Skip to main content

Convective Jets: Volcanic Activity and Turbulent Mixing in the Boundary Layers of the Atmosphere and Ocean

  • Conference paper
  • First Online:
Physical and Mathematical Modeling of Earth and Environment Processes (PMMEEP 2017)

Abstract

In the article, it is considered a modification of an integral model of unsteady turbulent jet with a presence of pressure force. Stationary solutions of the presented model is compared with well-known analytical results of classical models. It is shown that the inclusion of pressure forces changes dynamic parameters of a jet by about 15%. An analytical solution of a steady forced buoyant jet that corresponds to a volcanic outburst is deduced. An analytical solution for the spontaneous jet of convective surface layer is presented. The simplest model of an ensemble of the buoyant jets of convective surface layer is built. A hydrodynamic formation mechanism of vertical profiles of the turbulent diffusivity and the turbulent statistical moments of the atmospheric surface layer related to the ascent of the jets’ system, is formulated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Delichatsios, M.A.: Time similarity analysis of unsteady buoyant plumes. J. Fluids Mech. 93(2), 241–250 (1979)

    Article  ADS  Google Scholar 

  2. Yu, H.-Z.: Transient plume influence in measurement of convective heat release rates of fast-growing fires using a large-scale fire products collector. Trans. ASME 112, 186–191 (1990)

    Article  Google Scholar 

  3. Vul’fson, A.N.: Convective-region top front propagation in a uniform medium under the action of point, linear, and plane heat and momentum sources. Fluid Dyn. 36(3), 418–428 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Vul’fson, A.N., Borodin, O.O.: Self-similar propagation regimes of a nonstationary high-temperature convective jet in the adiabatic atmosphere. J. Appl. Mech. Tech. Phys. 42(2), 255–261 (2001)

    Article  ADS  MATH  Google Scholar 

  5. Scase, M.M., Hewitt, R.E.: Unsteady turbulent plume models. J. Fluid Mech. 697, 455–480 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Craske, J., van Reeuwijk, M.: Generalised unsteady plume theory. J. Fluid Mech. 792, 1013–1052 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Woodhouse, M.J., Phillips, J.C., Hogg, A.J.: Unsteady turbulent buoyant plumes. J. Fluid Mech. 794, 595–638 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  8. Costa, A., Suzuki, Y.J., Cerminara, M., Devenish, B.J., Ongaro, T.E., Herzog, M., Van Eaton, A.R., Denby, L.C., Bursik, M., Vitturi, M.D.M., Engwell, S.: Results of the eruptive column model inter-comparison study. J. Volcanol. Geoth. Res. 326, 2–25 (2016)

    Article  ADS  Google Scholar 

  9. Vulfson, A.N., Borodin, O.O.: System of convective thermals as a generalized ensemble of Brownian particles. Phys. Usp. 59(2), 109 (2016)

    Article  ADS  Google Scholar 

  10. Shraiman, B.I., Siggia, E.D.: Scalar turbulence. Nature 405(8), 639–646 (2000)

    Article  ADS  Google Scholar 

  11. Vulfson, A.N., Nikolaev, P.V.: Integral bubble and jet models with pressure forces. Izv. Atmos. Oceanic Phys. 53(4), 419–427 (2017)

    Article  ADS  Google Scholar 

  12. Sedov, L.I.: Mechanics of Continuous Media, 6th edn. LAN, St. Petersburg (2004)

    Google Scholar 

  13. Zel’dovich, B.Y.: Limiting laws of free-rising convective currents. Zh. Eksp. Teor. Fiz. 12, 1463–1465 (1937)

    Google Scholar 

  14. Abramovich, G.N.: Theory of Turbulent Jets. Nauka, Moscow (1984)

    Google Scholar 

  15. Priestly, C.H.B., Ball, F.K.: Continuous convection from an isolated source of heat. Quart. J. Roy. Meteor. Soc. 81(348), 144–157 (1955)

    Article  ADS  Google Scholar 

  16. Priestly, C.H.B.: Turbulent Transfer in the Lover Atmosphere. University Chicago Press, Chicago (1959)

    Google Scholar 

  17. Kader, B.A., Yaglom, A.M.: Mean and fields and fluctuation moments in unstably stratified turbulent boundary layers. J. Fluid Mech. 212, 637–662 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Prandtl, L.: Meteorogische anwendung der stromungslehre. Beitr. Phys. fr. Atmos. 19(3), 188–202 (1932)

    MATH  Google Scholar 

  19. Obukhov, A.M.: Turbulence in thermally inhomogeneous atmosphere. Trudy Inst. Teor. Geofiz. Akad. Nauk SSSR 1, 95–115 (1946)

    Google Scholar 

  20. Batchelor, G.K.: Heat convection and buoyancy effects in fluids. Quart. J. Roy. Met Soc 80(345), 339–358 (1954)

    Article  ADS  Google Scholar 

  21. Huppert, H.E., Turner, J.S.: Double-diffusive convection. J. Fluid Mech. 106, 299–329 (1981)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Vulfson, A.N., Borodin, O.O.: An ensemble of dynamically identical thermals and vertical profiles of turbulent moments in the convective surface layer of atmosphere. Russ. Meteorol. Hydrol. 34(8), 491–500 (2009)

    Article  Google Scholar 

  23. Deardorff, J.W.: Convective velocity and temperature scales for the unstable planetary boundary layer and for Raylegh convection. J. Atmos. Sci. 27(8), 1211–1212 (1970)

    Article  ADS  Google Scholar 

  24. Troen, I., Mahrt, L.: A simple model of the atmospheric boundary layer: sensitivity to surface evaporation. Bound.-Layer Meteorol. 37, 129–148 (1986)

    Article  ADS  Google Scholar 

  25. Lenschow, D.H., Wyngaard, J.C., Pennel, W.T.: Mean field and second-moment budgets in a baroclinic, convective boundary layer. J. Atmos. Sci. 37(6), 1313–1326 (1980)

    Article  ADS  Google Scholar 

  26. Vulfson, A.N., Volodin, I.A., Borodin, O.O.: Local similarity theory and universal profiles of turbulent characteristics in the convective boundary layer. Russ. Meteorol. Hydrol. 10, 1–10 (2004)

    Google Scholar 

  27. Gryanik, V.M., Hartman, J.: A turbulence closure for the convective boundary layer based on a two-scale mass-flux approach. J. Atmos. Sci. 59(18), 2729–2744 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Vulfson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vulfson, A., Borodin, O., Nikolaev, P. (2018). Convective Jets: Volcanic Activity and Turbulent Mixing in the Boundary Layers of the Atmosphere and Ocean. In: Karev, V., Klimov, D., Pokazeev, K. (eds) Physical and Mathematical Modeling of Earth and Environment Processes. PMMEEP 2017. Springer Geology. Springer, Cham. https://doi.org/10.1007/978-3-319-77788-7_9

Download citation

Publish with us

Policies and ethics