Skip to main content

Mechanisms of Inflammation in the Neutrophilic Dermatoses

  • Chapter
  • First Online:
Neutrophilic Dermatoses

Abstract

Neutrophilic dermatoses are a heterogenous group of conditions characterized by accumulation of neutrophils in the skin and, rarely, the internal organs [1, 2]. The cutaneous manifestations of neutrophilic dermatoses are polymorphic, including pustules, bullae, abscesses, papules, nodules, plaques and ulcers, and almost any organ system can be involved, giving rise to the term ‘neutrophilic disease’ [2]. The definition of neutrophilic dermatoses is similar to that of autoinflammatory diseases, which encompass a wide spectrum of conditions that are hallmarked by recurrent episodes of inflammation in the affected organs, in the absence of infection, allergy and high titer of circulating autoantibodies or autoreactive T cells [3]. The prototype of neutrophilic dermatoses is pyoderma gangrenosum, which typically manifests as a skin ulcer with undermined erythematous-violaceous borders, but it may also present with pustular, bullous and vegetating plaque-type lesions [1, 4]. Pyoderma gangrenosum may be isolated or associated with systemic conditions (i.e. inflammatory bowel diseases, rheumatological disorders and lymphoproliferation as well as other blood disorders), or occur in the context of autoinflammatory syndromes such as PAPA (pyogenic arthritis, PG and acne) [5], PASH (PG, acne and suppurative hidradenitis [also known as hidradenitis suppurativa; HS) [4, 6, 7] or other more recently described syndromes such as PAPASH (pyogenic arthritis, acne, PG and suppurative hidradenitis) [8]. The classic monogenic autoinflammatory syndromes such as PAPA are due to mutations of single genes regulating the innate immunity [5, 9]; however, there is increasing evidence that mutations in different genes involved in autoinflammation are associated with other neutrophilic dermatoses [7, 8, 10]. Here we review the pathophysiology of neutrophilic dermatoses focusing on the expression of cytokines and other effector molecules involved in autoinflammation as well as on their genetic profile, in order to support the inclusion of pyoderma gangrenosum and the other neutrophilic dermatoses in the spectrum of autoinflammatory diseases. This inclusion may provide the rationale for treatment aimed at blocking the cytokines crucially involved in autoinflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahronowitz I, Harp J, Shinkai K. Etiology and management of pyoderma gangrenosum: a comprehensive review. Am J Clin Dermatol. 2012;13:191–211.

    Article  PubMed  Google Scholar 

  2. Wallach D, Vignon-Pennamen MD. From acute febrile neutrophilic dermatosis to neutrophilic disease: forty years of clinical research. J Am Acad Dermatol. 2006;55:1066–71.

    Article  PubMed  Google Scholar 

  3. Kastner DL, Aksentijevich I, Goldbach-Mansky R. Autoinflammatory disease reloaded: a clinical perspective. Cell. 2010;140:784–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Marzano AV, Ishak RS, Saibeni S, et al. Autoinflammatory skin disorders in inflammatory bowel diseases, pyoderma gangrenosum and Sweet’s syndrome: a comprehensive review and disease classification criteria. Clin Rev Allergy Immunol. 2013;45:202–10.

    Article  CAS  PubMed  Google Scholar 

  5. Wise CA, Gillum JD, Seidman CE, Lindor NM, Veile R, Bashiardes S, Lovett M. Mutations in CD2BP1 disrupt binding to PTP PEST and are responsible for PAPA syndrome, an autoinflammatory disorder. Hum Mol Genet. 2002;11(8):961–9.

    Article  CAS  PubMed  Google Scholar 

  6. Braun-Falco M, Kovnerystyy O, Lohse P, Ruzicka T. Pyoderma gangrenosum, acne, and suppurative hidradenitis (PASH)—a new autoinflammatory syndrome distinct from PAPA syndrome. J Am Acad Dermatol. 2012;66(3):409–15.

    Article  PubMed  Google Scholar 

  7. Marzano AV, Ceccherini I, Gattorno M, Fanoni D, Caroli F, Rusmini M, Grossi A, De Simone C, Borghi OM, Meroni PL, Crosti C, Cugno M. Association of pyoderma gangrenosum, acne, and suppurative hidradenitis (PASH) shares genetic and cytokine profiles with other autoinflammatory diseases. Medicine. 2014;93(27):e187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Marzano AV, Trevisan V, Gattorno M, Ceccherini I, De Simone C, Crosti C. Pyogenic arthritis, pyoderma gangrenosum, acne, and hidradenitis suppurativa (PAPASH): a new autoinflammatory syndrome associated with a novel mutation of the PSTPIP1 gene. JAMA Dermatol. 2013;149(6):762–4.

    Article  PubMed  Google Scholar 

  9. Smith EJ, Allantaz F, Bennett L, et al. Clinical, molecular, and genetic characteristics of PAPA syndrome: a review. Curr Genomics. 2010;11:519–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Marzano A, Damiani G, Ceccherini I, Berti E, Gattorno M, Cugno M. Autoinflammation in pyoderma gangrenosum and its syndromic form PASH. Br J Dermatol. 2017;176(6):1588–98. https://doi.org/10.1111/bjd.15226.

    Article  CAS  PubMed  Google Scholar 

  11. DeFilippis EM, Feldman SR, Huang WW. The genetics of pyoderma gangrenosum and implications for treatment: a systematic review. Br J Dermatol. 2015;172:1487–97.

    Article  CAS  PubMed  Google Scholar 

  12. Marzano AV, Cugno M, Trevisan V, et al. Role of inflammatory cells, cytokines and matrix metalloproteinases in neutrophil-mediated skin diseases. Clin Exp Immunol. 2010;162:100–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Marzano AV, Fanoni D, Antiga E, et al. Expression of cytokines, chemokines and other effector molecules in two prototypic autoinflammatory skin diseases, pyoderma gangrenosum and Sweet’s syndrome. Clin Exp Immunol. 2014;178:48–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Marzano AV, Tavecchio S, Berti E, Gelmetti C, Cugno M. Cytokine and chemokine profile in amicrobial pustulosis of the folds: evidence for autoinflammation. Medicine. 2015;94:e2301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lima AL, Karl I, Giner T, et al. Keratinocytes and neutrophils are important sources of proinflammatory molecules in hidradenitis suppurativa. Br J Dermatol. 2016;174:514–21.

    Article  CAS  PubMed  Google Scholar 

  16. Shoham NG, Centola M, Mansfield E, Hull KM, Wood G, Wise CA, Kastner DL. Pyrin binds the PSTPIP1/CD2BP1 protein, defining familial Mediterranean fever and PAPA syndrome as disorders in the same pathway. Proc Natl Acad Sci U S A. 2003;100(23):13501–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Braswell SF, Kostopoulos TC, Ortega-Loayza AG. Pathophysiology of pyoderma gangrenosum (PG): an updated review. J Am Acad Dermatol. 2015;73:691–8.

    Article  CAS  PubMed  Google Scholar 

  18. Caproni M, Antiga E, Volpi W, et al. The Treg/Th17 cell ratio is reduced in the skin lesions of patients with pyoderma gangrenosum. Br J Dermatol. 2015;173:275–8.

    Article  CAS  PubMed  Google Scholar 

  19. van der Zee HH, de Ruiter L, van den Broecke DG, Dik WA, Laman JD, Prens EP. Elevated levels of tumour necrosis factor (TNF)-α, interleukin (IL)-1β and IL-10 in hidradenitis suppurativa skin: a rationale for targeting TNF-α and IL-1β. Br J Dermatol. 2011;164:1292–8.

    Article  PubMed  Google Scholar 

  20. Mozeika E, Pilmane M, Nürnberg BM, Jemec GB. Tumour necrosis factor-alpha and matrix metalloproteinase-2 are expressed strongly in hidradenitis suppurativa. Acta Derm Venereol. 2013;93:301–4.

    Article  PubMed  Google Scholar 

  21. Amazan E, Ezzedine K, Mossalayi MD, Taieb A, Boniface K, Seneschal J. Expression of interleukin-1 alpha in amicrobial pustulosis of the skin folds with complete response to anakinra. J Am Acad Dermatol. 2014;71:e53–6.

    Article  PubMed  Google Scholar 

  22. Marzano AV, Cugno M, Trevisan V, Lazzari R, Fanoni D, Berti E, Crosti C. Inflammatory cells, cytokines and matrix metalloproteinases in amicrobialpustulosis of the folds and other neutrophilic dermatoses. Int J Immunopathol Pharmacol. 2011;24:451–60.

    Article  CAS  PubMed  Google Scholar 

  23. Broderick L, De Nardo D, Franklin BS, et al. The inflammasomes and autoinflammatory syndromes. Annu Rev Pathol. 2015;10:395–424.

    Article  CAS  PubMed  Google Scholar 

  24. Hoffman HM, Mueller JL, Broide DH, et al. Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle-Wells syndrome. Nat Genet. 2001;29:301–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-b. Mol Cell. 2002;10:417–26.

    Article  CAS  PubMed  Google Scholar 

  26. Yeon HB, Lindor NM, Seidman JG, et al. Pyogenic arthritis, pyoderma gangrenosum, and acne syndrome maps to chromosome 15q. Am J Hum Genet. 2000;66:1443–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Heymann MC, Rosen-Wolff A. Contribution of the inflammasomes to autoinflammatory diseases and recent mouse models as research tools. Clin Immunol. 2013;147:175–84.

    Article  CAS  PubMed  Google Scholar 

  28. Wollina U, Tchernev G. Pyoderma gangrenosum: pathogenetic oriented treatment approaches. Wien Med Wochenschr. 2014;164:263–73.

    Article  PubMed  Google Scholar 

  29. Wollina U, Haroske G. Pyoderma gangraenosum. Curr Opin Rheumatol. 2011;23:50–6.

    Article  PubMed  Google Scholar 

  30. Palanivel JA, Macbeth AE, Levell NJ. Pyoderma gangrenosum in association with Janus kinase 2 (JAK2V617F) mutation. Clin Exp Dermatol. 2013;38:44–6.

    Article  CAS  PubMed  Google Scholar 

  31. Hideki M, Tetsurou T, Sakae F, et al. Idiopathic myelofibrosis and pyoderma gangrenosum involving a mutation of Janus kinase 2 (JAK2V617F), showing poor prognosis. Eur J Dermatol. 2013;23:256–7.

    PubMed  Google Scholar 

  32. Crittenden SC, Gilbert JE, Callen JP. Hydroxyurea-induced leg ulceration in a patient with a omozygous MTHFR polymorphism misdiagnosed as pyoderma gangrenosum. JAMA Dermatol. 2014;150:780–1.

    Article  PubMed  Google Scholar 

  33. Nesterovitch AB, Hoffman MD, Simon M, et al. Mutations in the PSTPIP1 gene and aberrant splicing variants in patients with pyoderma gangrenosum. Clin Exp Dermatol. 2011;36:889–95.

    Article  CAS  PubMed  Google Scholar 

  34. al-Rimawi HS, Abuekteish FM, Daoud AS, Oboosi MM. Familial pyoderma gangrenosum presenting in infancy. Eur J Pediatr. 1996;155:759–62.

    Article  CAS  PubMed  Google Scholar 

  35. Alberts JH, Sams HH, Miller JL, King LE Jr. Familial ulcerative pyoderma gangrenosum: a report of 2 kindred. Cutis. 2002;69:427–30.

    PubMed  Google Scholar 

  36. Boussofara L, Gammoudi R, Ghariani N, et al. Familial pyoderma gangrenosum in association with common variable immunodeficiency. Br J Dermatol. 2013;169:944–6.

    Article  CAS  PubMed  Google Scholar 

  37. Khandpur S, Mehta S, Reddy BS. Pyoderma gangrenosum in two siblings: a familial predisposition. Pediatr Dermatol. 2001;18:308–12.

    Article  CAS  PubMed  Google Scholar 

  38. Shands JW Jr, Flowers FP, Hill HM, Smith JO. Pyoderma gangrenosum in a kindred. Precipitation by surgery or mild physical trauma. J Am Acad Dermatol. 1987;16:931–4.

    Article  PubMed  Google Scholar 

  39. Ozen S, Demirkaya E, Amaryan G, et al. Results from a multicentre international registry of familial Mediterranean fever: impact of environment on the expression of a monogenic disease in children. Ann Rheum Dis. 2014;73:662–7.

    Article  PubMed  Google Scholar 

  40. Borghini S, Tassi S, Chiesa S, et al. Clinical presentation and pathogenesis of cold-induced autoinflammatory disease in a family with recurrence of an NLRP12 mutation. Arthritis Rheum. 2011;63:830–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Levy R, Gérard L, Kuemmerle-Deschner J, Lachmann HJ. Phenotypic and genotypic characteristics of cryopyrin-associated periodic syndrome: a series of 136 patients from the Eurofever Registry. Ann Rheum Dis. 2015;74:2043–9.

    Article  CAS  PubMed  Google Scholar 

  42. Hugot JP, Chamaillard M, Zouali H, et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature. 2001;411:599–603.

    Article  CAS  PubMed  Google Scholar 

  43. Ogura Y, Bonen DK, Inohara N, et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature. 2001;411:603–6.

    Article  CAS  PubMed  Google Scholar 

  44. Hurtado-Nedelec M, Chollet-Martin S, Chapeton D, et al. Genetic susceptibility factors in a cohort of 38 patients with SAPHO syndrome: a study of PSTPIP2, NOD2, and LPIN2 genes. J Rheumatol. 2010;37:401–9.

    Article  CAS  PubMed  Google Scholar 

  45. McDermott MF, Aksentijevich I, Galon J, et al. Germline mutations in the extracellular domains of the 55 kDa TNF receptor, TNFR1, define a family of dominantly inherited autoinflammatory syndromes. Cell. 1999;97:133–44.

    Article  CAS  PubMed  Google Scholar 

  46. Dinarello CA. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood. 2011;117:3720–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ozkurede VU, Franchi L. Immunology in clinic review series; focus on autoinflammatory diseases: role of inflammasomes in autoinflammatory syndromes. Clin Exp Immunol. 2012;167:382–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Saïd-Sadier N, Ojcius DM. Alarmins, inflammasomes and immunity. Biomed J. 2012;35:437–49.

    Article  PubMed  Google Scholar 

  49. Dinarello CA. A clinical perspective of IL-1β as the gatekeeper of inflammation. Eur J Immunol. 2011;41:1203–17.

    Article  CAS  PubMed  Google Scholar 

  50. Dinarello CA, van der Meer JW. Treating inflammation by blocking interleukin-1 in humans. Semin Immunol. 2013;25:469–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Marzano AV, Borghi A, Meroni PL, Cugno M. Pyoderma gangrenosum and its syndromic forms: evidence for a link with autoinflammation. Br J Dermatol. 2016;175:882–91.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelo Valerio Marzano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marzano, A.V., Cugno, M. (2018). Mechanisms of Inflammation in the Neutrophilic Dermatoses. In: Wallach, D., Vignon-Pennamen, MD., Valerio Marzano, A. (eds) Neutrophilic Dermatoses. Springer, Cham. https://doi.org/10.1007/978-3-319-72649-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72649-6_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72648-9

  • Online ISBN: 978-3-319-72649-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics