Skip to main content

Immediate-Type Hypersensitivity by Occupational Materials

  • Living reference work entry
  • First Online:
Contact Dermatitis
  • 133 Accesses

Abstract

More than 400 occupational agents are currently documented in the scientific literature as being potential “respiratory sensitizers.” These agents that may induce occupational rhinitis (OR) or occupational asthma (OA) can be categorized into high-molecular weight (HMW) and low-molecular weight (LMW) agents. HMW agents are proteins or glycoproteins, and the mechanism by which they induce OR or OA is thought to be IgE-mediated similar to that known for ubiquitous allergens in the general population. The pathogenesis of OR or OA caused by LMW agents remains poorly understood but may include both immunologic and non-immunologic mechanisms. Examples for occupational sources of immediate-type sensitizers and their characterized allergens are described in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ACGIH:

American Conference of Governmental Industrial Hygienists

CCD:

Cross-reactive carbohydrate determinants

CRD:

Component-resolved diagnosis

CU:

Contact urticaria

ELISA:

Enzyme-linked immunosorbent assay

HDI:

Hexamethylene diisocyanate

HMW:

High-molecular weight

IUIS:

International Union of Immunological Societies

LAA:

Laboratory animal allergy

LMW:

Low-molecular weight

MDI:

Methylene diphenyl isocyanate

NRL:

Natural rubber latex

nsLTP:

Non-specific lipid transfer protein

OA:

Occupational asthma

OR:

Occupational rhinitis

RADS:

Reactive airway dysfunction syndrome

ROC:

Receiver-operating characteristic

sIgE:

Specific immunoglobulin E antibody

SPT:

Skin prick test

TDI:

Toluene diisocyanate

TLV:

Threshold limit value

WDEI:

Wheat-dependent exercise-induced anaphylaxis

WHO:

World Health Organization

WRA:

Work-related asthma

References

  1. Quirce S, Bernstein JA (2011) Old and new causes of occupational asthma. Immunol Allergy Clin N Am 31(4):677–981

    Article  Google Scholar 

  2. Cartier A (2015) New causes of immunologic occupational asthma 2012–2014. Curr Opin Allergy Clin Immunol 15:677–698

    Article  CAS  Google Scholar 

  3. Quirce S, Campo P, Domínguez-Ortega J, Fernández-Nieto M, Gómez-Torrijos E, Martínez-Arcediano A et al (2017) New developments in work-related asthma. Expert Rev Clin Immunol 13(3):271–281

    Article  CAS  PubMed  Google Scholar 

  4. Jeebhay MF, Moscato G, Bang BE, Folletti I, Lipińska-Ojrzanowska A, Lopata AL, Pala G, Quirce S, Raulf M, Sastre J, Swoboda I, Walusiak-Skorupa J, Siracusa A (2019) Food processing and occupational respiratory allergy – a EAACI Position Paper. Allergy. https://doi.org/10.1111/all.13807. [Epub ahead of print]

    Article  CAS  PubMed  Google Scholar 

  5. Maestrelli P, Boschetto P, Fabbri LM, Mapp CE (2009) Mechanisms of occupational asthma. J Allergy Clin Immunol 123(3):531–542

    Article  PubMed  Google Scholar 

  6. Enoch SJ, Seed MJ, Roberts DW, Cronin MTD, Stocks SJ, Agius RM (2012) Development of mechanism-based structural alerts for respiratory sensitization hazard identification. Chem Res Toxicol 25(11):2490–2498

    Article  CAS  PubMed  Google Scholar 

  7. Moscato G, Pala G, Boillat MA, Folletti I, Gerth van Wijk R, Olgiati-Des Gouttes D, Perfetti L, Quirce S, Siracusa A, Walusiak-Skorupa J, Tarlo SM (2011) EAACI position paper: prevention of work-related respiratory allergies among pre-apprentices or apprentices and young workers. Allergy 66(9):1164–1173

    Article  CAS  PubMed  Google Scholar 

  8. Raulf M, Buters J, Chapman M, Cecchi L, de Blay F, Doekes G, Eduard W, Heederik D, Jeebhay MF, Kespohl S, Krop E, Moscato G, Pala G, Quirce S, Sander I, Schlünssen V, Sigsgaard T, Walusiak-Skorupa J, Wiszniewska M, Wouters IM, Annesi-Maesano I (2014) Monitoring of occupational and environmental aeroallergens – EAACI Position Paper. Concerted action of the EAACI IG Occupational Allergy and Aerobiology & Air Pollution. Allergy 69(10):1280–1299

