Skip to main content

Tutorial: Bolted Joints and Tribomechadynamics

  • Conference paper
  • First Online:
Nonlinear Dynamics, Volume 1

Abstract

The mechanics of jointed structures is a challenging research area that necessitates collaboration from multiple disciplines. Traditionally, jointed structures have been studied in isolation by three major fields – structural dynamics, contact mechanics, and tribology. The foundation of the field of tribomechadynamics is in the notion that collaboration between these three fields is necessary to advance the state-of-the-art for joint modeling. In this tutorial, the state-of-practice, state-of-the-art, and cutting edge research for joint mechanics is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akay, A.: Research needs and open questions in vibration energy transport and dissipation. Technical report. National Science Foundation (2016, Forthcoming)

    Google Scholar 

  2. Allen, M.S., Mayes, R.L.: Estimating degree of nonlinearity in transient responses with zeroed early-time fast fourier transforms. Mech. Syst. Signal Process. 24, 2049–2064 (2010)

    Article  Google Scholar 

  3. Barber, T.T., Noori, M.N.: Modeling general hysteresis behavior and random vibration application. ASME J. Vib. Acoust. Stress Reliab. Des. 108, 411–420 (1986)

    Article  Google Scholar 

  4. Bouc, R., Forced vibration of mechanical systems with hysteresis. In: Proceedings of the Fourth Conference on Non-Linear Oscillation, Prague (1967)

    Google Scholar 

  5. Brake, M.R.W. (ed.): The Mechanics of Jointed Structures. Springer (2017)

    Google Scholar 

  6. Brake, M.R.W.: A reduced Iwan model that includes pinning for bolted joint mechanics. Nonlinear Dyn. 87, 1335–1349 (2017)

    Article  Google Scholar 

  7. Brake, M.R., Reuß, P., Segalman, D.J., Gaul, L.: Variability and repeatability of jointed structures with frictional interfaces. In: 32nd International Modal Analysis Conference (IMAC XXXII), Orlando (2014)

    Google Scholar 

  8. Catalfamo, S., Smith, S.A., Morlock, F., Schwingshackl, C., Reuß, P., Brake, M.R.W.: Effects of experimental methods on the measurement of a nonlinear system. In: 34th International Modal Analysis Conference (IMAC XXXIV), Orlando (2016)

    Google Scholar 

  9. Cooper, S.B., Rosatello, M., Mathis, A., Johnson, K., Brake, M.R.W., Allen, M.S., Ferri, A.A., Roettgen, D.R., Pacini, B.R., Mayes, R.L.: Effect of far-field structure on joint properties. In: 35th International Modal Analysis Conference (IMAC XXXV), Garden Grove (2017)

    Chapter  Google Scholar 

  10. Deaner, B.J., Allen, M.S., Starr, M.J., Segalman, D.J., Sumali, H.: Application of viscous and Iwan modal damping models to experimental measurements from bolted structures. ASME J. Vib. Acoust. 137, 021012 (2015)

    Article  Google Scholar 

  11. Dossogne, T., Noël, J.P., Kerschen, G.: Robust subspace identification of a nonlinear satellite using model reduction. In: 34th International Modal Analysis Conference (IMAC XXXIV), Orlando (2016)

    Google Scholar 

  12. Dossogne, T., Jerome, T.W., Lancerau, D.P.T., Smith, S.A., Brake, M.R.W., Pacini, B.R., Reuss, P., Schwingshackl, C.W.: Experimental assessment of the influence of interface geometries on structural response. In: 35th International Modal Analysis Conference (IMAC XXXV), Garden Grove (2017)

    Google Scholar 

  13. Feldman, M.: Hilbert transform in vibration analysis. Mech. Syst. Signal Process. 25, 735–802 (2011)

    Article  Google Scholar 

  14. Gaul, L., Nitsche, R.: Friction control for vibration suppression. Mech. Syst. Signal Process. 14, 139–150 (2000)

    Article  Google Scholar 

  15. Gaul, L., Nackenhorst, U., Willner, K., Lenz, J.: Nonlinear vibration damping of structures with bolted joints. In: 12th International Modal Analysis Conference (IMAC XII), Honululu (1994)

    Google Scholar 

  16. Ismail, M., Ikhouane, F., Rodellar, J.: The hysteresis Bouc-Wen model, a survey. Arch. Comput. Meth. Eng. 16, 161–188 (2009)

    Article  Google Scholar 

  17. Iwan, W.D.: A distributed-element model for hysteresis and its steady state dynamic response. ASME J. Appl. Mech. 33, 893–900 (1966)

    Article  Google Scholar 

  18. Jenkins, G.M.: Analysis of the stress-strain relationships in reactor grade graphite. Br. J. Appl. Phys. 13, 30–32 (1962)

    Article  Google Scholar 

  19. Kerschen, G., Worden, K., Vakakis, A.F., Golinval, J.C.: Past, present and future of nonlinear system identification in structural dynamics. Mech. Syst. Signal Process. 20, 505–592 (2006)

    Article  Google Scholar 

  20. Kurt, M., Chen, H., Lee, Y.S., McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Nonlinear system identification of the dynamics of a vibro-impact beam: numerical results. Arch. Appl. Mech. 82, 1461–1479 (2012)

    Article  Google Scholar 

  21. Lacayo, R.M., Pesaresi, L., Fochler, D., Groß, J., Brake, M.R.W., Schwingshackl, C.: A numerical round robin to predict the dynamics of an experimentally-measured brake-reuss beam. In: 35th International Modal Analysis Conference (IMAC XXXV), Garden Grove (2017)

    Google Scholar 

  22. Masing, G.: Self-stretching and hardening for brass. In: Proceedings of the Second International Congress for Applied Mechanics, pp. 332–335 (1926)

    Google Scholar 

  23. Oldfield, M., Ouyang, H., Mottershead, J.E.: Simplified models of bolted joints under harmonic loading. Comput. Struct. 84, 25–33 (2005)

    Article  Google Scholar 

  24. Petrov, E.P., Ewins, D.J.: State-of-the-art dynamic analysis for non-linear gas turbine structures. Proc. Inst. Mech. Eng. G: J. Aerosp. Eng. 218, 199–211 (2004)

    Article  Google Scholar 

  25. Peyret, N., Dion, J.L., Chevallier, G., Argoul, P., Micro slip induced damping in planar contact under constant and uniform normal stress. Int. J. Appl. Mech. 2, 281–304 (2010)

    Article  Google Scholar 

  26. Roettgen, D.R., Allen, M.S.: Nonlinear characterization of a bolted, industrial structure using a modal framework. Mech. Syst. Signal Process. 84, 152–170 (2017)

    Article  Google Scholar 

  27. Schwingshackl, C.W., Di Maio, D., Sever, I., Green, J.S.: Modeling and validation of the nonlinear dynamic behavior of bolted flange joints. ASME J. Eng. Gas Turbines Power 135, 122504–1–8 (2013)

    Article  Google Scholar 

  28. Seeger, B., Butaud, P., Du, F., Baloglu, V., Brake, M.R.W., Schwingshackl, C.W.: In situ measurements of interfacial contact pressure during impact hammer tests. In: 36th International Modal Analysis Conference (IMAC XXXVI), Orlando (2018)

    Google Scholar 

  29. Segalman, D.J.: An initial overview of Iwan modeling for mechanical joints. Technical report SAND2001-0811. Sandia National Laboratories, Albuquerque (2001)

    Google Scholar 

  30. Segalman, D.J.: A four-parameter Iwan model for lap-type joints. ASME J. Appl. Mech. 72 752–760 (2005)

    Article  Google Scholar 

  31. Segalman, D.J., Starr, M.J.: Iwan models and their provenance. In: ASME International Design Engineering Technical Conferences IDETC/CIE, Chicago (2012)

    Google Scholar 

  32. Segalman, D.J., Gregory, D.L., Starr, M.J., Resor, B.R., Jew, M.D., Lauffer, J.P., Ames, N.M.: Handbook on dynamics of jointed structures. Technical report SAND2009-4164. Sandia National Laboratories, Albuquerque (2009)

    Google Scholar 

  33. Smith, S.A., Bilbao-Ludena, J.C., Catalfamo, S., Brake, M.R.W., Reuß, P., Schwingshackl, C.: The effects of boundary conditions, measurement techniques, and excitation type on measurements of the properties of mechanical joints. In: 33rd International Modal Analysis Conference (IMAC XXXIV), Orlando (2015)

    Google Scholar 

  34. Wang, X.Q., Mignolet, M.P.: Stochastic Iwan-type model of a bolted joint: formulation and identification. In: 32nd International Modal Analysis Conference (IMAC XXXII), Orlando (2014)

    Chapter  Google Scholar 

  35. Wen, Y.K.: Method for random vibration of hysteretic systems. ASCE J. Eng. Mech. Div. 102, 249–263 (1976)

    Google Scholar 

  36. Yang, J.N., Lei, Y., Pan, S., Huang, N.: System identification of linear structures based on Hilbert-Huang spectral analysis. Part 1: normal modes. Earthq. Eng. Struct. Dyn. 32, 1443–1467 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. W. Brake .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brake, M.R.W. (2019). Tutorial: Bolted Joints and Tribomechadynamics. In: Kerschen, G. (eds) Nonlinear Dynamics, Volume 1. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-74280-9_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74280-9_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74279-3

  • Online ISBN: 978-3-319-74280-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics