Skip to main content

Neural Adaptations to Endurance Training

  • Chapter
  • First Online:
Concurrent Aerobic and Strength Training

Abstract

Neural adaptations induced by strength training have been widely described although recent technical developments (e.g., transcranial magnetic stimulation) have provided new insights. Neural adaptations to endurance training are not as well-known and usually considered to be much smaller than those observed following strength training. In this chapter, we will not use the real definition of endurance, that is the ability to sustain a high percentage of maximal oxygen uptake (V̇O2max). Instead, we will use common usage of the word endurance, i.e., prolonged, low-intensity exercise, usually with large muscle mass such as cycling, running, and cross-country skiing. The theory behind chronic adaptations is related to acute deleterious effects and recovery (e.g., [1, 2]). In the first part of this chapter, the tools used to assess neural adaptations will be briefly described. Then, we will focus on the acute neural responses induced by a single endurance training session. Special consideration will be given to the difference between endurance running and cycling/cross-country skiing at the end of this second section. The third part of this chapter will be dedicated to chronic adaptations to the neural command induced by endurance training.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burtin C, Saey D, Saglam M, Langer D, Gosselink R, Janssens W, Decramer M, Maltais F, Troosters T. Effectiveness of exercise training in patients with COPD: the role of muscle fatigue. Eur Respir J. 2012;40:338–44.

    Article  Google Scholar 

  2. Gathercole RJ, Stellingwerff T, Sporer BC. Effect of acute fatigue and training adaptation on countermovement jump performance in elite snowboard cross athletes. J Strength Cond Res. 2015;29:37–46.

    Article  Google Scholar 

  3. Millet GY, Martin V, Martin A, Verges S. Electrical stimulation for testing neuromuscular function: from sport to pathology. Eur J Appl Physiol. 2011;111:2489–500.

    Article  Google Scholar 

  4. Belanger AY, McComas AJ. Extent of motor unit activation during effort. J Appl Physiol Respir Environ Exerc Physiol. 1981;51:1131–5.

    CAS  PubMed  Google Scholar 

  5. Todd G, Taylor JL, Gandevia SC. Measurement of voluntary activation of fresh and fatigued human muscles using transcranial magnetic stimulation. J Physiol. 2003;551:661–71.

    Article  CAS  Google Scholar 

  6. McNeil CJ, Butler JE, Taylor JL, Gandevia SC. Testing the excitability of human motoneurons. Front Hum Neurosci. 2013;7:152.

    Article  Google Scholar 

  7. Taylor JL, Gandevia SC. Noninvasive stimulation of the human corticospinal tract. J Appl Physiol (1985). 2004;96:1496–503.

    Article  CAS  Google Scholar 

  8. Taylor JL, Gandevia SC. Transcranial magnetic stimulation and human muscle fatigue. Muscle Nerve. 2001;24:18–29.

    Article  CAS  Google Scholar 

  9. Yacyshyn AF, Woo EJ, Price MC, McNeil CJ. Motoneuron responsiveness to corticospinal tract stimulation during the silent period induced by transcranial magnetic stimulation. Exp Brain Res. 2016;234:3457–63.

    Article  Google Scholar 

  10. Temesi J, Rupp T, Martin V, Arnal PJ, Feasson L, Verges S, Millet GY. Central fatigue assessed by transcranial magnetic stimulation in ultratrail running. Med Sci Sports Exerc. 2014;46:1166–75.

    Article  Google Scholar 

  11. Doyle-Baker D, Temesi J, Medysky ME, Holash RJ, Millet GY. An innovative ergometer to measure neuromuscular fatigue immediately after cycling. Med Sci Sports Exerc. 2018;50(2):375–87.

    Article  Google Scholar 

  12. Froyd C, Millet GY, Noakes TD. The development of peripheral fatigue and short-term recovery during self-paced high-intensity exercise. J Physiol. 2013;591:1339–46.

    Article  Google Scholar 

  13. Mira J, Lapole T, Souron R, Messonnier L, Millet GY, Rupp T. Cortical voluntary activation testing methodology impacts central fatigue. Eur J Appl Physiol. 2017;117(9):1845–57.

    Article  Google Scholar 

  14. Taylor JL, Allen GM, Butler JE, Gandevia SC. Supraspinal fatigue during intermittent maximal voluntary contractions of the human elbow flexors. J Appl Physiol. 2000;89:305–13.

    Article  CAS  Google Scholar 

  15. Millet GY, Martin V, Lattier G, Ballay Y. Mechanisms contributing to knee extensor strength loss after prolonged running exercise. J Appl Physiol. 2003;94:193–8.

    Article  CAS  Google Scholar 

  16. Jubeau M, Rupp T, Perrey S, Temesi J, Wuyam B, Levy P, Verges S, Millet GY. Changes in voluntary activation assessed by transcranial magnetic stimulation during prolonged cycling exercise. PLoS One. 2014;9:e89157.

    Article  Google Scholar 

  17. Sidhu SK, Bentley DJ, Carroll TJ. Locomotor exercise induces long-lasting impairments in the capacity of the human motor cortex to voluntarily activate knee extensor muscles. J Appl Physiol. 2009;106:556–65.

    Article  Google Scholar 

  18. Klass M, Roelands B, Levenez M, Fontenelle V, Pattyn N, Meeusen R, Duchateau J. Effects of noradrenaline and dopamine on supraspinal fatigue in well-trained men. Med Sci Sports Exerc. 2012;44:2299–308.

    Article  CAS  Google Scholar 

  19. Lepers R, Maffiuletti NA, Rochette L, Brugniaux J, Millet GY. Neuromuscular fatigue during a long-duration cycling exercise. J Appl Physiol. 2002;92:1487–93.

    Article  Google Scholar 

  20. Martin V, Kerhervé H, Messonnier LA, Banfi JC, Geyssant A, Bonnefoy R, Féasson L, Millet GY. Central and peripheral contributions to neuromuscular fatigue induced by a 24-h treadmill run. J Appl Physiol. 2010;108:1224–33.

    Article  Google Scholar 

  21. Millet GY, Tomazin K, Verges S, Vincent C, Bonnefoy R, Boisson RC, Gergele L, Feasson L, Martin V. Neuromuscular consequences of an extreme mountain ultra-marathon. PLoS One. 2011;6:e17059.

    Article  CAS  Google Scholar 

  22. Place N, Lepers R, Deley G, Millet GY. Time course of neuromuscular alterations during a prolonged running exercise. Med Sci Sports Exerc. 2004;36:1347–56.

    Article  Google Scholar 

  23. Temesi J, Arnal PJ, Rupp T, Feasson L, Cartier R, Gergele L, Verges S, Martin V, Millet GY. Are females more resistant to extreme neuromuscular fatigue? Med Sci Sports Exerc. 2015;47:1372–82.

    Article  Google Scholar 

  24. Sidhu SK, Cresswell AG, Carroll TJ. Motor cortex excitability does not increase during sustained cycling exercise to volitional exhaustion. J Appl Physiol (1985). 2012;113:401–9.

    Article  Google Scholar 

  25. O’Leary TJ, Collett J, Howells K, Morris MG. Endurance capacity and neuromuscular fatigue following high- vs moderate-intensity endurance training: a randomized trial. Scand J Med Sci Sports. 2017;27(12):1648–61.

    Article  Google Scholar 

  26. Racinais S, Girard O, Micallef JP, Perrey S. Failed excitability of spinal motoneurons induced by prolonged running exercise. J Neurophysiol. 2007;97:596–603.

    Article  CAS  Google Scholar 

  27. Sidhu SK, Weavil JC, Mangum TS, Jessop JE, Richardson RS, Morgan DE, Amann M. Group III/IV locomotor muscle afferents alter motor cortical and corticospinal excitability and promote central fatigue during cycling exercise. Clin Neurophysiol. 2017;128:44–55.

    Article  Google Scholar 

  28. Weavil JC, Sidhu SK, Mangum TS, Richardson RS, Amann M. Fatigue diminishes motoneuronal excitability during cycling exercise. J Neurophysiol. 2016;116:1743–51.

    Article  Google Scholar 

  29. Goodall S, Gonzalez-Alonso J, Ali L, Ross EZ, Romer LM. Supraspinal fatigue after normoxic and hypoxic exercise in humans. J Physiol. 2012;590:2767–82.

    Article  CAS  Google Scholar 

  30. Millet GY. Can neuromuscular fatigue explain running strategies and performance in ultra-marathons?: the flush model. Sports Med. 2011;41:489–506.

    Article  Google Scholar 

  31. Millet GY, Lepers R. Alterations of neuromuscular function after prolonged running, cycling and skiing exercises. Sports Med. 2004;34:105–16.

    Article  Google Scholar 

  32. Millet GY, Martin V, Maffiuletti NA, Martin A. Neuromuscular fatigue after a ski skating marathon. Can J Appl Physiol. 2003;28:434–45.