    Article  CAS  PubMed  Google Scholar 

  9. Sarlo K (2003) Control of occupational asthma and allergy in the detergent industry. Ann Allergy Asthma Immunol 90(5 Suppl 2):32–34

    Article  CAS  PubMed  Google Scholar 

  10. Saary MJ, Kanani A, Alghadeer H, Holness DL, Tarlo SM (2002) Changes in rates of natural rubber latex sensitivity among dental school students and staff members after changes in latex gloves. J Allergy Clin Immunol 109(1):131–135

    Article  PubMed  Google Scholar 

  11. Raulf M (2014) The latex story. Chem Immunol Allergy 100:248–255

    Article  PubMed  Google Scholar 

  12. Quirce S, Diaz-Perales A (2013) Diagnosis and management of grain-induced asthma. Allergy, Asthma Immunol Res 5(6):348–356

    Article  Google Scholar 

  13. Matricardi PM, Kleine-Tebbe J, Hoffmann HJ, Valenta R, Hilger C, Hofmaier S et al (2016) EAACI Molecular Allergology user’s guide. Pediatr Allergy Immunol 27(Suppl 23):1–250

    Article  PubMed  Google Scholar 

  14. Raulf M (2016) Allergen component analysis as a tool in the diagnosis of occupational allergy. Curr Opin Allergy Clin Immunol 16(2):93–100

    Article  CAS  PubMed  Google Scholar 

  15. Sander I, Rozynek P, Rihs H-P, van Kampen V, Chew FT, Lee WS et al (2011) Multiple wheat flour allergens and cross-reactive carbohydrate determinants bind IgE in baker’s asthma. Allergy 66(9):1208–1215

    Article  CAS  PubMed  Google Scholar 

  16. Quirce S, Boyano-Martínez T, Díaz-Perales A (2016) Clinical presentation, allergens, and management of wheat allergy. Expert Rev Clin Immunol 12(5):563–572

    Article  CAS  PubMed  Google Scholar 

  17. Raulf M (2018) Allergen component analysis as a tool in the diagnosis and management of occupational allergy. Mol Immunol 100:21–27

    Article  CAS  PubMed  Google Scholar 

  18. Raulf M, Quirce S, Vandenplas O (2018) Addressing molecular diagnosis of occupational allergies. Curr Allergy Asthma Rep 18(1):6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Altenbach SB, Tanaka CK, Pineau F, Lupi R, Drouet M, Beaudouin E et al (2015) Assessment of the allergenic potential of transgenic wheat (Triticum aestivum) with reduced levels of ω5-gliadins, the major sensitizing allergen in wheat-dependent exercise-induced anaphylaxis. J Agric Food Chem 63(42):9323–9332

    Article  CAS  PubMed  Google Scholar 

  20. Sander I, Rihs H-P, Doekes G, Quirce S, Krop E, Rozynek P et al (2015) Component-resolved diagnosis of baker’s allergy based on specific IgE to recombinant wheat flour proteins. J Allergy Clin Immunol 135(6):1529–1537

    Article  CAS  PubMed  Google Scholar 

  21. Olivieri M, Biscardo CA, Palazzo P, Pahr S, Malerba G, Ferrara R et al (2013) Wheat IgE profiling and wheat IgE levels in bakers with allergic occupational phenotypes. Occup Environ Med 70(9):617–622

    Article  CAS  PubMed  Google Scholar 

  22. Gómez-Casado C, Garrido-Arandia M, Pereira C, Catarino M, Parro V, Armentia A et al (2014) Component-resolved diagnosis of wheat flour allergy in baker’s asthma. J Allergy Clin Immunol 134(2):480–483

    Article  PubMed  CAS  Google Scholar 

  23. Palacin A, Quirce S, Armentia A, Fernández-Nieto M, Pacios LF, Asensio T et al (2007) Wheat lipid transfer protein is a major allergen associated with baker’s asthma. J Allergy Clin Immunol 120(5):1132–1138

    Article  CAS  PubMed  Google Scholar 

  24. Tordesillas L, Pacios LF, Palacin A, Quirce S, Armentia A, Barber D et al (2009) Molecular basis of allergen cross-reactivity: non-specific lipid transfer proteins from wheat flour and peach fruit as models. Mol Immunol 47(2–3):534–540

    Article  CAS  PubMed  Google Scholar 

  25. Sander I, Rihs H-P, Brüning T, Raulf M (2016) A further wheat allergen for baker’s asthma: Tri a 40. J Allergy Clin Immunol 137(4):1286

    Article  CAS  PubMed  Google Scholar 

  26. Kelly KJ, Sussman G (2017) Latex allergy: where are we now and how did we get there? J Allergy Clin Immunol Pract 5(5):1212–1216

    Article  PubMed  Google Scholar 

  27. Vandenplas O, Raulf M (2017) Occupational latex allergy: the current state of affairs. Curr Allergy Asthma Rep 17(3):14

    Article  PubMed  CAS  Google Scholar 

  28. Raulf-Heimsoth M, Rihs H-P, Rozynek P, Cremer R, Gaspar A, Pires G et al (2007) Quantitative analysis of immunoglobulin E reactivity profiles in patients allergic or sensitized to natural rubber latex (Hevea brasiliensis). Clin Exp Allergy 37(11):1657–1667

    Article  CAS  PubMed  Google Scholar 

  29. Ebo DG, Hagendorens MM, de Knop KJ, Verweij MM, Bridts CH, de Clerck LS et al (2010) Component-resolved diagnosis from latex allergy by microarray. Clin Exp Allergy 40(2):348–358

    Article  CAS  PubMed  Google Scholar 

  30. Seyfarth F, Schliemann S, Wiegand C, Hipler U-C, Elsner P (2014) Diagnostic value of the ISAC(®) allergy chip in detecting latex sensitizations. Int Arch Occup Environ Health 87(7):775–781

    Article  CAS  PubMed  Google Scholar 

  31. Chełmińska M, Specjalski K, Różyło A, Kołakowska A, Jassem E (2016) Differentiating of cross-reactions in patients with latex allergy with the use of ISAC test. Postepy Dermatol Alergol 33(2):120–127

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kespohl S, Schlünssen V, Jacobsen G, Schaumburg I, Maryska S, Meurer U et al (2010) Impact of cross-reactive carbohydrate determinants on wood dust sensitization. Clin Exp Allergy 40(7):1099–1106

    Article  CAS  PubMed  Google Scholar 

  33. Lundberg M, Chen Z, Rihs HP, Wrangsjö K (2001) Recombinant spiked allergen extract. Allergy 56(8):794–795

    Article  CAS  PubMed  Google Scholar 

  34. Huss-Marp J, Raulf M, Jakob T (2015) Spiking with recombinant allergens to improve allergen extracts: benefits and limitations for the use in routine diagnostics: Part 19 of the Series Molecular Allergology. Allergo J Int 24:236–243

    Article  PubMed  PubMed Central  Google Scholar 

  35. Blanco C (2003) Latex-fruit syndrome. Curr Allergy Asthma Rep 3:47–53

    Article  PubMed  Google Scholar 

  36. Wagner S, Breiteneder H (2002) The latex-fruit syndrome. Biochem Soc Trans 30:935–940

    Article  CAS  PubMed  Google Scholar 

  37. Radauer C, Adhami F, Fürtler I, Wagner S, Allwardt D, Scala E, Ebner C, Hafner C, Hemmer W, Mari A, Breiteneder H (2011) Latex-allergic patients sensitized to the major allergen hevein and hevein-like domains of class I chitinases show no increased frequency of latex-associated plant food allergy. Mol Immunol 48:600–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Barre A, Culerrier R, Granier C, Selman L, Peumans WJ, Van Damme EJ, Bienvenu F, Bienvenu J, Rougé P (2009) Mapping of IgE-binding epitopes on the major latex allergen Hev b 2 and the cross-reacting 1,3beta-glucanase fruit allergens as a molecular basis for the latex-fruit syndrome. Mol Immunol 46:1595–1604

    Article  CAS  PubMed  Google Scholar 

  39. Chen Z, Posch A, Cremer R, Raulf-Heimsoth M, Baur X (1998) Identification of hevein (Hev b 6.02) in Hevea latex as a major cross-reacting allergen with avocado fruit in patients with latex allergy. J Allergy Clin Immunol 102:476–481

    Article  CAS  PubMed  Google Scholar 

  40. Posch A, Wheeler CH, Chen Z, Flagge A, Dunn MJ, Papenfuß F, Raulf-Heimsoth M, Baur X (1999) Class I endochitinase containing a hevein domain is the causative allergen in latex-associated avocado allergy. Clin Exp Allergy 29:667–672

    Article  CAS  PubMed  Google Scholar 

  41. Raulf-Heimsoth M, Stark R, Sander I, Maryska S, Rihs HP, Brüning T, Voshaar T (2002) Anaphylactic reaction to apple juice containing acerola: cross-reactivity to latex due to prohevein. J Allergy Clin Immunol 109:715–716

    Article  PubMed  Google Scholar 

  42. Schmidt MH, Raulf-Heimsoth M, Posch A (2002) Evaluation of patatin as a major cross-reactive allergen in latex-induced potato allergy. Ann Allergy Asthma Immunol 89:613–618

    Article  CAS  PubMed  Google Scholar 

  43. Raulf-Heimsoth M, Kespohl S, Crespo JF, Rodriguez J, Feliu A, Brüning T, Rihs HP (2007) Natural rubber latex and chestnut allergy: cross-reactivity or co-sensitization? Allergy 62:1277–1281

    Article  CAS  PubMed  Google Scholar 

  44. Beezhold DH, Hickey VL, Kostyal DA, Puhl H, Zuidmeer L, van Ree R, Sussman GL (2003) Lipid transfer protein from Hevea brasiliensis (Hev b 12), a cross-reactive latex protein. Ann Allergy Asthma Immunol 90:439–445

    Article  CAS  PubMed  Google Scholar 

  45. Tatham AS, Shewry PR (2008) Allergens to wheat and related cereals. Clin Exp Allergy 38(11):1712–1726

    CAS  PubMed  Google Scholar 

  46. Quirce S, Polo F, Figueredo E, González R, Sastre J (2000) Occupational asthma caused by soybean flour in bakers – differences with soybean-induced epidemic asthma. Clin Exp Allergy 30(6):839–846

    Article  CAS  PubMed  Google Scholar 

  47. Manavski N, Peters U, Brettschneider R, Oldenburg M, Baur X, Bittner C (2012) Cof a 1: identification, expression and immunoreactivity of the first coffee allergen. Int Arch Allergy Immunol 159(3):235–242

    Article  CAS  PubMed  Google Scholar 

  48. Peters U, Frenzel K, Brettschneider R, Oldenburg M, Bittner C (2015) Identification of two metallothioneins as novel inhalative coffee allergens Cof a 2 and Cof a 3. PLoS One 10(5):e0126455

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Kespohl S, Kotschy-Lang N, Tomm JM, von Bergen M, Maryska S, Brüning T et al (2012) Occupational IgE-mediated softwood allergy: characterization of the causative allergen. Int Arch Allergy Immunol 157(2):202–208

    Article  CAS  PubMed  Google Scholar 

  50. Kespohl S, Sander I, Merget R, Petersen A, Meyer HE, Sickmann A et al (2005) Identification of an obeche (Triplochiton scleroxylon) wood allergen as a class I chitinase. Allergy 60(6):808–814

    Article  CAS  PubMed  Google Scholar 

  51. Kespohl S, Campo P, Zahradnik E, Maryska S, Aranda-Guerrero A, Rodriguez J et al (2016) Quantification of obeche wood allergen: development of a sensitive sandwich-ELISA for occupational exposure assessment. J Toxicol Environ Health Part A 79(22–23):1070–1077

    Article  CAS  Google Scholar 

  52. Aranda A, Campo P, Palacin A, Doña I, Gomez-Casado C, Galindo L et al (2013) Antigenic proteins involved in occupational rhinitis and asthma caused by obeche wood (Triplochiton scleroxylon). PLoS One 8(1):e53926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Upadhyay E, Mohammad AlMass AA, Dasgupta N, Rahman S, Kim J, Datta M (2019) Assessment of occupational health hazards due to particulate matter originated from spices. Int J Environ Res Public Health 16(9):1519

    Article  CAS  PubMed Central  Google Scholar 

  54. Quirce S, Fernández-Nieto M, Pastor C, Sastre B, Sastre J (2008) Occupational asthma due to Tampico fiber from agave leaves. Allergy 63:943–945

    Article  CAS  PubMed  Google Scholar 

  55. Raulf M, Sander I, Brüning T, König S (2019) Occupational asthma due to Tampico fiber bystander exposure in a brush production company – case report and literature review. Allergo J Int 28:73–77

    Article  Google Scholar 

  56. Zahradnik E, Raulf M (2014) Animal allergens and their presence in the environment. Front Immunol 5:76

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Saarelainen S, Zeiler T, Rautiainen J, Närvänen A, Rytkönen-Nissinen M, Mäntyjärvi R et al (2002) Lipocalin allergen Bos d 2 is a weak immunogen. Int Immunol 14(4):401–409

    Article  CAS  PubMed  Google Scholar 

  58. Zahradnik E, Raulf M (2017) Respiratory allergens from furred mammals: environmental and occupational exposure. Vet Sci 4:38. https://doi.org/10.3390/vet sci 4030038

  59. Hilger C, van Hage M, Kuehn A (2017) Diagnosis of allergy to mammals and fish: cross-reactive vs. specific markers. Curr Allergy Asthma Rep 17(9):64

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Hilger C, Kuehn A, Hentges F (2012) Animal lipocalin allergens. Curr Allergy Asthma Rep 12(5):438–447

    Article  CAS  PubMed  Google Scholar 

  61. Liccardi G, Asero R, D’Amato M, D’Amato G (2011) Role of sensitization to mammalian serum albumin in allergic disease. Curr Allergy Asthma Rep 11(5):421–426

    Article  CAS  PubMed  Google Scholar 

  62. Ruoppi P, Virtanen T, Zeiler T, Rytkönen-Nissinen M, Rautiainen J, Nuutinen J et al (2001) In vitro and in vivo responses to the recombinant bovine dander allergen Bos d 2 and its fragments. Clin Exp Allergy 31(6):915–919

    Article  CAS  PubMed  Google Scholar 

  63. Voltolini S, Spigno F, Cioè A, Cagnati P, Bignardi D, Minale P (2013) Bovine Serum Albumin: a double allergy risk. Eur Ann Allergy Clin Immunol 45(4):144–147

    CAS  PubMed  Google Scholar 

  64. Choi G-S, Kim J-H, Lee H-N, Sung J-M, Lee J-W, Park H-S (2009) Occupational asthma caused by inhalation of bovine serum albumin powder. Allergy, Asthma Immunol Res 1(1):45–47

    Article  CAS  Google Scholar 

  65. Bonadonna P, Senna G, Passalacqua G (2003) Dermatological powder as hidden cause of occupational allergy due to casein: a case report. Occup Environ Med 60(8):609–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Toskala E, Piipari R, Aalto-Korte K, Tuppurainen M, Kuuliala O, Keskinen H. Occupational asthma and rhinitis caused by milk proteins. J Occup Environ Med 2004; 46(11):1100–1

    Article  PubMed  Google Scholar 

  67. Lopata AL, Jeebhay MF (2013) Airborne seafood allergens as a cause of occupational allergy and asthma. Curr Allergy Asthma Rep 13(3):288–297

    Article  CAS  PubMed  Google Scholar 

  68. Jeebhay MF, Lopata AL (2012) Occupational allergies in seafood-processing workers. Adv Food Nutr Res 66:47–73

    Article  CAS  PubMed  Google Scholar 

  69. Lopata AL, Kleine-Tebbe J, Kamath SD (2016) Allergens and molecular diagnostics of shellfish allergy: Part 22 of the Series Molecular Allergology. Allergo J Int 25(7):210–218

    Article  PubMed  PubMed Central  Google Scholar 

  70. Kuehn A, Hilger C, Lehners-Weber C, Codreanu-Morel F, Morisset M, Metz-Favre C et al (2013) Identification of enolases and aldolases as important fish allergens in cod, salmon and tuna: component resolved diagnosis using parvalbumin and the new allergens. Clin Exp Allergy 43(7):811–822

    Article  CAS  PubMed  Google Scholar 

  71. Gordon S, Bush RK, Newman-Taylor AJ. Laboratory animal, insect, fish, and shellfish allergy: Part III: specific agents causing occupational asthma with a latency period. In: Bernstein IL, Chan-Yeung M, Malo J-L, Bernstein DI (ed) Asthma in the workplace, pp 415–435

    Google Scholar 

  72. Liebers V, Baur X (1994) Chironomidae haemoglobin Chi t I – characterization of an important inhalant allergen. Clin Exp Allergy 24(2):100–108

    Article  CAS  PubMed  Google Scholar 

  73. Sander I, Raulf M (2018) Industriell hergestellte Enzyme als Verursacher von beruflichen Atemwegsallergien – eine Übersicht. Allergologie 41:511–528

    Article  Google Scholar 

  74. Greenberg M, Milne JF, Watt A (1970) Survey of workers exposed to dusts containing derivatives of Bacillus subtilis. Br Med J 2:629–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Newhouse ML, Tagg B, Pocock SJ, McEwan AC (1970) An epidemiological study of workers producing enzyme washing powders. Lancet 1:689–693

    Article  CAS  PubMed  Google Scholar 

  76. Bernstein JA, Sarlo K. Enzymes: Part III: specific agents causing occupational asthma with a latency period. In: Bernstein IL, Chan-Yeung M, Malo J-L, Bernstein DI (eds) Asthma in the workplace, pp. 377–392

    Google Scholar 

  77. Doekes G, Kamminga N, Helwegen L, Heederik D (1999) Occupational IgE sensitisation to phytase, a phosphatase derived from Aspergillus niger. Occup Environ Med 56(7):454–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. van Kampen V, Merget R, Brüning T (2005) Berufliche Allergien gegen Papain. Pneumologie 59(6):405–410

    Article  PubMed  Google Scholar 

  79. van Kampen V, Merget R, Brüning T (2007) Berufliche Allergien gegen Bromelain. Pneumologie 61(3):159–161

    Article  PubMed  Google Scholar 

  80. Wiesmüller GA, Heinzow B, Aurbach U, Bergmann K-C, Bufe A, Buzina W et al (2017) Abridged version of the AWMF guideline for the medical clinical diagnostics of indoor mould exposure: S2K guideline of the German Society of Hygiene, Environmental Medicine and Preventive Medicine (GHUP) in collaboration with the German Association of Allergists (AeDA), the German Society of Dermatology (DDG), the German Society for Allergology and Clinical Immunology (DGAKI), the German Society for Occupational and Environmental Medicine (DGAUM), the German Society for Hospital Hygiene (DGKH), the German Society for Pneumology and Respiratory Medicine (DGP), the German Mycological Society (DMykG), the Society for Pediatric Allergology and Environmental Medicine (GPA), the German Federal Association of Pediatric Pneumology (BAPP), and the Austrian Society for Medical Mycology (ÖGMM). Allergo J Int 26(5):168–193

    Article  PubMed  PubMed Central  Google Scholar 

  81. Hurraß J, Heinzow B, Aurbach U, Bergmann K-C, Bufe A, Buzina W et al (2017) Medical diagnostics for indoor mold exposure. Int J Hyg Environ Health 220(2 Pt B):305–328

    Article  PubMed  Google Scholar 

  82. Quirce S, Vandenplas O, Campo P, Cruz MJ, de Blay F, Koschel D et al (2016) Occupational hypersensitivity pneumonitis: an EAACI position paper. Allergy 71(6):765–779

    Article  CAS  PubMed  Google Scholar 

  83. Hagemeyer O, Bünger J, van Kampen V, Raulf-Heimsoth M, Drath C, Merget R et al (2013) Occupational allergic respiratory diseases in garbage workers: relevance of molds and actinomycetes. Adv Exp Med Biol 788:313–320

    Article  CAS  PubMed  Google Scholar 

  84. Kespohl S, Maryska S, Zahradnik E, Sander I, Brüning T, Raulf-Heimsoth M (2013) Biochemical and immunological analysis of mould skin prick test solution: current status of standardization. Clin Exp Allergy 43(11):1286–1296

    Article  CAS  PubMed  Google Scholar 

  85. Kespohl S, Raulf M (2014) Mould allergens: where do we stand with molecular allergy diagnostics? Part 13 of the series Molecular Allergology. Allergo J Int 23(4):120–125

    Article  PubMed  PubMed Central  Google Scholar 

  86. Allmers H, Huber H, Baur X (2000) Two year follow-up of a garbage collector with allergic bronchopulmonary aspergillosis (ABPA). Am J Ind Med 37(4):438–442

    Article  CAS  PubMed  Google Scholar 

  87. Wisnewski AV, Redlich CA, Mapp CA, Bernstein DI. Polyisocyanates and their prepolymers: Part III: specific agents causing occupational asthma with a latency period. In: Bernstein IL, Chan-Yeung M, Malo J-L, Bernstein DI (eds) Asthma in the workplace, pp 481–504

    Google Scholar 

  88. Bittner C, Peters U, Frenzel K, Müsken H, Brettschneider R (2015) New wheat allergens related to baker’s asthma. J Allergy Clin Immunol 136(5):1416–1418

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Raulf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Raulf, M. (2019). Immediate-Type Hypersensitivity by Occupational Materials. In: Johansen, J., Mahler, V., Lepoittevin, JP., Frosch, P. (eds) Contact Dermatitis. Springer, Cham. https://doi.org/10.1007/978-3-319-72451-5_73-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72451-5_73-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72451-5

  • Online ISBN: 978-3-319-72451-5

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics