Skip to main content

Part of the book series: Infectious Disease ((ID))

  • 940 Accesses

Abstract

Clinically significant drug interactions can occur when using drugs to treat tuberculosis. The following chapter reviews the most common infectious disease and drug interactions with drugs used for tuberculosis and other nontuberculous mycobacterial infections. The management of drug interactions in the treatment of tuberculosis and human immunodeficiency virus is discussed. Most drug interactions with antituberculosis drugs are a result of effects on hepatic enzyme metabolism. Interactions with drugs affecting absorption also are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nahid P, Dorman SE, Alipanah N et al (2016) Executive summary: Official American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America Clinical Practice Guidelines: treatment of drug-susceptible tuberculosis. Clin Infect Dis 63(7):853–867

    Article  PubMed  Google Scholar 

  2. Peloquin CA (2014) Tuberculosis. In: JT DP, Talbert RL, Yee GC, Matzke GR, Wells BG, Posey LM (eds) Pharmacotherapy: a pathophysiologic approach, 9th edn. McGraw Hill, New York, pp 1917–1937

    Google Scholar 

  3. Peloquin CA, Namdar R, Singleton MD, Nix DE (1999) Pharmacokinetics of rifampin under fasting conditions, with food, and with antacids. Chest 115:12–18

    Article  CAS  PubMed  Google Scholar 

  4. Peloquin CA, Bulpitt AE, Jaresko GS, Jelliffe RW, Childs JM, Nix DE (1999) Pharmacokinetics of ethambutol under fasting conditions, with food, and with antacids. Antimicrob Agents Chemother 43:568–572

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Peloquin CA, Bulpitt AE, Jaresko GS, Jelliffe RW, James GT, Nix DE (1998) Pharmacokinetics of pyrazinamide under fasting conditions, with food, and with antacids. Pharmacotherapy 18:1205–1211

    CAS  PubMed  Google Scholar 

  6. Lin MY, Lin SJ, Chan LC, Lu YC (2010) Impact of food and antacids on the pharmacokinetics of anti-tuberculosis drugs : systematic review and meta-analysis. Int J Tuberc Lung Dis 14:806–818

    PubMed  Google Scholar 

  7. Auclair B, Nix DE, Adam RD, James GT, Peloquin CA (2001) Pharmacokinetics of ethionamide under fasting conditions, with orange juice, food, and antacids. Antimicrob Agents Chemother 45:810–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhu M, Nix DE, Adam RD, Childs JM, Peloquin CA (2001) Pharmacokinetics of cycloserine under fasting conditions, with orange juice, food, and antacids. Pharmacotherapy 21:891–897

    Article  CAS  PubMed  Google Scholar 

  9. Peloquin CA, Zhu M, Adam RD, Godo PG, Nix DE (2001) Pharmacokinetics of p-aminosalicylate under fasting conditions, with orange juice, food, and antacids. Ann Pharmacother 35:1332–1338

    Article  CAS  PubMed  Google Scholar 

  10. Nix DE, Zhu M, Adam RD, Godo PG, Peloquin CA (in press) Pharmacokinetics of clofazimine under fasting conditions, with orange juice, food, and antacids. Tuberculosis

    Google Scholar 

  11. Sahai J, Gallicano K, Swick L et al (1997) Reduced plasma concentrations of antiturberculous drugs in patients with HIV infection. Ann Intern Med 127:289–293

    Article  CAS  PubMed  Google Scholar 

  12. Peloquin CA, Nitta AT, Burman WJ et al (1996) Low antituberculosis drug concentrations in patients with AIDS. Ann Pharmacother 30:919–925

    Article  CAS  PubMed  Google Scholar 

  13. Fish DN, Chow AT (1997) The clinical pharmacokinetics of levofloxacin. Clin Pharmacokinet 32:101–119

    Article  CAS  PubMed  Google Scholar 

  14. Berning SE, Huitt GA, Iseman MD, Peloquin CA (1992) Malabsorption of antituberculosis medications by a patient with AIDS. N Engl J Med 327:1817–1818

    Article  CAS  PubMed  Google Scholar 

  15. Kumar AK, Chandrasekaran V, Kannan T et al (2017) Anti-tuberculosis drug concentrations in tuberculosis patients with and without diabetes mellitus. Eur J Clin Pharmacol 73(1):65–70

    Article  CAS  PubMed  Google Scholar 

  16. Bento J, Duarte R, Brito MC et al (2010) Malabsorption of antimycobacterial drugs as a cause of treatment failure in tuberculosis. BMJ Case Rep. https://doi.org/10.1136/bcr.12.2009.2554

  17. Peloquin CA, MacPhee AA, Berning SE (1993) Malabsorption of antimycobacterial medications (letter). N Engl J Med 329:1122–1123

    Article  CAS  PubMed  Google Scholar 

  18. Gordon SM, Horsburgh CR Jr, Peloquin CA et al (1993) Low serum levels of oral antimycobacterial agents in patients with disseminated mycobacterium avium complex disease. J Infect Dis 168:1559–1562

    Article  CAS  PubMed  Google Scholar 

  19. Alsultan A, Peloquin CA (2013) Therapeutic drug monitoring in the treatment of tuberculosis: an update. Drugs 74:839–854

    Article  CAS  Google Scholar 

  20. Baciewicz AM, Chrisman AR, Finch CK, Self TH (2013) Update on rifampin, rifabutin, and rifapentine drug interactions. Curr Med Res Opin 29(1):1–12

    Article  CAS  PubMed  Google Scholar 

  21. Gatti G, Di Biagio A, De Pascalis CR, Guerra M, Bassetti M, Bassetti D (1999) Pharmacokinetics of rifabutin in HIV-infected patients with or without wasting syndrome. Br J Clin Pharmacol 48:704–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Keung AC, Owens RC Jr, Eller MG, Weir SJ, Nicolau DP, Nightingale CH (1999) Pharmacokinetics of rifapentine in subjects seropositive for the human immunodeficiency virus: a phase I study. Antimicrob Agents Chemother 43:1230–1233

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Weiner M, Burman W, Vernon A, Benator D, Peloquin CA, Khan A, Weis S, King B, Shah N, Hodge T (2003) The tuberculosis trials consortium. Low isoniazid concentration associated with outcome of tuberculosis treatment with once-weekly isoniazid and rifapentine. Am J Respir Crit Care Med 167:1341–1347

    Article  PubMed  Google Scholar 

  24. Egelund EF, Dupree L, Huesgen E, Peloquin CA (2016) The pharmacologic challenges of treating tuberculosis and HIV coinfections. Expert Rev Clin Pharmacol 28:1–11. [Epub ahead of print]

    Google Scholar 

  25. Gurumurthy P, Ramachandran G, Hemanthkumar AK et al (2004) Malabsorption of rifampin and isoniazid in HIV-infected patients with and without tuberculosis. Clin Infect Dis 38(2):280–283

    Article  CAS  PubMed  Google Scholar 

  26. Kotler DP, Francisco A, Clayton F, Scholes JV, Orenstein JM (1990) Small intestinal injury and parasitic diseases in AIDS. Ann Intern Med 113:444–449

    Article  CAS  PubMed  Google Scholar 

  27. Kotler DP, Giang TT, Thiim M, Nataro JP, Sordillo EM, Orenstein JM (1995) Chronic bacterial enteropathy in patients with AIDS. J Infect Dis 171:552–558

    Article  CAS  PubMed  Google Scholar 

  28. Blum RA, D'Andrea DT, Florentino BM et al (1991) Increased gastric pH and the bioavailability of fluconazole and ketoconazole. Ann Intern Med 114:755–757

    Article  CAS  PubMed  Google Scholar 

  29. Burman WJ, Gallicano K, Peloquin C (1999) Therapeutic implications of drug interactions in the treatment of HIV-related tuberculosis. Clin Infect Dis 28:419–430

    Article  CAS  PubMed  Google Scholar 

  30. Peloquin CA (1991) Antituberculosis drugs: pharmacokinetics. In: Heifets L (ed) Drug susceptibility in the chemotherapy of mycobacterial infections. CRC Press, Boca Raton, pp 59–88

    Google Scholar 

  31. Malone RS, Fish DN, Spiegel DM, Childs JM, Peloquin CA (1999) The effect of hemodialysis on isoniazid, rifampin, pyrazinamide, and ethambutol. Am J Respir Crit Care Med 159:1580–1584

    Article  CAS  PubMed  Google Scholar 

  32. Murray FJ (1962) Outbreak of unexpected reactions among epileptics taking isoniazid. Am Rev Respir Dis 86:729–732

    CAS  PubMed  Google Scholar 

  33. Valsalan VC, Cooper GI (1982) Carbamazepine intoxication caused by interaction with isoniazid. BMJ 285:261–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dockweiler U (1987) Isoniazid induced valproic acid toxicity, or vice versa. Lancet 2:152

    Article  CAS  PubMed  Google Scholar 

  35. Judd FK, Mijch AM, Cockram A, Norman TR (1994) Isoniazid and antidepressants: is there cause for concern? Int Clin Psychopharmacol 9:123–125

    Article  CAS  PubMed  Google Scholar 

  36. Angelini MC, MacCormack-Gagnon J, Dizio S (2009) Increase in plasma levels of clozapine after the addition of isoniazid. J Clin Psychopharmacol 29(2):190

    Article  PubMed  Google Scholar 

  37. Bertz RJ, Granneman GR (1997) Use of in vitro and in vivo data to estimate the likelihood of metabolic pharmacokinetic interactions. Clin Pharmacokinet 32:210–258

    Article  CAS  PubMed  Google Scholar 

  38. Ochs HR, Greenblatt DJ, Roberts GM, Dengler HJ (1981) Diazepam interaction with antituberculosis drugs. Clin Pharmacol Ther 29:671–678

    Article  CAS  PubMed  Google Scholar 

  39. Sutton G, Kupferberg HJ (1975) Isoniazid as an inhibitor of primidone metabolsim. Neurology 25:1179–1181

    Article  CAS  PubMed  Google Scholar 

  40. Zand R, Nelson SD, Slattery JT, Thummel KE, Kalhorn TF, Adams SP, Wright JM (1993) Inhibition and induction of cytochrome P4502E1-catalyzed oxidation by isoniazid in humans. Clin Pharmacol Ther 54:142–149

    Article  CAS  PubMed  Google Scholar 

  41. Baciewicz AM, Self TH (1985) Isoniazid interactions. South Med J 78:714–718

    Article  CAS  PubMed  Google Scholar 

  42. Rosenthal AR, Self TH, Baker ED et al (1977) Interaction of isoniazid and warfarin. JAMA 238:2177

    Article  CAS  PubMed  Google Scholar 

  43. Desta Z, Soukhova NV, Flockhart DA (2001) Inhbition of cytochrome P450 (CYP450) isoforms by isoniazid: potent inhibition of CYP2C19 and CYP3A4. Antimicrob Agents Chemother 45:382–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wen X, Wang JS, Neuvonen PJ et al (2001) Isoniazid is a mechanism based inhibitor of cytochrome P450 1A2, 2A6, 2C19, and 3A4 isoforms in human liver microenzymes. Eur J Clin Pharmacol 57:799–804

    Article  Google Scholar 

  45. Wenning GK, O’Connell MT, Patsalos PN et al (1995) A clinical and pharmacokinetic case study of an interaction of levodopa and antituberculous therapy in Parkinson’s disease. Mov Disord 10:664–667

    Article  CAS  PubMed  Google Scholar 

  46. Nolan CM, Sandblom RE, Thummel KE, Slattery JT, Nelson SD (1994) Hepatotoxicity associated with acetaminophen usage in patients receiving multiple drug therapy for tuberculosis. Chest 105:408–411

    Article  CAS  PubMed  Google Scholar 

  47. McEvoy GK (ed) (2010) AHFS drug information. American Society of Health-Systems Pharmacists, Bethesda

    Google Scholar 

  48. Murphy R, Swartz R, Watkins PB (1990) Severe acetaminophen toxicity in a patient receiving isonizid. Ann Intern Med 113:799–800

    Article  CAS  PubMed  Google Scholar 

  49. Moulding TS, Redeker AG, Kanel GC (1991) Acetaminophen, isoniazid and hepatic toxicity. Ann Intern Med 114:431

    Article  CAS  PubMed  Google Scholar 

  50. Ofoefule SI, Obodo CE, Orisakwe OE, Ilondu NA, Afonne OJ, Maduka SO, Anusiem CA, Agbassi PU (2001) Some plasma pharmacokinetic parameters of isoniazid in the presence of a fluoroquinolone antibacterial agent. Am J Ther 8:243–246

    Article  CAS  PubMed  Google Scholar 

  51. Burman WJ, Gallicano K, Peloquin C (2001) Comparative pharmacokinetics and pharmacodynamics of the rifamycin antibacterials. Clin Pharmacokinet 40:327–341

    Article  CAS  PubMed  Google Scholar 

  52. Oswald S, Giessmann T, Luetjohann D, Wegner D, Rosskopf D, Weitschies W, Siegmund W (2006) Disposition and sterol-lowering effect of ezetimibe are influenced by single-dose coadministration of rifampin, an inhibitor of multidrug transport proteins. Clin Pharmacol Ther 80(5):477–485

    Article  CAS  PubMed  Google Scholar 

  53. Payen L, Sparfel L, Courtois A, Vernhet L, Guillouzo A, Fardel O (2002) The drug efflux pump MRP2: regulation of expression in physiopathological situations and by endogenous and exogenous compounds. Cell Biol Toxicol 18(4):221–233

    Article  CAS  PubMed  Google Scholar 

  54. Corpechot C, Ping C, Wendum D, Matsuda F, Barbu V, Poupon R (2006) Identification of a novel 974C→G nonsense mutation of the MRP2/ABCC2 gene in a patient with Dubin-Johnson syndrome and analysis of the effects of rifampicin and ursodeoxycholic acid on serum bilirubin and bile acids. Am J Gastroenterol 101:2427–2432

    Article  CAS  PubMed  Google Scholar 

  55. Vavricka SR, Van Montfoort J, Ha HR, Meier PJ, Fattinger K (2002) Interactions of rifamycin SV and rifampicin with organic anion uptake systems of human liver. Hepatology 36(1):164–172

    Article  CAS  PubMed  Google Scholar 

  56. Niemi M, Kivistö KT, Diczfalusy U, Bodin K, Bertilsson L, Fromm MF, Eichelbaum M (2006) Effect of SLCO1B1 polymorphism on induction of CYP3A4 by rifampicin. Pharmacogenet Genomics 16(8):565–568