    Article  Google Scholar 

  33. Millet GY, Lepers R, Maffiuletti NA, Babault N, Martin V, Lattier G. Alterations of neuromuscular function after an ultramarathon. J Appl Physiol. 2002;92:486–92.

    Article  CAS  Google Scholar 

  34. Avela J, Kyrolainen H, Komi P. Altered reflex sensitivity after repeated and prolonged passive muscle stretching. J Appl Physiol. 1999;86:1283–91.

    Article  CAS  Google Scholar 

  35. Coffey VG, Hawley JA. The molecular bases of training adaptation. Sports Med. 2007;37:737–63.

    Article  Google Scholar 

  36. Egan B, Zierath JR. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab. 2013;17:162–84.

    Article  CAS  Google Scholar 

  37. Aagaard P, Simonsen EB, Andersen JL, Magnusson P, Dyhre-Poulsen P. Neural adaptation to resistance training: changes in evoked V-wave and H-reflex responses. J Appl Physiol (1985). 2002;92:2309–18.

    Article  Google Scholar 

  38. Carroll TJ, Riek S, Carson RG. The sites of neural adaptation induced by resistance training in humans. J Physiol. 2002;544:641–52.

    Article  CAS  Google Scholar 

  39. Van Cutsem M, Duchateau J, Hainaut K. Changes in single motor unit behaviour contribute to the increase in contraction speed after dynamic training in humans. J Physiol. 1998;513(Pt 1):295–305.

    Article  Google Scholar 

  40. Lattier G, Millet GY, Maffiuletti NA, Babault N, Lepers R. Neuromuscular differences between endurance-trained, powertrained, and sedentary subjects. J Strength Cond Res. 2003;17:514–21.

    PubMed  Google Scholar 

  41. Garrandes F, Colson SS, Pensini M, Seynnes O, Legros P. Neuromuscular fatigue profile in endurance-trained and power-trained athletes. Med Sci Sports Exerc. 2007;39:149–58.

    Article  Google Scholar 

  42. Cohen R, Mitchell C, Dotan R, Gabriel D, Klentrou P, Falk B. Do neuromuscular adaptations occur in endurance-trained boys and men? Appl Physiol Nutr Metab. 2010;35:471–9.

    Article  Google Scholar 

  43. Hakkinen K, Keskinen KL. Muscle cross-sectional area and voluntary force production characteristics in elite strength- and endurance-trained athletes and sprinters. Eur J Appl Physiol Occup Physiol. 1989;59:215–20.

    Article  CAS  Google Scholar 

  44. Vila-Cha C, Falla D, Correia MV, Farina D. Changes in H reflex and V wave following short-term endurance and strength training. J Appl Physiol (1985). 2012;112:54–63.

    Article  Google Scholar 

  45. Maffiuletti NA, Martin A, Babault N, Pensini M, Lucas B, Schieppati M. Electrical and mechanical H(max)-to-M(max) ratio in power- and endurance-trained athletes. J Appl Physiol (1985). 2001;90:3–9.

    Article  CAS  Google Scholar 

  46. Koceja DM, Davison E, Robertson CT. Neuromuscular characteristics of endurance- and power-trained athletes. Res Q Exerc Sport. 2004;75:23–30.

    Article  Google Scholar 

  47. Earles DR, Dierking JT, Robertson CT, Koceja DM. Pre- and post-synaptic control of motoneuron excitability in athletes. Med Sci Sports Exerc. 2002;34:1766–72.

    Article  Google Scholar 

  48. Kumpulainen S, Avela J, Gruber M, Bergmann J, Voigt M, Linnamo V, Mrachacz-Kersting N. Differential modulation of motor cortex plasticity in skill- and endurance-trained athletes. Eur J Appl Physiol. 2015;115:1107–15.

    Article  Google Scholar 

  49. Kyrolainen H, Komi PV. Stretch reflex responses following mechanical stimulation in power- and endurance-trained athletes. Int J Sports Med. 1994;15:290–4.

    Article  CAS  Google Scholar 

  50. Behrens M, Weippert M, Wassermann F, Bader R, Bruhn S, Mau-Moeller A. Neuromuscular function and fatigue resistance of the plantar flexors following short-term cycling endurance training. Front Physiol. 2015;6:145.

    Article  Google Scholar 

  51. Perot C, Goubel F, Mora I. Quantification of T- and H-responses before and after a period of endurance training. Eur J Appl Physiol Occup Physiol. 1991;63:368–75.

    Article  CAS  Google Scholar 

  52. Vila-Cha C, Falla D, Farina D. Motor unit behavior during submaximal contractions following six weeks of either endurance or strength training. J Appl Physiol (1985). 2010;109:1455–66.

    Article  Google Scholar 

  53. Zghal F, Cottin F, Kenoun I, Rebai H, Moalla W, Dogui M, Tabka Z, Martin V. Improved tolerance of peripheral fatigue by the central nervous system after endurance training. Eur J Appl Physiol. 2015;115:1401–15.

    Article  CAS  Google Scholar 

  54. Zghal F, Martin V, Thorkani A, Arnal PJ, Tabka Z, Cottin F. Effects of endurance training on the maximal voluntary activation level of the knee extensor muscles. Eur J Appl Physiol. 2014;114:683–93.

    Article  CAS  Google Scholar 

  55. de Haan A, Gerrits KH, de Ruiter CJ. Counterpoint: the interpolated twitch does not provide a valid measure of the voluntary activation of muscle. J Appl Physiol (1985). 2009;107:355–7; discussion 357–8.

    Article  Google Scholar 

  56. Shield A, Zhou S. Assessing voluntary muscle activation with the twitch interpolation technique. Sports Med. 2004;34:253–67.

    Article  Google Scholar 

  57. Jensen JL, Marstrand PC, Nielsen JB. Motor skill training and strength training are associated with different plastic changes in the central nervous system. J Appl Physiol (1985). 2005;99:1558–68.

    Article  Google Scholar 

  58. Goodwill AM, Pearce AJ, Kidgell DJ. Corticomotor plasticity following unilateral strength training. Muscle Nerve. 2012;46:384–93.

    Article  Google Scholar 

  59. Griffin L, Cafarelli E. Transcranial magnetic stimulation during resistance training of the tibialis anterior muscle. J Electromyogr Kinesiol. 2007;17:446–52.

    Article  CAS  Google Scholar 

  60. Weier AT, Pearce AJ, Kidgell DJ. Strength training reduces intracortical inhibition. Acta Physiol (Oxf). 2012;206:109–19.

    Article  CAS  Google Scholar 

  61. Häkkinen K, Alen M, Kraemer WJ. Neuromuscular adaptations during concurrent strength and endurance versus strength training. Eur J Appl Physiol. 2003;89:42–52.

    Article  Google Scholar 

  62. Cafarelli E, Liebesman J, Kroon J. Effect of endurance training on muscle activation and force sensation. Can J Physiol Pharmacol. 1995;73:1765–73.

    Article  CAS  Google Scholar 

  63. Decorte N, Lafaix PA, Millet GY, Wuyam B, Verges S. Central and peripheral fatigue kinetics during exhaustive constant-load cycling. Scand J Med Sci Sports. 2012;22:381–91.

    Article  CAS  Google Scholar 

  64. Temesi J, Mattioni Maturana F, Peyrard A, Piucco T, Murias JM, Millet GY. The relationship between oxygen uptake kinetics and neuromuscular fatigue in high-intensity cycling exercise. Eur J Appl Physiol. 2017;117:969–78.

    Article  Google Scholar 

  65. Vila-Cha C, Falla D, Correia MV, Farina D. Adjustments in motor unit properties during fatiguing contractions after training. Med Sci Sports Exerc. 2012;44:616–24.

    Article  Google Scholar 

  66. Jakeman PM, Hawthorne JE, Maxwell SR, Kendall MJ, Holder G. Evidence for downregulation of hypothalamic 5-hydroxytryptamine receptor function in endurance-trained athletes. Exp Physiol. 1994;79:461–4.

    Article  CAS  Google Scholar 

  67. Nybo L, Dalsgaard MK, Steensberg A, Moller K, Secher NH. Cerebral ammonia uptake and accumulation during prolonged exercise in humans. J Physiol. 2005;563:285–90.

    Article  CAS  Google Scholar 

  68. Rooks CR, Thom NJ, McCully KK, Dishman RK. Effects of incremental exercise on cerebral oxygenation measured by near-infrared spectroscopy: a systematic review. Prog Neurobiol. 2010;92:134–50.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Y. Millet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Millet, G.Y., Temesi, J. (2019). Neural Adaptations to Endurance Training. In: Schumann, M., Rønnestad, B. (eds) Concurrent Aerobic and Strength Training. Springer, Cham. https://doi.org/10.1007/978-3-319-75547-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75547-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75546-5

  • Online ISBN: 978-3-319-75547-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics