Skip to main content

Connective Tissue Disorders

  • Chapter
  • First Online:
Aortic Regurgitation

Abstract

Heritable connective tissue diseases comprise a heterogeneous group of multi-systemic disorders that result from genetic defects affecting normal extracellular matrix (ECM) assembly and maintenance. The connective tissue is a tissue structure which represents a three-dimensional thread. The three main functions of connective tissues are support, protection, and nutrition of other tissues. It is mainly the support function which is affected in pathologies discussed in this chapter. Connective tissues are composed of cells, fibres, and ground substance (the latter two make up the ECM). There are many different types of connective tissues. Pathologies affecting vascular wall connective tissue are discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Raines EW. The extracellular matrix can regulate vascular cell migration, proliferation, and survival: relationships to vascular disease. Int J Exp Pathol. 2000;81(3):173–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kielty CM, Baldock C, Lee D, Rock MJ, Ashworth JL, Shuttleworth CA. Fibrillin: from microfibril assembly to biomechanical function. Philos Trans R Soc Lond B Biol Sci. 2002;357(1418):207–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Brooke BS, Karnik SK, Li DY. Extracellular matrix in vascular morphogenesis and disease: structure versus signal. Trends Cell Biol. 2003;13(1):51–6.

    Article  CAS  PubMed  Google Scholar 

  4. Isogai Z, Ono RN, Ushiro S, Keene DR, Chen Y, Mazzieri R, et al. Latent transforming growth factor beta-binding protein 1 interacts with fibrillin and is a microfibril-associated protein. J Biol Chem. 2003;278(4):2750–7.

    Article  CAS  PubMed  Google Scholar 

  5. El-Hamamsy I, Yacoub MH. Cellular and molecular mechanisms of thoracic aortic aneurysms. Nat Rev Cardiol. 2009;6(12):771–86.

    Article  CAS  PubMed  Google Scholar 

  6. Ricard-Blum S. The collagen family. Cold Spring Harb Perspect Biol. 2011;3(1):a004978.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Pozzi A, Wary KK, Giancotti FG, Gardner HA. Integrin alpha1beta1 mediates a unique collagen-dependent proliferation pathway in vivo. J Cell Biol. 1998;142(2):587–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li DY, Brooke B, Davis EC, Mecham RP, Sorensen LK, Boak BB, et al. Elastin is an essential determinant of arterial morphogenesis. Nature. 1998;393(6682):276–80.

    Article  CAS  PubMed  Google Scholar 

  9. Mochizuki S, Brassart B, Hinek A. Signalling pathways transduced through the elastin receptor facilitate proliferation of arterial smooth muscle cells. J Biol Chem. 2002;277(47):44854–63.

    Article  CAS  PubMed  Google Scholar 

  10. Li DY, Toland AE, Boak BB, Atkinson DL, Ensing GJ, Morris CA, et al. Elastin point mutations cause an obstructive vascular disease, supravalvular aortic stenosis. Hum Mol Genet. 1997;6(7):1021–8.

    Article  CAS  PubMed  Google Scholar 

  11. Grond-Ginsbach C, Pjontek R, Aksay SS, Hyhlik-Dürr A, Böckler D, Gross-Weissmann M-L. Spontaneous arterial dissection: phenotype and molecular pathogenesis. Cell Mol Life Sci CMLS. 2010;67(11):1799–815.

    Article  CAS  PubMed  Google Scholar 

  12. Grainger DJ, Metcalfe JC, Grace AA, Mosedale DE. Transforming growth factor-beta dynamically regulates vascular smooth muscle differentiation in vivo. J Cell Sci. 1998;111(Pt 19):2977–88.

    CAS  PubMed  Google Scholar 

  13. Rybczynski M, Mir TS, Sheikhzadeh S, Bernhardt AMJ, Schad C, Treede H, et al. Frequency and age-related course of mitral valve dysfunction in the Marfan syndrome. Am J Cardiol. 2010;106(7):1048–53.

    Article  PubMed  Google Scholar 

  14. Dietz HC, Cutting GR, Pyeritz RE, Maslen CL, Sakai LY, Corson GM, et al. Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature. 1991;352(6333):337–9.

    Article  CAS  PubMed  Google Scholar 

  15. De Paepe A, Devereux RB, Dietz HC, Hennekam RC, Pyeritz RE. Revised diagnostic criteria for the Marfan syndrome. Am J Med Genet. 1996;62(4):417–26.

    Article  PubMed  Google Scholar 

  16. Loeys BL, Dietz HC, Braverman AC, Callewaert BL, De Backer J, Devereux RB, et al. The revised Ghent nosology for the Marfan syndrome. J Med Genet. 2010;47(7):476–85.

    Article  CAS  PubMed  Google Scholar 

  17. Loeys BL, Schwarze U, Holm T, Callewaert BL, Thomas GH, Pannu H, et al. Aneurysm syndromes caused by mutations in the TGF-beta receptor. N Engl J Med. 2006;355(8):788–98.

    Article  CAS  PubMed  Google Scholar 

  18. Faivre L, Collod-Beroud G, Loeys BL, Child A, Binquet C, Gautier E, et al. Effect of mutation type and location on clinical outcome in 1013 probands with Marfan syndrome or related phenotypes and FBN1 mutations: an international study. Am J Hum Genet. 2007;81(3):454–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Neptune ER, Frischmeyer PA, Arking DE, Myers L, Bunton TE, Gayraud B, et al. Dysregulation of TGF-beta activation contributes to pathogenesis in Marfan syndrome. Nat Genet. 2003;33(3):407–11.

    Article  CAS  PubMed  Google Scholar 

  20. Dietz HC. TGF-beta in the pathogenesis and prevention of disease: a matter of aneurysmic proportions. J Clin Invest. 2010;120(2):403–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hynes RO. The extracellular matrix: not just pretty fibrils. Science. 2009;326(5957):1216–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chaudhry SS, Cain SA, Morgan A, Dallas SL, Shuttleworth CA, Kielty CM. Fibrillin-1 regulates the bioavailability of TGFbeta1. J Cell Biol. 2007;176(3):355–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Booms P, Ney A, Barthel F, Moroy G, Counsell D, Gille C, et al. A fibrillin-1-fragment containing the elastin-binding-protein GxxPG consensus sequence upregulates matrix metalloproteinase-1: biochemical and computational analysis. J Mol Cell Cardiol. 2006;40(2):234–46.

    Article  CAS  PubMed  Google Scholar 

  24. Guo G, Booms P, Halushka M, Dietz HC, Ney A, Stricker S, et al. Induction of macrophage chemotaxis by aortic extracts of the mgR Marfan mouse model and a GxxPG-containing fibrillin-1 fragment. Circulation. 2006;114(17):1855–62.

    Article  CAS  PubMed  Google Scholar 

  25. Holm TM, Habashi JP, Doyle JJ, Bedja D, Chen Y, van Erp C, et al. Noncanonical TGFβ signalling contributes to aortic aneurysm progression in Marfan syndrome mice. Science. 2011;332(6027):358–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Van Laer L, Proost D, Loeys BL. Educational paper. Connective tissue disorders with vascular involvement: from gene to therapy. Eur J Pediatr. 2013;172(8):997–1005.

    Article  PubMed  Google Scholar 

  27. Halushka MK. Single gene disorders of the aortic wall. Cardiovasc Pathol. 2012;21(4):240–4.

    Article  CAS  PubMed  Google Scholar 

  28. Loeys BL, Chen J, Neptune ER, Judge DP, Podowski M, Holm T, et al. A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat Genet. 2005;37(3):275–81.

    Article  CAS  PubMed  Google Scholar 

  29. Williams JA, Loeys BL, Nwakanma LU, Dietz HC, Spevak PJ, Patel ND, et al. Early surgical experience with Loeys-Dietz: a new syndrome of aggressive thoracic aortic aneurysm disease. Ann Thorac Surg. 2007;83(2):S757–63; discussion S785–90.

    Article  PubMed  Google Scholar 

  30. Inamoto S, Kwartler CS, Lafont AL, Liang YY, Fadulu VT, Duraisamy S, et al. TGFBR2 mutations alter smooth muscle cell phenotype and predispose to thoracic aortic aneurysms and dissections. Cardiovasc Res. 2010;88(3):520–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mizuguchi T, Collod-Beroud G, Akiyama T, Abifadel M, Harada N, Morisaki T, et al. Heterozygous TGFBR2 mutations in Marfan syndrome. Nat Genet. 2004;36(8):855–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lindsay ME, Schepers D, Bolar NA, Doyle JJ, Gallo E, Fert-Bober J, et al. Loss-of-function mutations in TGFB2 cause a syndromic presentation of thoracic aortic aneurysm. Nat Genet. 2012;44(8):922–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Regalado ES, Guo D-C, Villamizar C, Avidan N, Gilchrist D, McGillivray B, et al. Exome sequencing identifies SMAD3 mutations as a cause of familial thoracic aortic aneurysm and dissection with intracranial and other arterial aneurysms. Circ Res. 2011;109(6):680–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. MacCarrick G, Black JH, Bowdin S, El-Hamamsy I, Frischmeyer-Guerrerio PA, Guerrerio AL, et al. Loeys-Dietz syndrome: a primer for diagnosis and management. Genet Med. 2014;16(8):576–87.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Beighton P, De Paepe A, Steinmann B, Tsipouras P, Wenstrup RJ. Ehlers-Danlos syndromes: revised nosology, Villefranche, 1997. Ehlers-Danlos National Foundation (USA) and Ehlers-Danlos Support Group (UK). Am J Med Genet. 1998;77(1):31–7.

    Article  CAS  PubMed  Google Scholar 

  36. Superti-Furga A, Gugler E, Gitzelmann R, Steinmann B. Ehlers-Danlos syndrome type IV: a multi-exon deletion in one of the two COL3A1 alleles affecting structure, stability, and processing of type III procollagen. J Biol Chem. 1988;263(13):6226–32.

    CAS  PubMed  Google Scholar 

  37. Pepin M, Schwarze U, Superti-Furga A, Byers PH. Clinical and genetic features of Ehlers-Danlos syndrome type IV, the vascular type. N Engl J Med. 2000;342(10):673–80.

    Article  CAS  PubMed  Google Scholar 

  38. Boodhwani M, Andelfinger G, Leipsic J, Lindsay T, McMurtry MS, Therrien J, et al. Canadian Cardiovascular Society position statement on the management of thoracic aortic disease. Can J Cardiol. 2014;30(6):577–89.

    Article  PubMed  Google Scholar 

  39. Stochholm K, Juul S, Juel K, Naeraa RW, Gravholt CH. Prevalence, incidence, diagnostic delay, and mortality in Turner syndrome. J Clin Endocrinol Metab. 2006;91(10):3897–902.

    Article  CAS  PubMed  Google Scholar 

  40. Elsheikh M, Casadei B, Conway GS, Wass JA. Hypertension is a major risk factor for aortic root dilatation in women with Turner’s syndrome. Clin Endocrinol (Oxf). 2001;54(1):69–73.

    Article  CAS  Google Scholar 

  41. Davies RR, Gallo A, Coady MA, Tellides G, Botta DM, Burke B, et al. Novel measurement of relative aortic size predicts rupture of thoracic aortic aneurysms. Ann Thorac Surg. 2006;81(1):169–77.

    Article  PubMed  Google Scholar 

  42. El-Hamamsy I, Yacoub MH. A measured approach to managing the aortic root in patients with bicuspid aortic valve disease. Curr Cardiol Rep. 2009;11(2):94–100.

    Article  PubMed  Google Scholar 

  43. Erbel R, Aboyans V, Boileau C, Bossone E, Bartolomeo RD, Eggebrecht H, et al. 2014 ESC Guidelines on the diagnosis and treatment of aortic diseases: document covering acute and chronic aortic diseases of the thoracic and abdominal aorta of the adult. The Task Force for the Diagnosis and Treatment of Aortic Diseases of the European Society of Cardiology (ESC). Eur Heart J. 2014;35(41):2873–926.

    Article  PubMed  Google Scholar 

  44. Albornoz G, Coady MA, Roberts M, Davies RR, Tranquilli M, Rizzo JA, et al. Familial thoracic aortic aneurysms and dissections—incidence, modes of inheritance, and phenotypic patterns. Ann Thorac Surg. 2006;82(4):1400–5.

    Article  PubMed  Google Scholar 

  45. Kuzmik GA, Sang AX, Elefteriades JA. Natural history of thoracic aortic aneurysms. J Vasc Surg. 2012;56(2):565–71.

    Article  PubMed  Google Scholar 

  46. Coady MA, Davies RR, Roberts M, Goldstein LJ, Rogalski MJ, Rizzo JA, et al. Familial patterns of thoracic aortic aneurysms. Arch Surg. 1999;134(4):361–7.

    Article  CAS  PubMed  Google Scholar 

  47. Barbier M, Gross M-S, Aubart M, Hanna N, Kessler K, Guo D-C, et al. MFAP5 loss-of-function mutations underscore the involvement of matrix alteration in the pathogenesis of familial thoracic aortic aneurysms and dissections. Am J Hum Genet. 2014;95(6):736–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Guo D, Gong L, Regalado ES, Santos-Cortez RL, Zhao R, Cai B, et al. MAT2A mutations predispose individuals to thoracic aortic aneurysms. Am J Hum Genet. 2015;96(1):170–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Guo D-C, Pannu H, Tran-Fadulu V, Papke CL, Yu RK, Avidan N, et al. Mutations in smooth muscle alpha-actin (ACTA2) lead to thoracic aortic aneurysms and dissections. Nat Genet. 2007;39(12):1488–93.

    Article  CAS  PubMed  Google Scholar 

  50. Morisaki H, Akutsu K, Ogino H, Kondo N, Yamanaka I, Tsutsumi Y, et al. Mutation of ACTA2 gene as an important cause of familial and nonfamilial nonsyndromatic thoracic aortic aneurysm and/or dissection (TAAD). Hum Mutat. 2009;30(10):1406–11.

    Article  CAS  PubMed  Google Scholar 

  51. van de Laar IMBH, Oldenburg RA, Pals G, Roos-Hesselink JW, de Graaf BM, Verhagen JMA, et al. Mutations in SMAD3 cause a syndromic form of aortic aneurysms and dissections with early-onset osteoarthritis. Nat Genet. 2011;43(2):121–6.

    Article  PubMed  Google Scholar 

  52. Pannu H, Tran-Fadulu V, Papke CL, Scherer S, Liu Y, Presley C, et al. MYH11 mutations result in a distinct vascular pathology driven by insulin-like growth factor 1 and angiotensin II. Hum Mol Genet. 2007;16(20):2453–62.

    Article  CAS  PubMed  Google Scholar 

  53. Renard M, Callewaert B, Baetens M, Campens L, MacDermot K, Fryns J-P, et al. Novel MYH11 and ACTA2 mutations reveal a role for enhanced TGFβ signalling in FTAAD. Int J Cardiol. 2013;165(2):314–21.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismail El-Hamamsy M.D., Ph.D., F.R.C.S.C. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Morgant, MC., El-Hamamsy, I. (2018). Connective Tissue Disorders. In: Vojacek, J., Zacek, P., Dominik, J. (eds) Aortic Regurgitation. Springer, Cham. https://doi.org/10.1007/978-3-319-74213-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74213-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74212-0

  • Online ISBN: 978-3-319-74213-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics