Skip to main content

The IMS Infrasound Network: Current Status and Technological Developments

  • Chapter
  • First Online:
Infrasound Monitoring for Atmospheric Studies

Abstract

The International Monitoring System (IMS) comprises 337 globally distributed facilities for seismic, hydroacoustic, infrasound, and radionuclide monitoring. This chapter focuses on the infrasound component of the IMS, often referred to as the IMS infrasound network. The chapter begins with an overview of the network and of the main challenges associated with its establishment, sustainability, and detection capability. It follows with a general description of IMS stations as well as with a review of the latest advances in array geometry, wind-noise reduction systems, infrasound sensors, calibration, meteorological data, data acquisition systems, and station infrastructure. This chapter is intended for researchers and engineers who are interested in the specifications, design, status, and overall capabilities of the IMS infrasound network or in the construction of state-of-the-art infrasound stations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alcoverro B (2008) The design and performance of infrasound noise-reducing pipe arrays. In: Havelock D, Kuwano S, Vorländer M (eds) Handbook of signal processing in acoustics. Springer, New York, pp 1473–1486

    Chapter  Google Scholar 

  • Alcoverro B, Le Pichon A (2005) Design and optimization of a noise reduction system for infrasonic measurements using elements with low acoustic impedance. J Acoust Soc Am 117:1717–1727

    Article  Google Scholar 

  • Alcoverro B, Martysevich P, Starovoit Y (2005) Mechanical sensitivity of microbarometers MB2000 (DASE, France) and Chaparral 5 (USA) to vertical and horizontal ground motion. InfraMatics 9:1–10

    Google Scholar 

  • Avison J, Barham R (2014) Report on key comparison CCAUV.A-K5: pressure calibration of laboratory standard microphones in the frequency range 2 hz to 10 kHz. Technical report, National Physical Laboratory

    Google Scholar 

  • Bowman JR, Baker GE, Bahavar M (2005) Ambient infrasound noise. Geophys Res Lett 32:L09803

    Article  Google Scholar 

  • Brachet N, Brown D, Le Bras R, Mialle P, Coynr J (2010) Monitoring the Earth’s atmosphere with the global IMS infrasound network. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies. Springer, Berlin, pp 29–75

    Google Scholar 

  • Brown D, Ceranna L, Prior M, Mialle P, Le Bras R (2014a) The IDC seismic, hydroacoustic and infrasound global low and high noise models. Pure Appl Geophys 171:361–375

    Article  Google Scholar 

  • Brown D, Szuberla C, McComarck D, Mialle P (2014b) The influence of spatial filters on infrasound array responses. Pure Appl Geophys 171:575–585

    Article  Google Scholar 

  • Campus P, Christie D (2010) Worldwide observations of infrasonic waves. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies. Springer, Berlin, pp 29–75

    Google Scholar 

  • Capon J (1969) High-resolution frequency-wavenumber spectrum analysis. Proc IEEE 57(8):1408–1418

    Article  Google Scholar 

  • Carter J (2011) Waveform data availability and pts performance monitoring: updates and progress. WGB 37 – Waveform Expert Group

    Google Scholar 

  • CEA/DASE (1998) Microbarometer MB2000 – Technical Manual

    Google Scholar 

  • CEA/Martec (2005) Microbarometer MB2005 – User Manual

    Google Scholar 

  • CEA/Seismowave (2014a) Microbarometer MB3a – User Manual

    Google Scholar 

  • CEA/Seismowave (2014b) Microbarometer MB3d – User Manual

    Google Scholar 

  • ChaparralPhysics (2010) Operation manual for the model 50A infrasound sensor

    Google Scholar 

  • Charbit M (2015) Loss of coherence model. Technical report, CTBTO

    Google Scholar 

  • Charbit M, Doury B, Marty J (2015) Evaluation of infrasound in-situ calibration method on a 3-month measurement campaign. Infrasound technology workshop 2015, Vienna, Austria

    Google Scholar 

  • Che I-Y, Park J, Kim I, Kim TS, Lee H-L (2014) Infrasound signals from the underground nuclear explosions of North Korea. Geophys J Int 198:495–503

    Article  Google Scholar 

  • Christie D, Campus P (2010) The IMS infrasound network: design and establishment of infrasound stations. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies. Springer, pp 29–75

    Google Scholar 

  • CNEOS (2017). https://cneos.jpl.nasa.gov/fireballs/

  • Conference on Disarmament (1995) Report of the infrasound expert group to the Ad Hoc committee on a nuclear test ban working group on verification (CD/NTB/WP.283). Geneva

    Google Scholar 

  • CTBTO (1996) Resolution establishing the preparatory commission for the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBT/MSS/RES/1)

    Google Scholar 

  • CTBTO (1997a) Report of working group B to the fourth session of the preparatory commission for the Comprehensive Nuclear-Test-Ban Treaty Organization – Annex VI (CTBT/PC/IV/1/Add.2)

    Google Scholar 

  • CTBTO (1997b) Report of working group B to the second session of the preparatory commission for the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBT/PC/II/1/Add.2)

    Google Scholar 

  • CTBTO (1999) Operational manual for seismological monitoring and the international exchange of seismological data – draft (CTBT/WGB/TL-11/2/Rev.2)

    Google Scholar 

  • CTBTO (2000) Command structure for IMS stations (CTBT/PTS/INF.280)

    Google Scholar 

  • CTBTO (2001) Report of working group B to the fifthteen session of the preparatory commission (CTBT/PC-37/WGB/1)

    Google Scholar 

  • CTBTO (2003) Minutes of infrasound experts meeting. UCSD, La Jolla

    Google Scholar 

  • CTBTO (2008) Revalidation of performance of international monitoring system facilities (CTBT/PTS/INF.934)

    Google Scholar 

  • CTBTO (2009) Operational manual for infrasound monitoring and the international exchange of infrasound data – draft (CTBT/WGB/TL-11,17/17/Rev.5)

    Google Scholar 

  • CTBTO (2010) IMS earthing and lightning protection minimum standard

    Google Scholar 

  • CTBTO (2011a) I59US. Hawaii, USA - Revalidation Report

    Google Scholar 

  • CTBTO (2011b) Operational manual for the international data centre – draft (CTBT/WGB/TL-11,17/19/Rev.5)

    Google Scholar 

  • CTBTO (2011c) Report of working group B to the thirty-seventh session of the preparatory commission (CTBT/PC-37/WGB/1)

    Google Scholar 

  • CTBTO (2013a) I55US. Windless Bight, Antarctica - Revalidation Report

    Google Scholar 

  • CTBTO (2013b) I58US. Midway Islands, USA - Certification Report

    Google Scholar 

  • CTBTO (2013c) Midterm strategy: 2014–2017 (CTBT/PTS/INF.1249)

    Google Scholar 

  • CTBTO (2013d) https://www.ctbto.org/press-centre/press-releases/2013/ctbto-detects-radioactivity-consistent-with-12-february-announced-north-korean-nuclear-test/

  • CTBTO (2014a) CTBTO preparatory commission IMS communication and maintenance guidelines

    Google Scholar 

  • CTBTO (2014b) Report of working group B to the forty-third session of the preparatory commission (CTBT/PC-43/WGB/1)

    Google Scholar 

  • CTBTO (2015) Technical protocol for pilot study PTSAVH.A-PS1

    Google Scholar 

  • CTBTO (2016a) Annual report on the calibration of IMS seismic and hydroacoustic T-phase stations and sensor orientation (ECS/DIS/WGB-47/PTS-MATERIAL/11)

    Google Scholar 

  • CTBTO (2016b) Report of working group B to the forty-sixth session of the preparatory commission (CTBT/PC-46/WGB/1)

    Google Scholar 

  • CTBTO (2016c) Terms of reference for the the supply of high resolution digitizers and engineering services for IMS stations

    Google Scholar 

  • CTBTO (2016d) Updated sections of the draft operational manual for infrasound monitoring and the international exchange of infrasound data incorporating changes agreed after the issuance of revision 5 (CTBT/WGB/TL-11,17/58/Rev.1)

    Google Scholar 

  • CTBTO (2017a) Failure analysis of IMS stations (ECS/WGB-48/PTS/10)

    Google Scholar 

  • CTBTO (2017b). https://www.ctbto.org/the-treaty/developments-after-1996/2017-sept-dprk/technical-findings/

  • CTBTO (2017c) Medium term strategy: 2018–2021 (CTBT/PTS/INF.1395)

    Google Scholar 

  • Dahlman O, Mackby J, Mykkeltveit S, Haak H (2011) Detect and deter: can countries verify the nuclear test ban?. Springer, Berlin

    Book  Google Scholar 

  • Daniels F (1959) Noise-reducing line microphone for frequencies below 1 cps. J Acoust Soc Am 31(4):529–531

    Article  Google Scholar 

  • De Groot-Hedlin C, Hedlin M, Drob D (2010) Atmospheric variability and infrasound monitoring. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies. Springer, pp. 475–507

    Google Scholar 

  • De Wolf S, Walker K, Zumberge M, Denis S (2013) Efficacy of spatial averaging of infrasonic pressure in varying wind speeds. J Acoust Soc Am 133(5):3739

    Google Scholar 

  • Denis S, Le Floch C (2015) Wind noise reduction systems: complementary results. Infrasound technology workshop 2015, Vienna, Austria

    Google Scholar 

  • Dillion K, Howard W, Shields FD (2007) Advances in distributed arrays for detection of infrasonic events. J Acoust Soc Am 122:2960

    Article  Google Scholar 

  • Doury B, Denis S, Jusko M, Larsonnier F, Marty J, Merchant J, Nief G, Rembold R, Slad G, Symons NCT, Waxler R (2015) Interlaboratory comparison pilot study. In: Infrasound technology workshop 2015, Vienna, Austria

    Google Scholar 

  • Evers L, Haak H (2001) An optimal infrasound array at Apatity (Russian Federation). KNMI. ISBN: 90-369-2193-7 publication 195

    Google Scholar 

  • Evers LG, Haak HW (2010) The characteristics of infrasound, its propagation and some early history. In: Infrasound monitoring for atmospheric studies. Springer, pp 3–27

    Google Scholar 

  • Fee D, Szuberla C (2012) Proposed re-drilling of wind-noise reducing ppipe at I55US. Technical report, UAF

    Google Scholar 

  • Fee D, Szuberla C, Helmericks J, Tytgat G, Blom L, Winkleman A, Rembold R, Knox J, Gabrielson T, Talmadge C, Waxler R (2016) Preliminary results from the US NACT R&D testbed infrasound array. Infrasound technology workshop 2016, Quito, Ecuador

    Google Scholar 

  • Fee D, Waxler R, Assink J, Gitterman Y, Given J, Coyne J, Mialle P, Garcés M, Drob D, Kleinert D, Hofstetter R, Grenard P (2013) Overview of the 2009 and 2011 sayarim infrasound calibration experiments. J Geophys Res 118(12):6122–6143

    Google Scholar 

  • Firbas P, Brachet N (2003) Processing data from incomplete infrasound arrays. IMS workshop 2003, Vienna, Austria

    Google Scholar 

  • Frazier G (2012) Using parametric models for wind noise for improved detection of transient acoustic signals. Infrasound technology workshop 2012, Daejon, Republic of Korea

    Google Scholar 

  • Frazier G (2014) Application of parametric empirical Bayes estimation to enhance detection of infrasound transients. Infrasound technology workshop 2014, Vienna, Austria

    Google Scholar 

  • Gabrielson T (2011) In situ calibration of atmospheric-infrasound sensors including the effects of wind-noise-reduction pipe systems. J Acoust Soc Am 130(3):1154–63

    Article  Google Scholar 

  • Gabrielson T (2013) In-situ calibration of infrasound elements: summary report (2009–2013). Technical report, Nuclear Arms Control Treaty

    Google Scholar 

  • Green DN (2015) The spatial coherence structure of infrasonic waves: analysis of data from international monitoring system arrays. Geophys J Int 201:377–389

    Article  Google Scholar 

  • Green DN, Bowers D (2010) Estimating the detection capability of the international monitoring system infrasound network. J Geophys Res 115(D18):D18116

    Article  Google Scholar 

  • Grover F (1971) Experimental noise reducers for an active microbarograph array. Geophys J R Astron Soc 26(1–4):41–52

    Google Scholar 

  • Hart D (2009) Evaluation of the microbarometer 2005 infrasound sensor. Technical report, Sandia National Laboratories

    Google Scholar 

  • Hart D, Jones K (2011) Infrasound sensor evaluation performed at the Facility for Acceptance, Calibration and Testing (FACT) site. Infrasound technology workshop 2011, Dead Sea, Jordan

    Google Scholar 

  • Hart D, Rembold R (2010) Evaluation of two Chaparral physics model 50A infrasound sensors. Technical report, Sandia National Laboratories

    Google Scholar 

  • Hart D, Rembold R, Hedlin M, Coon C, Szuberla C, Fee D, Helmericks J, Marty J (2013) I56US Newport, WA component upgrade: evaluation of the replaced digitizers and infrasound sensors. In: Science and technology conference 2013

    Google Scholar 

  • Hedlin M, Alcoverro B (2005) The use of impedance matching capillaries for reducing resonance in rosette infrasonic spatial filters. J Acoust Soc Am 117(4):1880–1888

    Article  Google Scholar 

  • Hedlin M, Alcoverro B, D’Spain G (2003) Evaluation of rosette infrasonic noise-reducing spatial filters. J Acoust Soc Am 114:1807–1820

    Article  Google Scholar 

  • Hedlin M, Raspet R (2003) Infrasonic wind-noise reduction by barriers and spatial filters. J Acoust Soc Am 114(3):1379–1386

    Article  Google Scholar 

  • IDC (2001). IDC Documentation - Continuous Data Subsystem CD-1.1

    Google Scholar 

  • Kay SM (1993) Fundamentals of statistical signal processing: estimation theory. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Kramer A, Doury B, Grasse T, Jusko M, Marty J, Charbit M, Nikolova S (2015) Progress in the integration of on-site calibration capability at IMS infrasound stations: towards measurement quality assurance. Infrasound technology workshop 2015, Vienna, Austria

    Google Scholar 

  • Kromer R, McDonald T (2000) Infrasound sensor models and evaluation. Technical report, Sandia National Laboratories

    Google Scholar 

  • Krysta M (2015) Meeting of the WMO/CBS (World Meteorological Organization/Commission for Basic Systems) expert team on emergency response activities (ET-ERA). Technical report, CTBTO

    Google Scholar 

  • Lanzinger E, Schubotz K (2012) A laboratory intercomparison of static pressure heads. Technical report, WMO CIMO TECO, Brussels, Belgium

    Google Scholar 

  • Le Pichon A (2003) Infrasound network evaluation – identified sources of instabilities. IMS workshop 2003, Vienna, Austria

    Google Scholar 

  • Le Pichon A, Assink JD, Heinrich P, Blanc E, Charlton-Perez A, Lee CF, Keckhut P, Hauchecorne A, Rfenacht R, Kmpfer N, Drob DP, Smets PSM, Evers LG, Ceranna L, Pilger C, Ross OCC (2015) Comparison of co-located independent ground-based middle atmospheric wind and temperature measurements with numerical weather prediction models. J Geophys Res Atmos 120:8318–8331

    Google Scholar 

  • Le Pichon A, Ceranna L, Pilger C, Mialle P, Brown D, Herry P, Brachet N (2013) The 2013 Russian fireball largest ever detected by CTBTO infrasound sensors. Geophys Res Lett 40(14):3732–3737

    Article  Google Scholar 

  • Le Pichon A, Ceranna L, Vergoz J (2012) Incorporating numerical modeling into estimates of the detection capability of the IMS infrasound network. J Geophys Res 117:D05121

    Article  Google Scholar 

  • Le Pichon A, Ceranna L, Vergoz J, Tailpied D (2019) Modeling the detection capability of the global IMS infrasound network. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 593–604

    Google Scholar 

  • Le Pichon A, Vergoz J, Blanc E, Guilbert J, Ceranna L, Evers L, Brachet N (2009) Assessing the performance of the International monitoring system’s infrasound network: geographical coverage and temporal variabilities. J Geophys Res 114:D08112

    Article  Google Scholar 

  • Liszka L (2008) Infrasound: a summary of 35 years of infrasound research. IRF scientific report 291, Institutet for rymdfysik. ISBN 978-91-977255-0-7

    Google Scholar 

  • Mack H, Flinn E (1971) Analysis of the spatial coherence of short-period acoustic-gravity waves in the atmosphere. Geophys J R Astron Soc 26(1–4):255–269

    Google Scholar 

  • Marchetti E, Ripepe M, Campus P, Le Pichon A, Brachet N, Blanc E, Gaillard P, Mialle P, Husson P (2019) Infrasound monitoring of volcanic eruptions and contribution of ARISE to the volcanic ash advisory centers. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 1141–1162

    Google Scholar 

  • Marty J (2012) Meteorological data recorded at IMS infrasound stations. Infrasound technology workshop 2012, Daejon, Republic of Korea

    Google Scholar 

  • Marty J (2013) IMS infrasound sensors: specifications, tests, calibration. Technical report, Infrasound Expert Group Meeting 2013, Vienna, Austria

    Google Scholar 

  • Marty J (2014a) Infrasound sensor specifications and interlaboratory comparison. Technical report, Infrasound Expert Group Meeting 2014, Vienna, Austria

    Google Scholar 

  • Marty J (2014b) Work and progress on the infrasound station calibration programme, including work on self-calibrating sensor. In: WGB 43 – technology refreshment

    Google Scholar 

  • Marty J (2016) Progress on infrasound sensor calibration. In: WGB 46 – technology refreshment

    Google Scholar 

  • Marty J (2017) Quality assurance for IMS infrasound data. Technical report, Infrasound Expert Group Meeting 2017

    Google Scholar 

  • Marty J, Denis S, Gabrielson T, Garcés M, Brown D (2017) Comparison and validation of acoustic response models for wind noise reduction pipe arrays. J Atmos Ocean Technol 34:401–414

    Article  Google Scholar 

  • Marty J, Denis S, Garcés M (2011a) Performance assessment of infrasound station IS07. Infrasound technology workshop 2011, Dead Sea, Jordan

    Google Scholar 

  • Marty J, Kramer A, Mialle P (2013) IS07 major upgrade. Infrasound technology workshop 2013, Vienna, Austria

    Google Scholar 

  • Marty J, Kramer, A, Polzer P (2012a) IMS acoustic filtering systems. Infrasound technology workshop 2012, Daejon, Republic of Korea

    Google Scholar 

  • Marty J, Le Pichon A, Evers L (2011b) IMS wind noise reduction systems. Technical report, Infrasound Expert Group Meeting 2011, Dead Sea, Jordan

    Google Scholar 

  • Marty J, Le Pichon A, Evers L (2011c) On-site calibration techniques. Technical report, Infrasound Expert Group Meeting 2011, Dead Sea, Jordan

    Google Scholar 

  • Marty J, Le Pichon A, Evers L (2012b) Array geometry of IMS infrasound stations. Technical report, Infrasound Expert Group Meeting 2012, Daejeon, Republic of Korea

    Google Scholar 

  • Marty J, Le Pichon A, Evers L (2012c) Meteorological data recorded at IMS infrasound stations. Technical report, Infrasound Expert Group Meeting 2012, Daejeon, Republic of Korea

    Google Scholar 

  • Marty J, Ponceau D, Dalaudier F (2010) Using the international monitoring system infrasound network to study gravity waves. Geophys Res Lett 37:L19802

    Article  Google Scholar 

  • Martysevich P, Marty J, Polzer P (2015) Status of meteorological measurements at IMS infrasound stations. Infrasound technology workshop 2015, Vienna, Austria

    Google Scholar 

  • McDonald J, Douze EJ, Herrin E (1971) The structure of atmospheric turbulence and its application to the design of pipe arrays. Geophys J R Astron Soc 26(1–4):99–109

    Google Scholar 

  • McDonald J, Herrin E (1975) Properties of pressure fluctuations in an atmospheric boundary layer. Bound -Layer Meteorol 8(3–4):419–436

    Article  Google Scholar 

  • McNamara DE, Buland RP (2004) Ambient noise levels in the continental united states. Bull Seismol Soc Am 94(4):1517–1527

    Article  Google Scholar 

  • Merchant J (2014) MB3a infrasound sensor evaluation. Technical report, Sandia National Laboratories

    Google Scholar 

  • Merchant J (2015) Hyperion 5113/A infrasound sensor evaluation. Technical report, Sandia National Laboratories

    Google Scholar 

  • Merchant J, Slad G (2015) Chaparral 50A and MB2005 infrasound sensor international evaluation comparison. Technical report, Sandia National Laboratories

    Google Scholar 

  • Mialle P, Brown D, Arora N, colleagues from IDC (2019) Advances in operational processing at the international data centre. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 209–248

    Google Scholar 

  • Nief G, Talmadge C, Rothman J, Gabrielson T (2019) New generations of infrasound sensors: technological developments and calibration. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 63–89

    Google Scholar 

  • Nikolova S, Araujo F, Aktas K, Malakhova M, Otsuka R, Han D, Assef T, Nava E, Mickevicius S, Agrebi A. (2015). Operation of international monitoring system network. In: EGU. (number 2015-14269 in 17)

    Google Scholar 

  • Nouvellet A, Charbit M, Roueff F, Le Pichon A (2013) Coherence parameters estimation from noisy observations. Infrasound technology workshop 2013, Vienna, Austria

    Google Scholar 

  • Park J, Garcés M, Thigpen B (2009) The rotary subwoofer: a controllable infrasound source. J Acoust Soc Am 125(4):2006–2012

    Article  Google Scholar 

  • Pavlovski OA (1998) Radiological consequences of nuclear testing for the population of the former USSR (Input information, models, dose, and risk estimates). Springer, Berlin, pp 219–260

    Chapter  Google Scholar 

  • Ponceau D, Bosca L (2010) Specifications of low-noise broadband microbarometers. In: Infrasound monitoring for atmospheric studies. Springer, Berlin, pp 119–140

    Google Scholar 

  • Rakotoarisoa T, Rambolamanana G, Randrianarinosy F, Ramanantsoa A, Andrianaivoarisoa J (2013) Infrasound station performance assessment using correlation. Infrasound technology workshop 2013, Vienna, Austria

    Google Scholar 

  • Raspet R, Abbott J-P, Webster J, Yu J, Talmadge C, Alberts II K, Collier S, Noble J (2019) New systems for wind noise reduction for infrasonic measurements. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 91–124

    Google Scholar 

  • Raspet RJW, Dillon K (2006) Framework for wind noise studies. J Acoust Soc Am 199:834–843

    Article  Google Scholar 

  • Shams Q, Zuckerwar ABS (2005) Compact nonporous windscreen for infrasonic measurements. J Acoust Soc Am 118(3):1335–1340

    Article  Google Scholar 

  • Shields FD (2005) Low-frequency wind noise correlation in microphone arrays. J Acoust Soc Am 117:3489–3496

    Article  Google Scholar 

  • Starovoit Y, Kunakov V, Martysevich P (2006) About dynamical calibration of microbarometers. InfraMatics 14:1–12

    Google Scholar 

  • Symons GJ (1888) The eruption of Krakatoa and subsequent phenomena. Trübner, London

    Google Scholar 

  • Szuberla C, Fee D, Waxler R, Gabrielson T (2013) Long-term in-situ calibration of the I53US IMS array elements. Infrasound technology workshop 2013, Vienna, Austria

    Google Scholar 

  • Szuberla C, Olson J (2004) Uncertainties associated with parameter estimation in atmospheric infrasound arrays. J Acoust Soc Am 115(1):253–258

    Article  Google Scholar 

  • Thomas J, Pierce A, Flinn E, Craine L (1971) Bibliography on infrasonic waves. Geophys J R Astron Soc 26:399–426

    Article  Google Scholar 

  • Vaisala (2005). SPH10 Static Pressure Head – Installation and Maintenance Guide

    Google Scholar 

  • Walker K, Hedlin M (2010) A review of wind-noise reduction methodologies. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies. Springer, Berlin, pp 141–182

    Google Scholar 

  • Waxler R, Gilbert KE (2006) The radiation of atmospheric microbaroms by ocean waves. J Acoust Soc Am 119:5

    Article  Google Scholar 

  • Welch PD (1967) The use of fast fourier transform for the estimation of power spectra: a method based on time-averaging over short, modified periodograms. IEEE Trans Audio Electroacoust AU-15:70–73

    Article  Google Scholar 

  • Zumberge M, Berger J, Hedlin MAH, Husmann E, Nooner S, Hilt R, Widmer-Schnidrig R (2003) An optical fiber infrasound sensor: a new lower limit on atmospheric pressure noise between 1 and 10 Hz. J Acoust Soc Am 113(5):2379

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank all the PTS/IMS/ED Seismo-Acoustic Unit in alphabetical order V. Bereza, B. Doury, M. Jusko, A. Kramer, M. Lefeldt, P. Martysevich, V. Miljanovic, G. Perez, J. Robertson, Y. Sid Ahmed, and Y. Starovoit for their continuous efforts building, sustaining, and enhancing the IMS seismo-acoustic network. The author would also like to thank in alphabetical order R. Barham, P. Campus, M. Charbit, T. Gabrielson, P. Grenard, T. Héritier, A. Le Pichon, J. Merchant, J. Mattila, P. Mialle, S. Nikolova, R. Rembold, and J. Vergoz for their valuable comments to this chapter.

Disclaimer The views expressed herein are those of the author and do not necessarily reflect the views of the CTBTO Preparatory Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Marty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marty, J. (2019). The IMS Infrasound Network: Current Status and Technological Developments. In: Le Pichon, A., Blanc, E., Hauchecorne, A. (eds) Infrasound Monitoring for Atmospheric Studies. Springer, Cham. https://doi.org/10.1007/978-3-319-75140-5_1

Download citation

Publish with us

Policies and ethics