Skip to main content

Leishmaniasis: The Biology of a Parasite

  • Chapter
  • First Online:
Drug Resistance in Leishmania Parasites

Abstract

One of the main challenges of therapeutic tools for the treatment of parasitic diseases, including leishmaniasis, is the interwinned relationship between therapeutic failure and drug resistance. In fact, some field parasites might be naturally resistant to classical drugs and additionally, current therapies may induce drug resistance. In fact, treatment failure in leishmaniasis has multiple causes. Some are related to drugs, such as pharmacokinetic properties, toxicity, use of sub-optimal doses, or high cost of treatment. Parasite-related grounds include chemo-resistance and tolerance. Last but not least, the host plays a fundamental role in this situation since the patient's immune status and the risk of re-infection if living in an endemic region might also contribute to therapeutic failure. All these features are at least partially responsible for the disappointing persistence and re-emergence of leishmaniasis, as well as its death and disability-adjusted life year toll worldwide. A better understanding of the disease itself and of drug resistance, its molecular basis, its consequences, and the definition of possible paths for better treatments may help improve this depressing picture. In the present volume experts in the field cover current knowledge and future trends of these and many other aspects of drug resistance in Leishmania. This initial chapter offers a general introduction to the biology of the parasite, a piece of information fundamental for the topics included in the book and the comprehension of challenges we currently face for this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pace D. Leishmaniasis. J Infect. 2014;69(1):S10–8.

    Article  PubMed  Google Scholar 

  2. Davies CR, Reithinger R, Campbell-Lendrum D, Feliciangeli D, et al. The epidemiology and control of leishmaniasis in Andean countries. Cad Saude Publica. 2000;16:925–50.

    Article  CAS  PubMed  Google Scholar 

  3. Croft SL, Sundar S, Fairlamb AH. Drug resistance in leishmaniasis. Clin Microbiol Rev. 2006;19:111–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rotureau B. Are new world leishmaniases becoming anthroponoses? Med Hypotheses. 2006;67:1235–41.

    Article  PubMed  Google Scholar 

  5. Ready PD. Leishmaniasis emergence in Europe. Euro Surveill. 2010;11:19505.

    Google Scholar 

  6. World Health Organization (WHO, 2016) Weekly epidemiological record. http://www.who.int/wer, 2016, 91, 285–296.

  7. Karimkhani C, Wanga V, Coffeng LE, Naghavi P, et al. Global burden of cutaneous leishmaniasis: a cross-sectional analysis from the Global Burden of Disease Study 2013. Lancet Infect Dis. 2016;6:584–91. https://doi.org/10.1016/S1473-3099(16)00003-7

    Article  Google Scholar 

  8. Alvar J, Vélez ID, Bern C, Herrero M, et al. Leishmaniasis worldwide and global estimates of its incidence. WHO Leishmaniasis Control Team. PLoS One. 2012;7(5):e35671.

    PubMed  CAS  Google Scholar 

  9. World Health Organization Technical Report Series 949 (2015) Control of the leishmaniasis 2010. http://whqlibdoc.who.int/trs/WHO_TRS_949_eng.pdf.

  10. Ready PD. Epidemiology of visceral leishmaniasis. Clin Epidemiol. 2014;6:147–54.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Desjeux P. Leishmaniasis: current situation and new perspectives. Comp Immunol Microbiol Infect Dis. 2004;27:305–18.

    Article  CAS  PubMed  Google Scholar 

  12. Georgiadou SP, Makaritsis KP, Dalekos GN. Leishmaniasis revisited: current aspects on epidemiology, diagnosis and treatment. J Transl Int Med. 2015;3(2):43–50.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Alvar J, Aparicio P, Aseffa A, Den Boer M, et al. The relationship between leishmaniasis and AIDS: the second 10 years. Clin Microbiol Rev. 2008;21:334–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Malafaia G. Protein-energy malnutrition as a risk factor for visceral leishmaniasis: a review. Parasite Immunol. 2009;31:587–96.

    Article  CAS  PubMed  Google Scholar 

  15. Saporito L, Giammanco G, De Grazia S, Colomba C. Visceral leishmaniasis: host–parasite interactions and clinical presentation in the immunocompetent and in the immunocompromised host. Int J Infect Dis. 2013;17:e572–6.

    Article  PubMed  Google Scholar 

  16. Sharma U, Singh S. Immunobiology of leishmaniasis. Indian J Exp Biol. 2009;47:412–23.

    PubMed  CAS  Google Scholar 

  17. Ameen M. Cutaneous and mucocutaneous leishmaniasis: emerging therapies and progress in disease management. Expert Opin Pharmacother. 2010;11:557–69.

    Article  CAS  PubMed  Google Scholar 

  18. Romero GA, Boelaert M. Control of visceral leishmaniasis in Latin America a systematic review. PLoS Negl Trop Dis. 2010;4:e584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ponte-Sucre A. Physiological consequences of drug resistance in Leishmania and their relevance for chemotherapy. Kinetoplastid Biol Dis. 2003;2:14.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Cattand P, Desjeux P, Guzmán MJ, Jannin J, et al. Tropical diseases lacking adequate control measures: dengue, leishmaniasis, and African trypanosomiasis. In: Disease control priorities in developing countries. 2nd ed. New York: Oxford University Press; 2006. p. 451–66.

    Google Scholar 

  21. Feliciangeli MD, Rabinovich J. Abundance of Lutzomyia ovallesi but not Lu. gomezi (Diptera: Psychodidae) correlated with cutaneous leishmaniasis incidence in north-central Venezuela. Med Vet Entomol. 1998;12:121–31.

    Article  CAS  PubMed  Google Scholar 

  22. Davies CR, Reithinger R, Campbell-Lendrum D, Feliciangeli D, et al. The epidemiology and control of leishmaniasis in Andean countries. Cad Saude Publica. 2000;16(4):925–50.

    Article  CAS  PubMed  Google Scholar 

  23. Curtis CF. Personal protection methods against vectors of disease. Rev Med Vet. 1992;80:543–53.

    Google Scholar 

  24. Thakur CP. Leishmaniasis research, the challenges ahead. Indian J Med Res. 2006;123:193–4.

    PubMed  CAS  Google Scholar 

  25. Lerner EA, Ribeiro JM, Nelson RJ, Lerner MR. Isolation of maxadilan, a potent vasodilatory peptide from the salivary glands of the sand-fly Lutzomyia longipalpis. J Biol Chem. 1991;261:11234–6.

    Google Scholar 

  26. Castro-Sousa F, Paranhos-Silva M, Sherlock I, Paixão MS, et al. Dissociation between vasodilation and Leishmania infection-enhancing effects of sand fly saliva and maxadilan. Mem Inst Oswaldo Cruz. 2001;96:997–9.

    Article  CAS  PubMed  Google Scholar 

  27. Belkaid Y, Kamhawi S, Modo G, Valenzuela J, et al. Development of a natural model of cutaneous leishmaniasis: powerful effects of vector saliva and saliva pre-exposure on the long-term outcome of Leishmania major infection in the mouse ear dermis. J Exp Med. 1998;188:1941–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Delgado O, Guevara P, Silva S, Belfort E, et al. Follow up of human accidental infection by Leishmania braziliensis using conventional immunologic techniques and polymerase chain reaction. Am J Trop Med Hyg. 1996;51:267–72.

    Article  Google Scholar 

  29. Bates PA, Rogers ME. New insights into the developmental biology and transmission mechanisms of Leishmania. Curr Mol Med. 2004;4:601–9.

    Article  CAS  PubMed  Google Scholar 

  30. Peters NC, Egen JG, Secundino N, Debrabant A, et al. In vivo imaging reveals an essential role for neutrophils in leishmaniasis transmitted by sand flies. Science. 2008;321:970–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ritter U, Frischknecht F, van Zandbergen G. Are neutrophils important host cells for Leishmania parasites? Trends Parasitol. 2009;25:505–10.

    Article  CAS  PubMed  Google Scholar 

  32. Killick-Kendrick R, Wallbanks KR, Molyneux DH, Lavin DR. The ultrastructure of Leishmania major in the foregut and proboscis of Phlebotomus papatasi. Parasitol Res. 1988;74(6):586–90.

    Article  CAS  PubMed  Google Scholar 

  33. Ridley D. The pathogenesis of cutaneous leishmaniasis. Trans R Soc Trop Med Hyg. 1999;73:156–60.

    Google Scholar 

  34. Chang KP, Reed SG, McGwire BS, Soong L. Leishmania model for microbial virulence: the relevance of parasite multiplication and patho-antigenicity. Acta Trop. 2003;85:375–90.

    Article  PubMed  Google Scholar 

  35. Wheeler RJ. Use of chiral cell shape to ensure highly directional swimming in trypanosomes. PLoS Comput Biol. 2017;13(1):e1005353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gadelha C, Wickstead B, Gull K. Flagellar and ciliary beating in trypanosome motility. Cell Motil Cytoskeleton. 2007;64:629–43.

    Article  PubMed  Google Scholar 

  37. Rotureau B, Morales MA, Bastin P, Spath G. The flagellum-mitogen-activated protein kinase connection in Trypanosomatids: a key sensory role in parasite signaling and development? Cell Microbiol. 2009;11(5):710–8.

    Article  CAS  PubMed  Google Scholar 

  38. Forestier CL, Machu C, Loussert C, Pescher P, et al. Imaging host cell-Leishmania interaction dynamics implicates parasite motility, lysosome recruitment, and host cell wounding in the infection process. Cell Host Microbe. 2011;9:319–30.

    Article  CAS  PubMed  Google Scholar 

  39. Díaz E, Köhidai L, Ríos A, Vanegas O, et al. Leishmania braziliensis: cytotoxic, cytostatic and chemotactic effects of poly-lysine-methotrexate-conjugates. Exp Parasitol. 2013;135(1):134–41.

    Article  CAS  PubMed  Google Scholar 

  40. Ponte-Sucre A. Leishmaniasis, the biology of a parasite. In: Ponte-Sucre A, Diaz E, Padrón-Nieves M, editors. Drug resistance in Leishmania parasites. Consequences, molecular mechanisms, and possible treatments. Wien: Springer; 2013. p. 1–12.

    Chapter  Google Scholar 

  41. de Toledo JS, Vasconcelos EJR, Ferreira TR, Cruz AK. Using genomic information to understand Leishmania biology. Open Parasitol J. 2010;4:156–66.

    Article  Google Scholar 

  42. Akopyants NS, Kimblin N, Secundino N, Patrick R, et al. Demonstration of genetic exchange during cyclical development of Leishmania in the sand fly vector. Science. 2009;324:265–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rougeron V, De Meeûs T, Hide M, Waleckx E, et al. Extreme inbreeding in Leishmania braziliensis. Proc Natl Acad Sci USA. 2009;106:10224–9.

    Article  PubMed  Google Scholar 

  44. Sterkers Y, Crobu L, Lachaud L, Pagès M, et al. Parasexuality and mosaic aneuploidy in Leishmania: alternative genetics. Trends Parasitol. 2014;30(9):429–35.

    Article  PubMed  Google Scholar 

  45. Mannaert A, Downing T, Imamura H, Dujardin JC. Adaptive mechanisms in pathogens: universal aneuploidy in Leishmania. Trends Parasitol. 2012;28(9):370–6.

    Article  CAS  PubMed  Google Scholar 

  46. Peacock CS, Seeger K, Harris D, Murphy L, et al. Comparative genomic analysis of three Leishmania species that cause diverse human disease. Nat Genet. 2007;39:839–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Downing T, Imamura H, Decuypere S, Clark TG, et al. Whole genome sequencing of multiple Leishmania donovani clinical isolates provides insights into population structure and mechanisms of drug resistance. Genome Res. 2011;21(12):2143–56. https://doi.org/10.1101/gr.123430.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rogers MB, Hilley JD, Dickens NJ, Wilkes J, et al. Chromosome and gene copy number variation allow major structural change between species and strains of Leishmania. Genome Res. 2011;21(12):2129–42. https://doi.org/10.1101/gr.122945.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Real F, Vidal RO, Carazzolle MF, Mondego JM, et al. The genome sequence of Leishmania (Leishmania) amazonensis: functional annotation and extended analysis of gene models. DNA Res. 2013;20(6):567–81. https://doi.org/10.1093/dnares/dst031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Llanes A, Restrepo CM, Del Vecchio G, Anguizola FJ, et al. The genome of Leishmania panamensis: insights into genomics of the L. (Viannia) subgenus. Sci Rep. 2015;5(8550). https://doi.org/10.1038/srep08550

  51. Cantacessi C, Dantas-Torres F, Nolan MJ, Otranto D. The past, present, and future of Leishmania genomics and transcriptomics. Trends Parasitol. 2015;31(3):100–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kohidai L. Chemotaxis as an expression of communication of Tetrahymena. In: Witzany G, Nowacki M, editors. Biocommunication of ciliates. Dordrecht: Springer; 2016. p. 65–82.

    Google Scholar 

  53. Diaz E, Zacarias AK, Pérez S, Vanegas O, et al. Effect of aliphatic, monocarboxylic, dicarboxylic, heterocyclic and sulphur-containing amino acids on Leishmania spp. chemotaxis. Parasitology. 2015;142(13):1621–30.

    Article  CAS  PubMed  Google Scholar 

  54. Bray RS. Leishmania: chemotaxic responses of promastigotes and macrophages in vitro. J Protozool. 1983;30:322–9.

    Article  CAS  PubMed  Google Scholar 

  55. Leslie G, Barrett M, Burchmore R. Leishmania mexicana: promastigotes migrate through osmotic gradients. Exp Parasitol. 2002;102:117–20.

    Article  PubMed  Google Scholar 

  56. Díaz E, Köhidai L, Ríos A, Vanegas O, et al. Leishmania braziliensis: cytotoxic and chemotactic effects of branched chain polypeptide conjugates with poly [L-Lysine] backbone. Exp Parasitol. 2013;135:134–41.

    Article  CAS  PubMed  Google Scholar 

  57. de Menezes JP, Koushik A, Das S, Guven C, et al. Leishmania infection inhibits macrophage motility by altering F-actin dynamics and the expression of adhesion complex proteins. Cell Microbiol. 2017;19(3). https://doi.org/10.1111/cmi.12668

  58. Petropolis DB, Rodrigues JC, Viana NB, Pontes B, et al. Leishmania amazonensis promastigotes in 3D Collagen I culture: an in vitro physiological environment for the study of extracellular matrix and host cell interactions. Peer J. 2014;2:e317.

    Article  CAS  PubMed  Google Scholar 

  59. Fatoux-Ardore M, Peysselon F, Weiss A, Bastien P, et al. Large scale investigation of Leishmania interaction networks with host extra cellular matrix by surface plasmon resonance imaging. Infect Immun. 2014;(2):594–606.

    Google Scholar 

  60. Rochael NC, Lima LG, Oliveira SM, Barcinski MA, et al. Leishmania amazonensis exhibits phosphatidylserine-dependent procoagulant activity, a process that is counteracted by sandfly saliva. Mem Inst Oswaldo Cruz. 2013;108:679–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Pozzo LY, Fontes A, de Thomaz AA, Santos BS, et al. Studying taxis in real time using optical tweezers: applications for Leishmania amazonensis parasites. Micron. 2009;40(5–6):617–20.

    Article  CAS  PubMed  Google Scholar 

  62. Bogdan C, Gessner A, Solbach W, Röllinghoff M. Invasion, control and persistence of Leishmania parasites. Curr Opin Immunol. 1996;8:517–25.

    Article  CAS  PubMed  Google Scholar 

  63. Bañuls AL, Hide M, Tibayrenc M. Evolutionary genetics and molecular diagnosis of Leishmania species. Trans R Soc Trop Med Hyg. 2002;96:S9–S13.

    Article  PubMed  Google Scholar 

  64. Smith DF, Peacock CS, Cruz AK. Comparative genomics: from genotype to disease phenotype in the leishmaniases. Int J Parasitol. 2007;37:1173–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Schönian G, Mauricio I, Gramiccia M, Cañavate C, et al. Leishmaniases in the Mediterranean in the era of molecular epidemiology. Trends Parasitol. 2008;24:135–42.

    Article  CAS  PubMed  Google Scholar 

  66. Verma S, Singh R, Sharma V, Bumb RA, et al. Development of a rapid loop-mediated isothermal amplification assay for diagnosis and assessment of cure of Leishmania infection. BMC Infect Dis. 2017;17(1):223.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Tavares CA, Fernandes AP, Melo MN. Molecular diagnosis of leishmaniasis. Expert Rev Mol Diagn. 2003;3:657–67.

    Article  CAS  PubMed  Google Scholar 

  68. Sundar S, Agrawal S, Pai K, Chance M, et al. Detection of Leishmania antigen in the urine of patients with visceral leishmaniasis by a latex agglutination test. Am J Trop Med Hyg. 2005;73:269–71.

    Article  PubMed  Google Scholar 

  69. Salotra P, Singh R. Challenges in the diagnosis of post kala-azar dermal leishmaniasis. Indian J Med Res. 2006;123:295–310.

    PubMed  Google Scholar 

  70. Kassi M, Kasi PM, Marri SM, Tareen I, et al. Vector control in cutaneous leishmaniasis of the old world: a review of literature. Dermatol Online J. 2008;14:1.

    PubMed  Google Scholar 

  71. Alten B, Caglar SS, Kaynas S, Simsek FM. Evaluation of protective efficacy of K-OTAB impregnated bednets for cutaneous leishmaniasis control in Southeast Anatolia, Turkey. J Vector Ecol. 2003;28:53–64.

    PubMed  CAS  Google Scholar 

  72. Quinnell RJ, Courtenay O. Transmission, reservoir hosts and control of zoonotic visceral leishmaniasis. Parasitology. 2009;136:1915–34.

    Article  CAS  PubMed  Google Scholar 

  73. Murray H. Clinical and experimental advances in treatment of visceral leishmaniasis. Antimicrob Agents Chemother. 2001;45:2185–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Melby P. Recent developments in leishmaniasis. Curr Opin Infect Dis. 2002;15:485–90.

    Article  CAS  PubMed  Google Scholar 

  75. Palumbo E. Current treatment for cutaneous leishmaniasis: a review. Am J Ther. 2009;16:178–82.

    Article  PubMed  Google Scholar 

  76. Mitropoulos P, Konidas P, Durkin-Konidas M. New world cutaneous leishmaniasis: updated review of current and future diagnosis and treatment. J Am Acad Dermatol. 2010;63(2):309–22.

    Article  PubMed  Google Scholar 

  77. Croft SL, Coombs GH. Leishmaniasis: current chemotherapy and recent advances in the search for novel drugs. Trends Parasitol. 2003;19:502–8.

    Article  CAS  PubMed  Google Scholar 

  78. Jhingran A, Chawla B, Saxena S, Barrett MP, et al. Paromomycin: uptake and resistance in Leishmania donovani. Mol Biochem Parasitol. 2009;164(2):111–7.

    Article  CAS  PubMed  Google Scholar 

  79. Bhandari V, Sundar S, Dujardin JC, Salotra P. Elucidation of cellular mechanisms involved in experimental paromomycin resistance in Leishmania donovani. Antimicrob Agents Chemother. 2014;58(5):2580–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Croft SL, Neal RA, Pendergast W, Chan JH. The activity of alkyl phosphorylcholines and related derivatives against Leishmania donovani. Biochem Pharmacol. 1987;36:2633–6.

    Article  CAS  PubMed  Google Scholar 

  81. Eibl H, Unger C. Hexadecylphosphocholine: a new and selective antitumor drug. Cancer Treat Rev. 1990;17:233–42.

    Article  CAS  PubMed  Google Scholar 

  82. Croft SL. Kinetoplastida: new therapeutic strategies. Parasite. 2008;15:522–7.

    Article  CAS  PubMed  Google Scholar 

  83. Soto J, Berman J. Treatment of new world cutaneous leishmaniasis with miltefosine. Trans R Soc Trop Med Hyg. 2006;100:S34–40.

    Article  CAS  PubMed  Google Scholar 

  84. Sundar S, Singh A, Rai M, Prajapati VK, et al. Efficacy of miltefosine in the treatment of visceral leishmaniasis in India after a decade of use. Clin Infect Dis. 2012;55(4):543–50.

    Article  CAS  PubMed  Google Scholar 

  85. Rijal S, Ostyn B, Uranw S, Rai K, et al. Increasing failure of miltefosine in the treatment of Kala-azar in Nepal and the potential role of parasite drug resistance, reinfection, or noncompliance. Clin Infect Dis. 2013;56(11):1530–8.

    Article  CAS  PubMed  Google Scholar 

  86. Mondelaers A, Sanchez-Cañete MP, Hendrickx S, Eberhardt E, et al. Genomic and molecular characterization of miltefosine resistance in Leishmania infantum strains with either natural or acquired resistance through experimental selection of intracellular amastigotes. PLoS One. 2016;11(4):e0154101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Srivastava S, Mishra J, Gupta AK, Singh A, et al. Laboratory confirmed miltefosine resistant cases of visceral leishmaniasis from India. Parasit Vectors. 2017;10(1):49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Berman J. Clinical status of agents being developed for leishmaniasis. Expert Opin Investig Drugs. 2005;14:1337–46.

    Article  CAS  PubMed  Google Scholar 

  89. Loiseau PM, Cojean S, Schrével J. Sitamaquine as a putative antileishmanial drug candidate: from the mechanism of action to the risk of drug resistance. Parasite. 2011;18:115–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Singh N, Kumar M, Singh RK. Leishmaniasis: current status of available drugs and new potential drug targets. Asian Pac J Trop Med. 2012;5(6):485–97.

    Article  CAS  PubMed  Google Scholar 

  91. Croft SL, Seifert K, Yardley V. Current scenario of drug development for leishmaniasis. Indian J Med Res. 2006;123(3):399–410.

    PubMed  CAS  Google Scholar 

  92. Zerpa O, Ulrich M, Blanco B, Polegre M, et al. Diffuse cutaneous leishmaniasis responds to miltefosine but then relapses. Br J Dermatol. 2007;156:1328–35.

    Article  CAS  PubMed  Google Scholar 

  93. Kedzierski L, Sakthianandeswaren A, Curtis JM, Andrews PC, et al. Leishmaniasis: current treatment and prospects for new drugs and vaccines. Curr Med Chem. 2009;16:599–614.

    Article  CAS  PubMed  Google Scholar 

  94. Croft SL. PKDL – a drug related phenomenon? Indian J Med Res. 2008;128(1):10–1.

    PubMed  Google Scholar 

  95. Higgins CF. ABC transporters: from microorganisms to man. Annu Rev Cell Biol. 1992;8:67–113.

    Article  CAS  PubMed  Google Scholar 

  96. Natera S, Machuca C, Padrón-Nieves M, Romero A, et al. Proficiency of drug-resistant parasites. Int J Antimicrob Agents. 2007;29:637–42.

    Article  CAS  PubMed  Google Scholar 

  97. Imamura H, Downing T, Van den Broeck F, Sanders MJ, et al. Evolutionary genomics of epidemic visceral leishmaniasis in the Indian subcontinent. elife. 2016;5. pii: e12613.

    Google Scholar 

  98. t’Kindt R, Scheltema RA, Jankevics A, Brunker K, et al. Metabolomics to unveil and understand phenotypic diversity between pathogen populations. PLoS Negl Trop Dis. 2010;4:e904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financing support received from the Coordination for Research, Faculty of Medicine, UCV, and the Council for Scientific and Humanistic Research (CDCH), Universidad Central de Venezuela. Likewise, they are grateful for the support conferred by the Alexander von Humboldt Foundation and the University of Würzburg, Germany, to Alicia Ponte-Sucre.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Díaz, E., Ponte-Sucre, A. (2018). Leishmaniasis: The Biology of a Parasite. In: Ponte-Sucre, A., Padrón-Nieves, M. (eds) Drug Resistance in Leishmania Parasites. Springer, Cham. https://doi.org/10.1007/978-3-319-74186-4_1

Download citation

Publish with us

Policies and ethics