S, Berdeja JG et al (2014) A phase I study of IMGN529, an antibody-drug conjugate (ADC) targeting CD37, in adult patients with relapsed or refractory B-cell non-Hodgkin’s lymphoma (NHL). Blood 124:1760. [abstract]

    Google Scholar 

  57. Weekes CD, Lamberts LE, Borad MJ, Voortman J, McWilliams RR, Diamond JR et al (2016) Phase I study of DMOT4039A, an antibody-drug conjugate targeting mesothelin, in patients with unresectable pancreatic or platinum-resistant ovarian cancer. Mol Cancer Ther 15:439–447

    Article  CAS  Google Scholar 

  58. Xu H, Bai L, Collins JF, Ghishan FK (1999) Molecular cloning, functional characterization, tissue distribution, and chromosomal localization of a human, small intestinal sodium-phosphate (Na+-Pi) transporter (SLC34A2). Genomics 62:281–284

    Article  CAS  PubMed  Google Scholar 

  59. Traebert M, Hattenhauer O, Murer H, Kaissling B, Biber J (1999) Expression of type II Na-P(i) cotransporter in alveolar type II cells. Am J Phys 277:L868–L873

    CAS  Google Scholar 

  60. Burris HA, Gordon MS, Gerber DE, Spigel DR, Mendelson SD, Schiller JH et al (2014) A phase I study of DNIB0600A, an antibody-drug conjugate targeting NaPi2b, in patients with non-small cell lung cancer (NSCLC) or platinum-resistant ovarian cancer (OC). J Clin Oncol 32:5s. (suppl; abstr 2504)

    Google Scholar 

  61. Bodyak N, Yurkovetskiy A, Yin M, Gumerov D, Bollu R, Conlon P, et al (2016) Discovery and preclinical development of a highly potent NaPi2b-targeted antibody-drug conjugate (ADC) with significant activity in patient-derived non-small cell lung cancer (NSCLC) xenograft models. In: Proceedings of the 107th annual meeting of the American Association for Cancer Research, 16–20 Apr 2016, New Orleans. Cancer Res 76 (14 Suppl): Abstract nr 1194

    Article  Google Scholar 

  62. Almhanna K, Kalebic T, Cruz C, Faris JE, Ryan DP, Jung J et al (2016) Phase I study of the investigational anti-guanylyl cyclase antibody-drug conjugate TAK-264 (MLN0264) in adult patients with advanced gastrointestinal malignancies. Clin Cancer Res 22:5049–5057

    Article  CAS  PubMed  Google Scholar 

  63. Yardley DA, Weaver R, Melisko ME, Saleh MN, Arena FP, Forero A et al (2015) EMERGE: a randomized phase II study of the antibody-drug conjugate glembatumumab vedotin in advanced glycoprotein NMB-expressing breast cancer. J Clin Oncol 33:1609–1619

    Article  CAS  PubMed  Google Scholar 

  64. Modi S, Eder JP, Lorusso P, Weekes C, Chandarlapaty S, Tolaney SM et al (2016) A phase I study evaluating DLYE5953A, an antibody-drug conjugate targeting the tumor-associated antigen lymphocyte antigen 6 complex locus E (Ly6E), in patients with solid tumors. Ann Oncol 27(Suppl 6):abstract nr 3570

    Google Scholar 

  65. Younes A, Gopal AK, Smith SE, Ansell SM, Rosenblatt JD, Savage KJ et al (2012) Results of a pivotal phase II study of brentuximab vedotin for patients with relapsed or refractory Hodgkin’s lymphoma. J Clin Oncol 30:2183–2189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Advani RH, Lebovic D, Chen A, Brunvand M, Goy A, Chang JE et al (2017) Phase I study of the anti-CD22 antibody-drug conjugate pinatuzumab vedotin with/without rituximab in patients with relapsed/refractory B-cell non-Hodgkin lymphoma. Clin Cancer Res 23:1167–1176

    Article  CAS  PubMed  Google Scholar 

  67. Palanca-Wessels MC, Czuczman M, Salles G, Assouline S, Sehn LH, Flinn I et al (2015) Safety and activity of the anti-CD79B antibody-drug conjugate polatuzumab vedotin in relapsed or refractory B-cell non-Hodgkin lymphoma and chronic lymphocytic leukaemia: a phase 1 study. Lancet Oncol 16:704–715

    Article  CAS  PubMed  Google Scholar 

  68. Tannir NM, Forero-Torres A, Ramchandren R, Pal SK, Ansell SM, Infante JR et al (2014) Phase I dose-escalation study of SGN-75 in patients with CD70-positive relapsed/refractory non-Hodgkin lymphoma or metastatic renal cell carcinoma. Investig New Drugs 32:1246–1257

    Article  CAS  Google Scholar 

  69. Gan HK, Reardon DA, Lassman AB, Merrell R, van den Bent M, Butowski N et al (2017) Safety, pharmacokinetics and antitumor response of depatuxizumab mafodotin as monotherapy or in combination with temozolomide in patients with glioblastoma. Neuro Oncol. https://doi.org/10.1093/neuonc/nox202. [Epub ahead of print]

  70. Thompson JA, Motzer R, Molina AM, Choueiri TK, Heath EI, Kollmannsberger CK et al (2015) Phase I studies of anti-ENPP3 antibody drug conjugates (ADCs) in advanced refractory renal cell carcinomas (RRCC). J Clin Oncol 33:2503

    Article  Google Scholar 

  71. Reardon DA, Lassman AB, van den Bent M, Kumthekar P, Merrell R, Scott AM et al (2017) Efficacy and safety results of ABT-414 in combination with radiation and temozolomide in newly diagnosed glioblastoma. Neuro-Oncology 19:965–975

    PubMed  Google Scholar 

  72. Fathi AT, Borate U, DeAngelo DJ, O’Brien MM, Trippett T, Shah BD et al (2015) A phase 1 study of denintuzumab mafodotin (SGN-CD19A) in adults with relapsed or refractory B-lineage acute leukemia (B-ALL) and highly aggressive lymphoma. Blood 126:1328

    Google Scholar 

  73. Force J, Saxena R, Schneider BP, Storniolo AM, Sledge GW Jr, Chalasani N et al (2016) Nodular regenerative hyperplasia after treatment with trastuzumab emtansine. J Clin Oncol 34:e9-12

    Article  PubMed  Google Scholar 

  74. Prochaska LH, Damjanov I, Ash RM, Olson JC, Khan QJ, Sharma P (2016) Trastuzumab emtansine associated nodular regenerative hyperplasia: a case report and review of literature. Cancer Treatment Commun 5:26–30

    Article  Google Scholar 

  75. Gan HK, van den Bent M, Lassman AB, Reardon DA, Scott AM (2017) Antibody-drug conjugates in glioblastoma therapy: the right drugs to the right cells. Nat Rev Clin Oncol 14:695–707

    Article  CAS  PubMed  Google Scholar 

  76. Younes A, Kim S, Romaquera J, Copeland A, Farial S de C, Kwak LW et al (2012) Phase I multidose-escalation study of the anti-CD19 maytansinoid immunoconjugate SAR3419 administered by intravenous infusion every 3 weeks to patients with relapsed/refractory B-cell lymphoma. J Clin Oncol 30:2776–2782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Moore KN, Borghaei H, O’Malley DM, Jeong W, Seward SM, Bauer TM et al (2017) Phase 1 dose-escalation study of mirvetuximab soravtansine (IMGN853), a folate receptor α-targeting antibody-drug conjugate, in patients with solid tumors. Cancer 123:3080–3087

    Article  CAS  PubMed  Google Scholar 

  78. Mita MM, Ricart AD, Mita AC, Patnaik A, Sarantopoulos J, Sankhala K et al (2007) A phase I study of a CanAg-targeted immunoconjugate, huC242-DM4, in patients with Can Ag-expressing solid tumors. J Clin Oncol 25:3062

    Google Scholar 

  79. Advani A, Coiffier B, Czuczman MS, Dreyling M, Foran J, Gine E et al (2010) Safety, pharmacokinetics, and preliminary clinical activity of inotuzumab ozogamicin, a novel immunoconjugate for the treatment of B-cell non-Hodgkin’s lymphoma: results of a phase I study. J Clin Oncol 28:2085–2093

    Article  CAS  PubMed  Google Scholar 

  80. Kantarjian HM, DeAngelo DJ, Advani AS, Stelljes M, Kebriaei P, Cassaday RD et al (2017) Hepatic adverse event profile of inotuzumab ozogamicin in adult patients with relapsed or refractory acute lymphoblastic leukaemia: results from the open-label, randomised, phase 3 INO-VATE study. Lancet Haematol 4:e387–e398

    Article  PubMed  Google Scholar 

  81. Rudin CM, Pietanza C, Bauer TM, Ready N, Morgensztern D, Glisson BS et al (2017) Rovalpituzumab tesirine, a DLL3-targeted antibody-drug conjugate, in recurrent small-cell lung cancer: a first-in-human, first-in-class, open-label, phase 1 study. Lancet Oncol 18:42–51

    Article  CAS  PubMed  Google Scholar 

  82. Bender BC, Schaedeli-Stark F, Koch R, Joshi A, Chu YW, Rugo H et al (2012) A population pharmacokinetic/pharmacodynamic model of thrombocytopenia characterizing the effect of trastuzumab emtansine (T-DM1) on platelet counts in patients with HER2-positive metastatic breast cancer. Cancer Chemother Pharmacol 70:591–601

    Article  CAS  PubMed  Google Scholar 

  83. Bardia A, Mayer IA, Diamond JR, Moroose RL, Isakoff SJ, Starodub AN et al (2017) Efficacy and safety of anti-Trop-2 antibody drug conjugate sacituzumab govitecan (IMMU-132) in heavily pretreated patients with metastatic triple-negative breast cancer. J Clin Oncol 35:2141–2148

    Article  PubMed  PubMed Central  Google Scholar 

  84. Krop IE, Beeram M, Modi S, Jones SF, Holden SN, Yu W et al (2010) Phase I study of trastuzumab-DM1, an HER2 antibody-drug conjugate, given every 3 weeks to patients with HER2-positive metastatic breast cancer. J Clin Oncol 28:2698–2704

    Article  CAS  PubMed  Google Scholar 

  85. Verma S, Miles D, Gianni L, Krop IE, Welslau M, Baselga J et al (2012) Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med 367:1783–1791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Uppal H, Doudement E, Mahapatra K, Darbonne WC, Bumbaca D, Shen B-Q et al (2015) Potential mechanisms for thrombocytopenia development with trastuzumab emtansine (T-DM1). Clin Cancer Res 21:123–133

    Article  CAS  PubMed  Google Scholar 

  87. Zhao H, Gulesserian S, Ganesan SK, Ou J, Morrison K, Zeng Z et al (2017) Inhibition of megakaryocyte differentiation by antibody-drug conjugates (ADCs) is mediated by macropinocytosis: implications for ADC-induced thrombocytopenia. Mol Cancer Ther 16:1877–1886

    Article  CAS  PubMed  Google Scholar 

  88. Hartleb M, Gutkowski K, Milkiewicz P (2011) Nodular regenerative hyperplasia: evolving concepts on underdiagnosed cause of portal hypertension. World J Gastroenterol 17:1400–1409

    Article  PubMed  PubMed Central  Google Scholar 

  89. Dignan FL, Wynn RF, Hadzic N, Karani J, Quaglia A, Pagliuca A et al (2013) BCSH/BSBMT guideline: diagnosis and management of veno-occlusive disease (sinusoidal obstruction syndrome) following haematopoietic stem cell transplantation. B J Haematol 163:444–457

    Article  CAS  Google Scholar 

  90. Wanless IR, Huang W-Y (2012) Vascular disorders. In: Burt A, Portmann B, Ferrell L (eds) MacSween’s pathology of the liver, 6th edn. Churchill Livingstone/Elsevier, Edinburgh, pp 601–643

    Chapter  Google Scholar 

  91. Rubbia-Brandt L, Lauwers GY, Wang H, Majno PE, Tanabe K, Zhu AX et al (2010) Sinusoidal obstruction syndrome and nodular regenerative hyperplasia are frequent oxaliplatin-associated liver lesions and partially prevented by bevacizumab in patients with hepatic colorectal metastasis. Histopathology 56:430–439

    Article  PubMed  Google Scholar 

  92. Younes A, Bartlett NL, Leonard JP, Kennedy DA, Lynch CM, Sievers EL et al (2010) Brentuximab vedotin (SGN-35) for relapsed CD30-positive lymphomas. N Engl J Med 363:1812–1821

    Article  CAS  PubMed  Google Scholar 

  93. Grisold W, Cavaletti G, Windebank AJ (2012) Peripheral neuropathies from chemotherapeutics and targeted agents: diagnosis, treatment, and prevention. Neuro-Oncology 14(Suppl 4):iv45–iv54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Stagg NJ, Shen BQ, Brunstein F, Li C, Kamath AV, Zhong F et al (2016) Peripheral neuropathy with microtubule inhibitor containing antibody drug conjugates: challenges and perspectives in translatability from nonclinical toxicology studies to the clinic. Regul Toxicol Pharmacol 82:1–13

    Article  CAS  PubMed  Google Scholar 

  95. Eaton JS, Miller PE, Mannis MJ, Murphy CJ (2015) Ocular adverse events associated with antibody-drug conjugates in human clinical trials. J Ocul Pharmacol Ther 31:589–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Stentoft J (1990) The toxicity of cytarabine. Drug Saf 1:7–27

    Article  Google Scholar 

  97. Hopen G, Mondino BJ, Johnson BL, Chervenick PA (1981) Corneal toxicity with systemic cytarabine. Am J Ophthalmol 91(4):500

    Article  CAS  PubMed  Google Scholar 

  98. Stein EM, Stein A, Walter RB, Fathi AT, Lancet JE, Kovacsovics TJ et al (2014) Interim analysis of a phase 1 trial of SGN-CD33A in patients with CD33-positive acute myeloid leukemia (AML). Blood 124:623. (abstract)

    Article  CAS  Google Scholar 

  99. Hochhauser D, Meyer T, Spanswick VJ, Wu J, Clingen PH, Loadman P et al (2009) Phase I study of sequence-selective minor groove DNA binding agent SJG-136 in patients with advanced solid tumors. Clin Cancer Res 15:2140–2147

    Article  CAS  PubMed  Google Scholar 

  100. Owonikoko TK, Hussain A, Stadler WM, Smith DC, Kluger H, Molina AM et al (2016) First-in-human multicenter phase I study of BMS-936561 (MDX-1203), an antibody-drug conjugate targeting CD70. Cancer Chemother Pharmacol 77:155–162

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

All procedures performed on animals were conducted in accordance with regulations and established guidelines and were reviewed and approved by an Institutional Animal Care and Use Committee or through an ethical review process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magali Guffroy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guffroy, M., Falahatpisheh, H., Finkelstein, M. (2018). Improving the Safety Profile of ADCs. In: Damelin, M. (eds) Innovations for Next-Generation Antibody-Drug Conjugates. Cancer Drug Discovery and Development. Humana Press, Cham. https://doi.org/10.1007/978-3-319-78154-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78154-9_3

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-78153-2

  • Online ISBN: 978-3-319-78154-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics