Skip to main content

Introduction to the Fundamentals of Raman Spectroscopy

  • Chapter
  • First Online:
Confocal Raman Microscopy

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 66))

Abstract

The goal of this chapter is to provide a general introduction to the principles of Raman spectroscopy. The chapter will therefore begin with a theoretical description of the Raman effect i.e. the classical electrodynamic treatment of Raman scattering, the discussion of the Raman intensities and the quantum mechanical picture. Enhancement mechanisms for Raman Microscopy will be discussed in the second part and resonant Raman as well as surface-enhanced Raman spectroscopy will then be explained in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As in all practical modern applications of Raman scattering a laser is used as the excitation light source, the terms excitation light and laser light as well as excitation frequency, \(\omega _0\) and laser frequency are used synonymously.

  2. 2.

    We note that \(\mu \) and E are vector quantities, while \(\alpha \) represents a 3rd rank tensor. Keeping this in mind, vector notation is dropped from now on.

  3. 3.

    In the derivation presented here, molecular rotations are neglected as classical theory does not yield discrete excitation energies for molecular rotations.

  4. 4.

    This is different for a hetero-diatomic molecule, which has a permanent dipole moment, whose derivative at the equilibrium position is non-zero.

  5. 5.

    For the derivation of a quantitative expression of the polarizability tensor the reader is referred to the section on the quantum mechanical picture of Raman scattering.

  6. 6.

    It can be shown (see S. Mukamel, Principles of Nonlinear Optics and Spectroscopy, Oxford University Press (1995)), that in the case of no dephasing of the excited-state wavefunction RR scattering and fluorescence are identical. In the - in most experimental situations realistic - case of dephasing being present RR scattering is associated with the emission of the initial coherent excited-state wavefunction prior to dephasing, while fluorescence reflects the emission of the incoherent wavefunction after dephasing.

References

  1. M. Schmitt, J. Popp, J. Raman Spectrosc. 37(1–3), 20 (2006)

    Article  ADS  Google Scholar 

  2. K.R. Ackermann, T. Henkel, J. Popp, ChemPhysChem 8(18), 2665 (2007)

    Article  Google Scholar 

  3. K.R. Strehle, D. Cialla, P. Rösch, T. Henkel, M. Köhler, J. Popp, Anal. Chem. 79(4), 1542 (2007)

    Article  Google Scholar 

  4. P. Rösch, M. Harz, M. Schmitt, K.D. Peschke, O. Ronneberger, H. Burkhardt, H.W. Motzkus, M. Lankers, S. Hofer, H. Thiele, J. Popp, Appl. Environ. Microbiol. 71(3), 1626 (2005)

    Article  Google Scholar 

  5. P. Rösch, M. Harz, K.D. Peschke, O. Ronneberger, H. Burkhardt, A. Schüle, G. Schmauz, M. Lankers, S. Hofer, H. Thiele, H.W. Motzkus, J. Popp, Anal. Chem. 78(7), 2163 (2006)

    Article  Google Scholar 

  6. B. Schrader (ed.), Infrared and Raman Spectroscopy, Methods and Applications (Wiley-VCH, 1995), Chapter Application of non-classical Raman spectroscopy, p. 465

    Google Scholar 

  7. A.V. Szeghalmi, M. Erdmann, V. Engel, M. Schmitt, S. Amthor, V. Kriegisch, G. Noell, R. Stahl, C. Lambert, D. Leusser, D. Stalke, M. Zabel, J. Popp, J. Am. Chem. Soc. 126(25), 7834 (2004)

    Article  Google Scholar 

  8. S. Lochbrunner, A. Szeghalmi, K. Stock, M. Schmitt, J. Chem. Phys. 122, 244315 (2005)

    Article  ADS  Google Scholar 

  9. R.J.H. Clark, P.D. Mitchell, J. Am. Chem. Soc. 95(25), 8300 (1973)

    Article  Google Scholar 

  10. W. Kiefer, H.J. Bernstein, J. Mol. Spectrosc. 43, 366 (1972)

    Article  ADS  Google Scholar 

  11. S.P.A. Fodor, R.P. Rava, T.R. Hays, T.G. Spiro, J. Am. Chem. Soc. 107, 1520 (1985)

    Article  Google Scholar 

  12. S.A. Asher, Anal. Chem. 65, A201 (1993)

    Article  Google Scholar 

  13. J.M. Benevides, S.A. Overman, G.J.J. Thomas, J. Raman Spectrosc. 36, 279 (2005)

    Article  ADS  Google Scholar 

  14. T. Egawa, S.R. Yeh, J. Inorg. Biochem. 99(1), 72 (2005)

    Article  Google Scholar 

  15. J.R. Kincaid, Porphyrin Handbook, vol. 7 (2000), p. 225

    Google Scholar 

  16. J.R. Kincaid, K. Czarnecki, Comprehensive Coordination Chemistry II, vol. 2 (2004), p. 131

    Google Scholar 

  17. T. Kitagawa, Y. Mizutani, Coord. Chem. Rev. 135/136, 685 (1994)

    Article  Google Scholar 

  18. T. Kitagawa, J. Porphyrins Phthalocyanines 6(4), 301 (2002)

    Article  Google Scholar 

  19. R. Schweitzer-Stenner, J. Raman Spectrosc. 32(9), 711 (2001)

    Article  ADS  Google Scholar 

  20. T.G. Spiro, Biological Applications of Raman Spectroscopy (Wiley, New York, 1987), vol. 3, Chapter Resonance Raman spectra of heme and metalloproteins

    Google Scholar 

  21. T.G. Spiro, C.A. Grygon, J. Mol. Struct. 173, 79 (1988)

    Article  ADS  Google Scholar 

  22. G.J.J. Thomas, Annu. Rev. Biophys. Biomol. Struct. 28, 1 (1999)

    Article  ADS  Google Scholar 

  23. R. Withnall, Protein-Ligand Interactions, Structure and Spectroscopy: A Practical Approach (Oxford University Press, Oxford, 2001), Chapter Protein-ligand interactions studied by Raman and resonance Raman spectroscopy

    Google Scholar 

  24. K. Gaus, P. Rösch, R. Petry, K.D. Peschke, O. Ronneberger, H. Burkhardt, K. Baumann, J. Popp, Biopolymers 82(4), 286 (2006)

    Article  Google Scholar 

  25. R.M. Jarvis, R. Goodacre, F.E.M.S. Microbiol, Lett. 232, 127 (2004)

    Google Scholar 

  26. E.C. Lopez-Diez, R. Goodacre, Anal. Chem. 76(3), 585 (2004)

    Article  Google Scholar 

  27. Z.Q. Wen, S.A. Overman, G.J.J. Thomas, Biochemistry 36, 7810 (1997)

    Article  Google Scholar 

  28. M. Fleischmann, P.J. Hendra, A.J. McQuillan, Chem. Phys. Lett. 26(2), 163 (1974)

    Article  ADS  Google Scholar 

  29. R. Petry, M. Schmitt, J. Popp, ChemPhysChem 4(1), 14 (2003)

    Article  Google Scholar 

  30. K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, J. Popp, Anal. Bioanal. Chem. 390(1), 113 (2008)

    Article  Google Scholar 

  31. M.G. Albrecht, J.A. Creighton, J. Am. Chem. Soc. 99(15), 5215 (1977)

    Article  Google Scholar 

  32. D.L. Jeanmaire, R.P. Van Duyne, J. Electroanal. Chem. Interfacial Electrochem. 84(1), 1 (1977)

    Article  Google Scholar 

  33. M.J. Banholzer, J.E. Millstone, L. Qin, C.A. Mirkin, Chem. Soc. Rev. 37(5), 885 (2008)

    Article  Google Scholar 

  34. B. Ren, G.K. Liu, X.B. Lian, Z.L. Yang, Z.Q. Tian, Anal. Bioanal. Chem. 388(1), 29 (2007)

    Article  Google Scholar 

  35. K. Kneipp, H. Kneipp, I. Itzkan, R.R. Dasari, M.S. Feld, J. Phys.: Condens. Matter 14(18), R597 (2002)

    ADS  Google Scholar 

  36. P.L. Stiles, J.A. Dieringer, N.C. Shah, R.P. Van Duyne, Annu. Rev. Anal. Chem. 1, 601 (2008)

    Article  Google Scholar 

  37. K. Kneipp, Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R.R. Dasari, M.S. Feld, Phys. Rev. Lett. 78(9), 1667 (1997)

    Article  ADS  Google Scholar 

  38. S.M. Nie, S.R. Emery, Science 275(5303), 1102 (1997)

    Article  Google Scholar 

  39. U. Neugebauer, P. Rösch, M. Schmitt, J. Popp, C. Julien, A. Rasmussen, C. Budich, V. Deckert, ChemPhysChem 7(7), 1428 (2006)

    Article  Google Scholar 

  40. U. Neugebauer, U. Schmid, K. Baumann, W. Ziebuhr, S. Kozitskaya, V. Deckert, M. Schmitt, J. Popp, ChemPhysChem 8(1), 124 (2007)

    Article  Google Scholar 

  41. R. Gessner, P. Rösch, W. Kiefer, J. Popp, Biopolymers 67(3), 327 (2002)

    Article  Google Scholar 

  42. R. Gessner, P. Rösch, R. Petry, M. Schmitt, M.A. Strehle, W. Kiefer, J. Popp, Analyst 129(12), 1193 (2004)

    Article  ADS  Google Scholar 

  43. W.A. Murray, W.L. Barnes, Adv. Mater. 19(22), 3771 (2007)

    Article  Google Scholar 

  44. K.A. Willets, R.P. Van Duyne, Annu. Rev. Phys. Chem. 58, 267 (2007)

    Article  ADS  Google Scholar 

  45. G.C. Schatz, R.P. Van Duyne, Handbook of Vibrational Spectroscopy (Wiley, Chichester, 2002), Chapter Electromagnetic Mechanism of Surface-enhanced Spectroscopy, pp. 759–774

    Google Scholar 

  46. M. Kerker, D.S. Wang, H. Chew, Appl. Opt. 19(24), 4159 (1980)

    Article  ADS  Google Scholar 

  47. J.F. Arenas, I. Lopez-Tocon, J.L. Castro, S.P. Centeno, M.R. Lopez-Ramirez, J.C. Otero, J. Raman Spectrosc. 36(6/7), 515 (2005)

    Article  ADS  Google Scholar 

  48. A. Otto, J. Raman Spectrosc. 36(6/7), 497 (2005)

    Article  ADS  Google Scholar 

  49. D. Graham, K. Faulds, Chem. Soc. Rev. 37(5), 1042 (2008)

    Article  Google Scholar 

  50. A.J. Haes, C.L. Haynes, A.D. McFarland, G.C. Schatz, R.P. van Duyne, S. Zou, MRS Bull. 30(5), 368 (2005)

    Article  Google Scholar 

  51. X. Zhang, J. Zhao, A.V. Whitney, J.W. Elam, R.P. Van Duyne, J. Am. Chem. Soc. 128(31), 10304 (2006)

    Article  Google Scholar 

  52. J. Stropp, G. Trachta, G. Brehm, S. Schneider, J. Raman Spectrosc. 34(1), 26 (2003)

    Article  ADS  Google Scholar 

  53. C.L. Haynes, A.D. McFarland, L. Zhao, R.P. Van Duyne, G.C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, M. Kaell, J. Phys. Chem. B 107(30), 7337 (2003)

    Article  Google Scholar 

  54. G. Laurent, N. Felidj, J. Aubard, G. Levi, J.R. Krenn, A. Hohenau, G. Schider, A. Leitner, F.R. Aussenegg, J. Chem. Phys. 122(1), 011102/1 (2005)

    Article  ADS  Google Scholar 

  55. L. Billot, M. Lamy de la Chapelle, A.S. Grimault, A. Vial, D. Barchiesi, J.L. Bijeon, P.M. Adam, P. Royer, Chem. Phys. Lett. 422(4–6), 303 (2006)

    Article  ADS  Google Scholar 

  56. K. Li, L. Clime, B. Cui, T. Veres, Nanotechnology 19(14), 145305/1 (2008)

    ADS  Google Scholar 

  57. D. Cialla, U. Hübner, H. Schneidewind, R. Möller, J. Popp, ChemPhysChem 9, 758 (2008)

    Article  Google Scholar 

  58. U. Hübner, R. Boucher, H. Schneidewind, D. Cialla, J. Popp, Microelectron. Eng. 85, 1792 (2008)

    Article  Google Scholar 

  59. K.K. Hering, R. Möller, W. Fritzsche, J. Popp, ChemPhysChem 9(6), 867 (2008)

    Article  Google Scholar 

  60. K.R. Strehle, D. Cialla, P. R’sch, T. Henkel, M. K’hler. J. Popp Anal. Chem. 79(4), 1542 (2007)

    Article  Google Scholar 

  61. E. Bailo, V. Deckert, Chem. Soc. Rev. 37(5), 921 (2008)

    Article  Google Scholar 

  62. E. Bailo, V. Deckert, Angew. Chem. Int. Ed. 47(9), 1658 (2008)

    Article  Google Scholar 

  63. D. Cialla, T. Deckert-Gauding, C. Budich, M. Laue, R. M’ller, D. Naumann, V. Deckert. J. Popp J. Raman Spectrosc. 40(3), 240 (2008)

    Article  ADS  Google Scholar 

  64. C.L. Haynes, C.R. Yonzon, X. Zhang, R.P. Van Duyne, J. Raman Spectrosc. 36(6/7), 471 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Dietzek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dietzek, B., Cialla, D., Schmitt, M., Popp, J. (2018). Introduction to the Fundamentals of Raman Spectroscopy. In: Toporski, J., Dieing, T., Hollricher, O. (eds) Confocal Raman Microscopy. Springer Series in Surface Sciences, vol 66. Springer, Cham. https://doi.org/10.1007/978-3-319-75380-5_3

Download citation

Publish with us

Policies and ethics