Skip to main content
Log in

Effects of endurance training on the maximal voluntary activation level of the knee extensor muscles

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to investigate the neural adaptations to endurance training, and more specifically the adaptation of the cortical voluntary activation of the knee extensor (KE) muscles.

Methods

Sixteen sedentary men were randomly allocated into an endurance training (n = 8) or a control group (n = 8). All subjects performed a maximal aerobic speed test (MAS) before and immediately after the training period. Training lasted 8 weeks and was based on endurance running. During Pre- and Post-training testing sessions, maximal voluntary contraction (MVC) was measured and voluntary activation (VA) was calculated via peripheral nerve (PNS) and transcranial magnetic stimulations (TMS) superimposed to MVC. Electromyographic activity (EMG) of the KE muscles was also measured during MVC, PNS (M-wave) and TMS (motor evoked potentials—MEP). The cortical silent period following TMS was also assessed.

Results

Despite a significant improvement in endurance running performance, as suggested by the increase of MAS in the training group (Pre 15.4 ± 1.6 vs. Post 16.4 ± 1.6 km·h−1), endurance training did not affect MVC or VA as measured with PNS and TMS. Similarly, the EMG of KE muscles during MVC did not show any significant changes. Furthermore, the MEP amplitude and the duration of the silent period also remained unchanged after endurance training.

Conclusions

The present study suggests an 8-week endurance-training program does not generate adaptations of neural factors in sedentary subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Atkinson G, Nevill AM (1998) Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Med 26(4):217–238

    Article  CAS  PubMed  Google Scholar 

  • Barker AT, Jalinous R, Freeston IL (1985) Non-invasive magnetic stimulation of human motor cortex. Lancet 1(8437):1106–1107

    Article  CAS  PubMed  Google Scholar 

  • Buchheit M, Mendez-Villanueva A (2013) Reliability and stability of anthropometric and performance measures in highly-trained young soccer players: effect of age and maturation. J Sports Sci 31(12):1332–1343. doi:10.1080/02640414.2013.781662

    Article  PubMed  Google Scholar 

  • Buchheit M, Mendez-Villanueva A, Simpson BM, Bourdon PC (2010) Match running performance and fitness in youth soccer. Int J Sports Med 31(11):818–825. doi:10.1055/s-0030-1262838

    Article  CAS  PubMed  Google Scholar 

  • Burke D (2002) Effects of activity on axonal excitability: implications for motor control studies. Adv Exp Med Biol 508:33–37

    Article  PubMed  Google Scholar 

  • Carroll TJ, Selvanayagam VS, Riek S, Semmler JG (2011) Neural adaptations to strength training: moving beyond transcranial magnetic stimulation and reflex studies. Acta Physiol (Oxf) 202(2):119–140

    Article  CAS  Google Scholar 

  • Cazorla G, Léger L (1993) How to evaluate and develop your aerobic capacities. Tests of race shuttle and test VAMEVAL. Paper presented at the AREAPS, Cestas, France

  • Cirillo J, Lavender AP, Ridding MC, Semmler JG (2009) Motor cortex plasticity induced by paired associative stimulation is enhanced in physically active individuals. J Physiol 587(Pt 24):5831–5842

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cotman CW, Berchtold NC, Christie LA (2007) Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci 30(9):464–472

    Article  CAS  PubMed  Google Scholar 

  • del Olmo MF, Reimunde P, Viana O, Acero RM, Cudeiro J (2006) Chronic neural adaptation induced by long-term resistance training in humans. Eur J Appl Physiol 96(6):722–728. doi:10.1007/s00421-006-0153-5

    Article  PubMed  Google Scholar 

  • Dellal A, Varliette C, Owen A, Chirico EN, Pialoux V (2012) Small-sided games versus interval training in amateur soccer players: effects on the aerobic capacity and the ability to perform intermittent exercises with changes of direction. J Strength Cond Res 26(10):2712–2720. doi:10.1519/JSC.0b013e31824294c4

    Article  PubMed  Google Scholar 

  • Etgen T, Sander D, Huntgeburth U, Poppert H, Forstl H, Bickel H (2010) Physical activity and incident cognitive impairment in elderly persons: the INVADE study. Arch Intern Med 170(2):186–193

    Article  CAS  PubMed  Google Scholar 

  • Garrandes F, Colson SS, Pensini M, Seynnes O, Legros P (2007) Neuromuscular fatigue profile in endurance-trained and power-trained athletes. Med Sci Sports Exerc 39(1):149–158

    Article  PubMed  Google Scholar 

  • Girard O, Carbonnel Y, Candau R, Millet G (2009) Running versus strength-based warm-up: acute effects on isometric knee extension function. Eur J Appl Physiol 106(4):573–581. doi:10.1007/s00421-009-1047-0

    Article  PubMed  Google Scholar 

  • Griffin L, Cafarelli E (2007) Transcranial magnetic stimulation during resistance training of the tibialis anterior muscle. J Electromyogr Kinesiol 17(4):446–452

    Article  CAS  PubMed  Google Scholar 

  • Hakkinen K, Komi PV (1983) Changes in neuromuscular performance in voluntary and reflex contraction during strength training in man. Int J Sports Med 4(4):282–288. doi:10.1055/s-2008-1026051

    Article  CAS  PubMed  Google Scholar 

  • Hardman AE, Williams C, Wootton SA (1986) The influence of short-term endurance training on maximum oxygen uptake, submaximum endurance and the ability to perform brief, maximal exercise. J Sports Sci 4(2):109–116

    Article  CAS  PubMed  Google Scholar 

  • Hermens HJ, Freriks B, Merletti R, Hagg G, Stegeman D, Blok J, Rau G, Disselhorst-Klug C (1999) SENIAM 8: European recommendations for surface electromyography. Roessingh Research and Development, Enschede

    Google Scholar 

  • Hoppeler H (1988) Exercise-induced structural changes of skeletal muscle. ISI Atlas Sci Biochem 2:247–255

    Google Scholar 

  • Houston ME, Froese EA, Valeriote SP, Green HJ, Ranney DA (1983) Muscle performance, morphology and metabolic capacity during strength training and detraining: a one leg model. Eur J Appl Physiol 51(1):25–35

    Article  CAS  Google Scholar 

  • Idema RN, van den Meiracker AH, Imholz BP, Man in ‘t Veld AJ, Settels JJ, Ritsema van Eck HJ, Schalekamp MA (1989) Comparison of Finapres non-invasive beat-to-beat finger blood pressure with intrabrachial artery pressure during and after bicycle ergometry. J Hypertens Suppl 7(6):S58–S59

    Article  CAS  PubMed  Google Scholar 

  • Kubukeli ZN, Noakes TD, Dennis SC (2002) Training techniques to improve endurance exercise performances. Sports Med 32(8):489–509

    Article  PubMed  Google Scholar 

  • Kyrolainen H, Komi PV (1994) Neuromuscular performance of lower limbs during voluntary and reflex activity in power- and endurance-trained athletes. Eur J Appl Physiol 69(3):233–239

    Article  CAS  Google Scholar 

  • Lattier G, Millet GY, Maffiuletti NA, Babault N, Lepers R (2003) Neuromuscular differences between endurance-trained, power-trained, and sedentary subjects. J Strength Cond Res 17(3):514–521

    PubMed  Google Scholar 

  • Lee M, Gandevia SC, Carroll TJ (2009a) Short-term strength training does not change cortical voluntary activation. Med Sci Sports Exerc 41(7):1452–1460

    Article  PubMed  Google Scholar 

  • Lee M, Gandevia SC, Carroll TJ (2009b) Unilateral strength training increases voluntary activation of the opposite untrained limb. Clin Neurophysiol 120(4):802–808. doi:10.1016/j.clinph.2009.01.002

    Article  PubMed  Google Scholar 

  • Léger L, Boucher R (1980) An indirect continuous running multistage field test: the Universite de Montreal Track Test. Can J Appl Sport Sci 5(2):77–84

    PubMed  Google Scholar 

  • Lepers R, Maffiuletti NA, Rochette L, Brugniaux J, Millet GY (2002) Neuromuscular fatigue during a long-duration cycling exercise. J Appl Physiol 92(4):1487–1493. doi:10.1152/japplphysiol.00880.2001

    PubMed  Google Scholar 

  • Maffiuletti NA, Martin A, Babault N, Pensini M, Lucas B, Schieppati M (2001) Electrical and mechanical H(max)-to-M(max) ratio in power- and endurance-trained athletes. J Appl Physiol 90(1):3–9

    CAS  PubMed  Google Scholar 

  • Martin V, Kerherve H, Messonnier LA, Banfi JC, Geyssant A, Bonnefoy R, Feasson L, Millet GY (2010) Central and peripheral contributions to neuromuscular fatigue induced by a 24-h treadmill run. J Appl Physiol 108(5):1224–1233. doi:10.1152/japplphysiol.01202.2009

    Article  PubMed  Google Scholar 

  • McDonnell MN, Buckley JD, Opie GM, Ridding MC, Semmler JG (2013) A single bout of aerobic exercise promotes motor cortical neuroplasticity. J Appl Physiol 114(9):1174–1182. doi:10.1152/japplphysiol.01378.2012

    Article  PubMed  Google Scholar 

  • Millet GY, Martin V, Lattier G, Ballay Y (2003) Mechanisms contributing to knee extensor strength loss after prolonged running exercise. J Appl Physiol 94(1):193–198. doi:10.1152/japplphysiol.00600.2002

    CAS  PubMed  Google Scholar 

  • Morrison SA, Sleivert GG, Cheung S (2006) Aerobic influence on neuromuscular function and tolerance during passive hyperthermia. Med Sci Sports Exerc 38(10):1754–1761. doi:10.1249/01.mss.0000230120.83641.98

    Article  PubMed  Google Scholar 

  • Perot C, Goubel F, Mora I (1991) Quantification of T- and H-responses before and after a period of endurance training. Eur J Appl Physiol 63(5):368–375

    Article  CAS  Google Scholar 

  • Place N, Maffiuletti NA, Martin A, Lepers R (2007) Assessment of the reliability of central and peripheral fatigue after sustained maximal voluntary contraction of the quadriceps muscle. Muscle Nerve 35(4):486–495. doi:10.1002/mus.20714

    Article  PubMed  Google Scholar 

  • Ploughman M, Granter-Button S, Chernenko G, Attwood Z, Tucker BA, Mearow KM, Corbett D (2007) Exercise intensity influences the temporal profile of growth factors involved in neuronal plasticity following focal ischemia. Brain Res 1150:207–216

    Article  CAS  PubMed  Google Scholar 

  • Rupp T, Jubeau M, Wuyam B, Perrey S, Levy P, Millet GY, Verges S (2012) Time-dependent effect of acute hypoxia on corticospinal excitability in healthy humans. J Neurophysiol 108(5):1270–1277. doi:10.1152/jn.01162.2011

    Article  CAS  PubMed  Google Scholar 

  • Sidhu SK, Bentley DJ, Carroll TJ (2009a) Cortical voluntary activation of the human knee extensors can be reliably estimated using transcranial magnetic stimulation. Muscle Nerve 39(2):186–196. doi:10.1002/mus.21064

    Article  PubMed  Google Scholar 

  • Sidhu SK, Bentley DJ, Carroll TJ (2009b) Locomotor exercise induces long-lasting impairments in the capacity of the human motor cortex to voluntarily activate knee extensor muscles. J Appl Physiol 106(2):556–565

    Article  PubMed  Google Scholar 

  • Sogaard K, Gandevia SC, Todd G, Petersen NT, Taylor JL (2006) The effect of sustained low-intensity contractions on supraspinal fatigue in human elbow flexor muscles. J Physiol 573(Pt 2):511–523. doi:10.1113/jphysiol.2005.103598

    Article  PubMed Central  PubMed  Google Scholar 

  • Todd G, Taylor JL, Gandevia SC (2003) Measurement of voluntary activation of fresh and fatigued human muscles using transcranial magnetic stimulation. J Physiol 551(Pt 2):661–671

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Todd G, Gorman RB, Gandevia SC (2004a) Measurement and reproducibility of strength and voluntary activation of lower-limb muscles. Muscle Nerve 29(6):834–842. doi:10.1002/mus.20027

    Article  PubMed  Google Scholar 

  • Todd G, Taylor JL, Gandevia SC (2004b) Reproducible measurement of voluntary activation of human elbow flexors with motor cortical stimulation. J Appl Physiol 97(1):236–242

    Article  PubMed  Google Scholar 

  • Ugawa Y, Terao Y, Hanajima R, Sakai K, Kanazawa I (1995) Facilitatory effect of tonic voluntary contraction on responses to motor cortex stimulation. Electroencephalogr Clin Neurophysiol 97:451–454

    Article  CAS  PubMed  Google Scholar 

  • Van Cutsem M, Duchateau J, Hainaut K (1998) Changes in single motor unit behaviour contribute to the increase in contraction speed after dynamic training in humans. J Physiol 513(Pt 1):295–305

    Article  PubMed Central  PubMed  Google Scholar 

  • van Praag H, Christie BR, Sejnowski TJ, Gage FH (1999) Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc Natl Acad Sci USA 96(23):13427–13431

    Article  PubMed Central  PubMed  Google Scholar 

  • Vila-Cha C, Falla D, Correia MV, Farina D (2012) Adjustments in motor unit properties during fatiguing contractions after training. Med Sci Sports Exerc 44(4):616–624

    Article  PubMed  Google Scholar 

  • Winter B, Breitenstein C, Mooren FC, Voelker K, Fobker M, Lechtermann A, Krueger K, Fromme A, Korsukewitz C, Floel A, Knecht S (2007) High impact running improves learning. Neurobiol Learn Mem 87(4):597–609

    Article  PubMed  Google Scholar 

  • Yoshida T, Suda Y, Takeuchi N (1982) Endurance training regimen based upon arterial blood lactate: effects on anaerobic threshold. Eur J Appl Physiol 49(2):223–230

    Article  CAS  Google Scholar 

Download references

Conflict of interest

No funding was received for this research project. The authors of this article do not have any conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Martin.

Additional information

Communicated by Alain Martin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zghal, F., Martin, V., Thorkani, A. et al. Effects of endurance training on the maximal voluntary activation level of the knee extensor muscles. Eur J Appl Physiol 114, 683–693 (2014). https://doi.org/10.1007/s00421-013-2793-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-013-2793-6

Keywords

Navigation