    Article  CAS  PubMed  Google Scholar 

  57. Williamson B, Dooley KE, Zhang Y, Back DJ, Owen (2013) Induction of influx and efflux transporters and cytochrome P450 3A4 in primary human hepatocytes by rifampin, rifabutin and rifapentine. Antimicrob Agents Chemother 57:6366–6369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Schuetz EG, Schinkel AH, Relling MV, Schuetz JD (1996) P-glycoprotein: a major determinant of rifampicin inducible expression of cytochrome P4503A in mice and humans. Proc Natl Acad Sci U S A 93:4001–4005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hoffmeyer S, Burk O, von Richter O (2000) Functional polymorphisms of the human multidurg resistance gene:multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci U S A 97:3473–3478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Li AP, Reith MK, Rasmussen A, Gorski JC, Hall SD, Xu L, Kaminski DL, Cheng LK (1997) Primary human hepatocytes as a tool for the evaluation of structure-activity relationship in a cytochrome P450 induction potential of xenobiotics: evaluation of rifampin, rifapentine, and rifabutin. Chem Biol Interact 107:17–30

    Article  CAS  PubMed  Google Scholar 

  61. Weiner M, Peloquin C, Burman MD et al (2010) Tuberculosis Trials Consortium. The effects of tuberculosis, race and human gene SLCO1B1 polymorphisms on rifampin concentrations. Antimicrob Agents Chemother 54(10):4192–4200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Keung AC, Reith K, Eller MG (1999) Enzyme induction observed in healthy volunteers after repeated administration of rifapentine and its lack of effect on steady-state rifapentine pharmacokinetics. Int J Tuber Lung Dis 3:426–436

    CAS  Google Scholar 

  63. Gallicano KD, Sahai J, Shukla VK, Seguin I, Pakuts A, Kwok D, Foster BC, Cameron DW (1999) Induction of zidovudine glucuronidation and amination pathways by rifampicin in HIV-infected patients. Br J Clin Pharmacol 48:168–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Peloquin CA (2003) What is the right dose of rifampin? Int J Tuberc Lung Dis 7:3–5

    PubMed  Google Scholar 

  65. Aguado JM, Torre-Cisneros J, Fortun J et al (2009) Tuberculosis in solid-organ transplant recipients: consensus statement of the group for the study of infection in transplant recipients (GESITRA) of the Spanish Society of Infectious Diseases and Clinical Microbiology. Clin Infect Dis 48:1276–1284

    Article  PubMed  Google Scholar 

  66. Regazzi M, Carvalho AC, Villani P, Matteelli A (2014) Treatment optimization in patients co-infected with HIV and Mycobacteriium tuberculosis infections: focus on drug-drug interactions with rifamycins. Clin Pharmacokinet 53:489–507

    Article  CAS  PubMed  Google Scholar 

  67. Sahasrabudhe V, Zhy T, Vaz A, Tse S (2015) Drug metabolism and drug interactions: potential application to antituberculsosis drugs. JID 211:S107–S114

    Article  PubMed  Google Scholar 

  68. Jaruratanasirikul S, Sriwiriyajan S (1998) Effect of rifampicin on the pharmacokinetics of itraconazole in normal volunteers and AIDS patients. Eur J Clin Pharmacol 54:155–158

    Article  CAS  PubMed  Google Scholar 

  69. Drayton J, Dickenson G, Rinaldi MG (1994) Coadministration of rifampin and itraconazole leads to undetectable levels of serum itraconazole. Clin Infect Dis 18:266

    Article  CAS  PubMed  Google Scholar 

  70. Doble N, Shaw R, Rowland-Hill C, Lush M, Warnock DW, Keal EE (1998) Pharmacokinetic study of the interaction between rifampicin and ketoconazole. J Antimicrob Chemother 21:633–635

    Article  Google Scholar 

  71. Schwiesow JN, Iseman MD, Peloquin CA (2008) Concomitant use of voriconazole and rifabutin in a patient with multiple infections. Pharmacotherapy 28(8):1076–1080

    Article  CAS  PubMed  Google Scholar 

  72. Nicolau DP, Crowe HM, Nightingale CH, Quintiliani R (1995) Rifampin-fluconazole interaction in critically ill patients. Ann Pharmacother 29:994–996

    Article  CAS  PubMed  Google Scholar 

  73. Apseloff G, Hilligoss DM, Gardner MJ, Henry EB, Inskeep PB, Gerver N (1991) Induction of fluconazole metabolism by rifampin: in vivo study in humans. J Clin Pharmacol 31:358–361

    Article  CAS  PubMed  Google Scholar 

  74. Coker RJ, Tomlinson DR, Prakin J, Harris JRW, Pinching AJ (1990) Interaction between fluconazole and rifampicin. BMJ 301:818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. CDC (2013) Managing drug interactions in the treatment of HIV-related tuberculosis [online]. Available from URL: http://www.cdc.gov/tb/TB_HIV_Drugs/default.htm

  76. Jaruratanasirikul S, Kleepkaew A (1996) Lack of effect of fluconazole on the pharmacokinetics of rifampicin in AIDS patients. J Antimicrob Chemother 38:877–880

    Article  CAS  PubMed  Google Scholar 

  77. Jordan MK, Polis MA, Kelly G, Narang PK, Masur H, Piscitelli SC (2000) Effects of fluconazole and clarithromycin on rifabutin and 25-O-desacetylrifabutin pharmacokinetics. Antimicrob Agents Chemother 44:2170–2172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kelly HW, Couch RC, Davis RL, Cushing AH, Knott R (1988) Interaction of chloramphenicol and rifampin. J Pediatr 112:817–820

    Article  CAS  PubMed  Google Scholar 

  79. Prober CG (1985) Effect of rifampin on chloramphenicol levels. N Engl J Med 312:788

    Article  CAS  PubMed  Google Scholar 

  80. Mirochnick M, Cooper E, Capparelli E, McIntosh K, Lindsey J, Xu J, Jacobus D, Mofenson L, Bonagura VR, Nachman S, Yogev R, Sullivan JL, Spector SA (2001) Population pharmocokinetics of dapsone in children with human immunodeficiency virus infection. Clin Pharmacol Ther 70:24–32

    Article  CAS  PubMed  Google Scholar 

  81. Colmenero JD, Fernandez-Gallardo LC, Agundez JAG, Sedeno J, Benitez J, Valverde E (1994) Possible implications of doxycycline-rifampin interaction for treatment of brucellosis. Antimicrob Agents Chemother 38:2798–2802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Temple ME, Nahata MC (1999) Interaction between ciprofloxacin and rifampin. Ann Pharmacother 33:868–870

    Article  CAS  PubMed  Google Scholar 

  83. Chandler MH, Toler SM, Rapp RP, Muder RR, Korvick JA (1990) Multiple dose pharmacokinetics of concurrent oral ciprofloxacin and rifampin therapy in elderly patients. Antimicrob Agents Chemother 34:442–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Weiner M, Burman W, Luo CC et al (2007) Effects of rifampin and multidrug resistance gene polymorphism on concentrations of moxifloxacin. AACA 51:2861–2866

    Article  CAS  Google Scholar 

  85. Nijland HM, Ruslami R, Suroto AJ et al (2007) Rifampicin reduces plama concentrations of moxifloxacin in patients with tuberculosis. Clin Infect Dis 45(8):1001–1007

    Article  CAS  PubMed  Google Scholar 

  86. Drusano GL, Sgambati N, Eichas A, Brown D, Kulawy R, Louie A (2011) Effect of administration of moxifloxacin plus rifampin against mycobacterium tuberculosis for 7 of 7 days versus 5 of 7 days in an in vitro pharmacodynamic system. M Bio 2(4):e00108–e00111

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Shishoo CJ, Shah SA, Rathod IS, Savale SS, Vora MJ (2001) Impaired bioavailabilty of rifampicin in presence of isoniazid from fixed dose combination (FDC) formulation. Int J Pharm 228:53–67

    Article  CAS  PubMed  Google Scholar 

  88. Apseloff G, Foulds G, LaBoy-Goral L, Willavize S, Vincent J (1998) Comparison of azithromycin and clarithromycin in their interactions with rifabutin in healthy volunteers. J Clin Pharmacol 38:830–835

    CAS  PubMed  Google Scholar 

  89. Van Ingen J, Simons S, De Zwaan R et al (2010) Comparative study on genotypic and phenotypic second-line drug resistance testing of mycobacterium tuberculosis complex isolates. J Clin Microbiol 48(8):2749–2753

    Article  PubMed  PubMed Central  Google Scholar 

  90. Hafner R, Bethel J, Power M, Landry B, Banach M, Mole L, Standiford HC, Follansbee S, Kumar P, Raasch R, Cohn D, Mushatt D, Drusano G (1998) Tolerance and pharmacokinetic interactions of rifabutin and clarithromycin in human immunodeficiency virus-infected volunteers. Antimicrob Agents Chemother 42:631–639

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Djojosaputro M, Mustofa S, Donatus IA, Santoso B (1990) The effects of doses and pre-treatment with rifampicin on the elimination kinetics of metronidazole. Eur J Pharmacol 183:1870

    Article  Google Scholar 

  92. McIlleron H, Meintjes G, Burman WJ et al (2007) Complications of antiretroviral therapy in patients with tuberculosis: drug interactions, toxicity, and immune reconstitution inflammatory syndrome. J Infect Dis 196(Suppl 1):S63–S75

    Article  PubMed  Google Scholar 

  93. Borin MT, Chambers JH, Carel BJ, Gagnon S, Freimuth WW (1997) Pharmacokinetic study of the interaction between rifampin and delavirdine mesylate. Clin Pharmacol Ther 61:544–553

    Article  CAS  PubMed  Google Scholar 

  94. Borin MT, Chambers JH, Carel BJ, Freimuth WW, Aksentijevich S, Piergies AA (1997) Pharmacokinetic study of the interaction between rifabutin and delavirdine mesylate in HIV1 infected patients. Antivir Res 35:53–63

    Article  CAS  PubMed  Google Scholar 

  95. Kakuda TN, Scholler-Gyure M, Hoetelmans RM (2011) Pharmacokinetic interaction between etravirine and non-antiretroviral drugs. Clin Pharmacokinet 50:25–39

    Article  CAS  PubMed  Google Scholar 

  96. Edurant package insert. © Janssen Products, LP (2011) Issued June 2013. Available at http://www.edurant.com/sites/default/files/EDURANT-PI.pdf

  97. Cohen K, Grant A, Dandara C et al (2009) Effect of rifampicin-based antitubercular therapy and the cytochrome P450 2B6 516G>T polymorphism on efavirenz concentrations in adults in South Africa. Antivir Ther 14:687–695

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Kwara A, Lartey M, Sagoe KW et al (2011) Paradoxically elevated efavirenz concentrations in HIV/tuberculosis-coinfected patients with CYP2B6 516TT genotype on rifampin-containing antituberculous therapy. AIDS 25:388–390

    Article  CAS  PubMed  Google Scholar 

  99. Gengiah TN, Holford NH, Botha JH et al (2011) The influence of tuberculosis treatment on efavirenz clearance in patients co-infected with HIV and tuberculosis. Eur J Clin Pharmacol 68:689–695

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Boulle A, Van Cutsem G, Cohen K et al (2008) Outcomes of nevirapine- and efavirenz-based antiretroviral therapy when coadministered with rifampicin-based antitubercular therapy. JAMA 300:530–539

    Article  CAS  PubMed  Google Scholar 

  101. Manosuthi W, Sungkanuparph S, Tantanathip P et al (2009) A randomized trial comparing plasma drug concentrations and efficacies between 2 nonnucleoside reverse-transcriptase inhibitor-based regimens in HIV-infected patients receiving rifampicin: the N2R study. Clin Infect Dis 48:1752–1759

    Article  CAS  PubMed  Google Scholar 

  102. Brennan-Benson P, Lyus R, Harrison T et al (2005) Pharmacokinetic interactions between efavirenz and rifampicin in the treatment of HIV and tuberculosis: one size does not fit all. AIDS 19:1541–1543

    Article  CAS  PubMed  Google Scholar 

  103. Manosuthi W, Sungkanuparph S, Tantanathip P et al (2009) Body weight cutoff for daily dosage of efavirenz and 60-week efficacy of efavirenz-based regimen in human immunodeficiency virus and tuberculosis coinfected patients receiving rifampin. Antimicrob Agents Chemother 53:4545–4548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Villar J, Sanchez P, Gonzalez A et al (2011) Use of non-nucleoside analogues together with rifampin in HIV patients with tuberculosis. HIV Clin Trials 12:171–174

    Article  CAS  PubMed  Google Scholar 

  105. Kwara A, Ramachandran G, Swaminathan S (2010) Dose adjustment of the non-nucleoside reverse transcriptase inhibitors during rifampicin containing tuberculosis therapy: one size does not fit all. Expert Opin Drug Metab Toxicol 6:55–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Weiner M, Benator D, Peloquin CA et al (2005) Evaluation of the drug interaction between rifabutin and efavirenz in patients with HIV infection and tuberculosis. CID 41(1):1343–1349

    CAS  Google Scholar 

  107. Ribera E, Pou L, Lopez RM et al (2001) Pharmacokinetic interaction between nevirapine and rifampicin in HIV-infected patients with tuberculosis. J Acquir Immune Defic Syndr 28:450–453

    Article  CAS  PubMed  Google Scholar 

  108. Ramachandran G, Hemanthkumar AK, Rajasekaran S et al (2006) Increasing nevirapine dose can overcome reduced bioavailability due to rifampicin coadministration. J Acquir Immune Defic Syndr 42:36–41

    CAS  PubMed  Google Scholar 

  109. Manosuthi W, Ruxrungtham K, Likanonsakul S et al (2007) Nevirapine levels after discontinuation ofrifampicin therapy and 60-week efficacy of nevirapine-based antiretroviral therapy in HIV-infected patients with tuberculosis. Clin Infect Dis 44:141–144

    Article  CAS  PubMed  Google Scholar 

  110. Autar RS, Wit FW, Sankote J et al (2005) Nevirapine plasma concentrations and concomitant use of rifampin in patients coinfected with HIV-1 and tuberculosis. Antivir Ther 10:937–943

    CAS  PubMed  Google Scholar 

  111. Lamorde M, Byakika-Kibwika P, Okaba-Kayom V et al (2011) Nevirapine pharmacokinetics when initiated at 200 mg or 400 mg daily in HIV-1 and tuberculosis co-infected Ugandan adults on rifampicin. J Antimicrob Chemother 66:180–183

    Article  CAS  PubMed  Google Scholar 

  112. Avihingsanon A, Manosuthi W, Kantipong P et al (2008) Pharmacokinetics and 48-week efficacy of nevirapine: 400 mg versus 600 mg per day in HIV-tuberculosis coinfection receiving rifampicin. Antivir Ther 13:529–536

    CAS  PubMed  Google Scholar 

  113. Back D, Gibbons S, Khoo S (2003) Pharmacokinetic drug interactions with nevirapine. JAIDS 34:S8–S14

    CAS  PubMed  Google Scholar 

  114. Crauwels HM, Kakuda TN (2010) Drug interactions with new investigational antiretrovirals. Clin Pharm 49(1):67–68

    Article  Google Scholar 

  115. Barry M, Mulcahy F, Merry C (1999) Pharmacokinetics and potential interactions amongst antiretroviral agents used to treat patients with HIV infection. Clin Pharmacokinet 36:289–304

    Article  CAS  PubMed  Google Scholar 

  116. Cato A, Cavanaugh J, Shi H, Hsu A, Leonard J, Granneman GR (1998) The effect of multiple doses of ritonavir on the pharmacokinetics of rifabutin. Clin Pharmacol Ther 63:414–421

    Article  CAS  PubMed  Google Scholar 

  117. Kerr BM, Daniels R, Cledeninn N (1999) Pharmacokinetic interaction of nelfinavir with half-dose rifabutin. Can J Infect Dis 10:21B

    Google Scholar 

  118. Moyle J, Buss NE, Goggin T, Snell P, Higgs C, Hawkins DA (2002) Interaction between saquinavir soft- gel and rifabutin in patients infected with HIV. Br J Clin Pharmacol 54:178–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Moreno S, Podzamczer D, Blazquez R, Tribarren JA, Ferror B, Reparez J, Pena JM, Carero E, Usan L (2001) Treatment of tuberculosis in HIV-infected patients: safety and antiretroviral efficacy of theconcomitant use of ritonavir and rifampin. AIDS 15:1185–1187

    Article  CAS  PubMed  Google Scholar 

  120. Polk RE, Brophy DF, Israel DS, Patron R, Sadler BM, Chittick GE, Symonds WT, Lou Y, Kristoff D, Stein DS (2001) Pharmacokinetic interaction between amprenavir and rifabutin or rifampin in healthy males. Antimicrob Agents Chemother 45:502–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ribera E, Azuaje C, Lopez RM (2007) Pharmacokinetic interaction between rifampicin and the once daily combination of saquinavir and low dose ritonavir in HIV infected patients with tuberculosis. JAntimicrob Chemother 59:690–697

    Article  CAS  Google Scholar 

  122. Tipranavir [package insert] (2006) US prescribing information. Boehringer Ingelheim, Germany

    Google Scholar 

  123. Darunavir [package insert] (2006, July) Tibotec Therapeutics. East Bridgewater

    Google Scholar 

  124. Narita M, Stambaugh JJ, Hollender ES, Jones D, Pitchenik AE, Ashkin D (2000) Use of rifabutin with protease inhibitors for human immunodeficiency virus-infected patients with tuberculosis. Clin Infect Dis 30:779–783

    Article  CAS  PubMed  Google Scholar 

  125. Peloquin CA (2001) Tuberculosis drug serum levels (letter). Clin Infect Dis 33:584–585

    Article  CAS  PubMed  Google Scholar 

  126. Hamzeh FM, Benson C, Gerber J, Currier J, McCrea J, Deutsch P, Ruan P, Wu H, Lee J, Flexner C (2003) AIDS clinical trials group 365 study team. Steady-state pharmacokinetic interaction of modified-dose indinavir and rifabutin. Clin Pharmacol Ther 73:159–169

    Article  CAS  PubMed  Google Scholar 

  127. Benator D, Weiner M, Burman W, et al. for the Tuberculosis Trials Consortium (2007) Clinical evaluation of the Nelfinavir – Rifabutin interaction in patients with HIV infection and tuberculosis. Pharmacotherapy 27:793–800

    Google Scholar 

  128. Weiner M, Benator D, Burman W, et al., for the Tuberculosis Trials Consortium (2005) Association between acquired Rifamycin resistance and the pharmacokinetics of Rifabutin and isoniazid among patients with HIV and tuberculosis. Clin Infect Dis 40:1481–1491

    Google Scholar 

  129. Boulaner C, Hollender E, Farrell K et al (2009) Pharmacokinetic evaluation of rifabutin in combination with lopinavir-ritonavir in patients with HIV infection and active tuberculosis. CID 49:1305–1311

    Article  CAS  Google Scholar 

  130. Tseng AL, Walmsley SL (1995) Rifabutin-associated uveitis. Ann Pharmacother 29:1149–1155

    Article  CAS  PubMed  Google Scholar 

  131. Abel S, Back DJ, Vourvahis M (2009) Maraviroc: pharmacokinetics and drug interactions. Antivir Ther 14(5):607–618

    CAS  PubMed  Google Scholar 

  132. Iwamoto M, Kassahun K, Troyer MD (2008) Lack of a pharmacokinetic effect of raltegravir on midazolam; in vitro/in vivo correclation. J Clin Pharmacol 48:209–214

    Article  CAS  PubMed  Google Scholar 

  133. Wenning LA, Hanley WD, Brainard DM, Petry AS, Ghosh K et al (2009) Effect of rifampin, a potent inducer of drug metabolizing enzymes, on the pharmacokinetics of raltegravir. Antimicrob Agents Chemother 53:2852–2856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Weiner M, Egelund EF, Engle M et al (2014) Pharmacokinetic interaction of rifapentine and raltegravir in healthy volunteers. J Antimicrob Chemother 69(4):1079–1085

    Article  CAS  PubMed  Google Scholar 

  135. Svensson EM, Murray S, Karlsson MO, Dooley KE (2015) Rifampicin and rifapentine significantly reduce concentrations of bedaquiline, a new anti-TB drug. J Antimicrob Chemother 70:1106–1114

    CAS  PubMed  Google Scholar 

  136. Ribera E, Pou L, Fernandez-Sola A, Campos F, Lopez RM, Ocana I, Ruiz I, Pahissa A (2001) Rifampin reduces concentrations of trimethoprim and sulfamethoxazole in serum in human immunodeficiency virus-infected patients. Antimicrob Agents Chemother 45:3238–3241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Niemi M, Backman JT, Fromm MF, Neuvonen PJ, Kivisto KT (2003) Pharmacokinetic interactions with rifampin: clinical relevance. Clin Pharm 42:815–850

    Article  Google Scholar 

  138. Lin JH, Lu AYH (1998) Inhibition and induction of cytochrome P450 and the clinical implications. ClinPharmacokinet 35:361–390

    Article  CAS  Google Scholar 

  139. Lacroix C, Guyonnaud C, Chaou M, Duwoos H, Lafont O (1988) Interaction between allopurinol and pyrazinamide. Eur Respir J 1:807–811

    CAS  PubMed  Google Scholar 

  140. Urban T, Maquarre E, Housset C, Chouaid C, Devin E, Lebeua B (1995) Allopurinol hypersensitivity. A possible cause of hepatitis and mucocutaneous eruptions in a patient undergoing antitubercular treatment. Rev Mal Respir 12:314–316

    CAS  PubMed  Google Scholar 

  141. Louthrenoo W, Hongsongkiat S, Kasitanon N, Wangkawe S, Jatuworkapruk K (2015) Effect of antituberculous drugs on serum uric acid and urine uric acid excretion. J Clin Rheumatol 7:346–348

    Article  Google Scholar 

  142. Jasmer RM, Saukkonen JJ, Blumberg HM, Daley CL, Bernardo J, Vittinghoff E, King MD, Kawamura LM, Hopewell PC (2002) Short-course rifampin and pyrazinamide for tuberculosis infection (SCRIPT) study investigators. Short-course rifampin and pyrazinamide compared with isoniazid for latent tuberculosis infection: a multicenter clinical trial. Ann Intern Med 137:640–647

    Article  CAS  PubMed  Google Scholar 

  143. Centers for Disease Control and Prevention (CDC); American Thoracic Society (2003) Update: adverse event data and revised American Thoracic Society/CDC recommendations against the use of rifampin and pyrazinamide for treatment of latent tuberculosis infection - United States, 2003. MMWR 52:735–739

    Google Scholar 

  144. Kunimoto D, Warman A, Beckon A et al (2003) Severe hepatotoxicity associated with rifampin-pyrazinamide preventative therapy requiring transplantation in an individual at low risk for hepatotoxicity. Clin Infect Dis 36:158–161

    Article  Google Scholar 

  145. Ridzon R, Meador J, Maxwell R, Higgins K, Weismuller P, Onorato IM (1997) Asymptomatic hepatitis in persons who received alternative preventive therapy with pyrazinamide and ofloxacin. Clin Infect Dis 24:1264–1265

    Article  CAS  PubMed  Google Scholar 

  146. Papastavros T, Dolovich LR, Holbrook A, Whitehead L, Loeb M (2002) Adverse events associated with pyrazinamide and levofloxacin in the treatment of latent multidrug-resistant tuberculosis. CMAJ 167:131–136

    PubMed  PubMed Central  Google Scholar 

  147. Lou HX, Shullo MA, McKaveney TP (2002) Limited tolerability of levofloxacin and pyrazinamide for multidrug-resistant tuberculosis prophylaxis in a solid organ transplant population. Pharmacotherapy 22:701–704

    Article  CAS  PubMed  Google Scholar 

  148. Tseng AL, Mortimer CB, Salit IE (1999) Iritis associated with intravenous cidofovir. Ann Pharmacother 33:167–171

    Article  CAS  PubMed  Google Scholar 

  149. Nicolau DP, Quintiliani R (1998) Aminoglycosides. In: Yu VL, Merigan TC, Barriere S, White NJ (eds) Antimicrobial chemotherapy. Williams and Wilkins, Baltimore, pp 621–637

    Google Scholar 

  150. Kucers A, Bennett NMK (eds) (2010) The use of antibiotics, 6th edn. JB Lippencott Co, Philadelphia

    Google Scholar 

  151. Peloquin CA, Berning SE, Nitta AT, Simone PM, Goble M, Huitt GA, Iseman MD, Cook JL, Curran-Everett D (2004) Aminoglycoside toxicity: daily versus thrice-weekly dosing for treatment of mycobacterial diseases. Clin Infect Dis 38:1538–1544

    Article  CAS  PubMed  Google Scholar 

  152. Berning SE, Peloquin CA (1998) Antimycobacterial agents: cycloserine. In: Yu VL, Merigan TC, Barriere S, White NJ (eds) Antimicrobial chemotherapy. Williams and Wilkins, Baltimore, pp 638–642

    Google Scholar 

  153. Malone RS, Fish DN, Spiegel DM, Childs JM, Peloquin CA (1999) The effect of hemodialysis on cycloserine, ethionamide, para-aminosalicylate, and clofazimine. Chest 116(4):984–990

    Article  CAS  PubMed  Google Scholar 

  154. Vale N, Gomes P, Santos HA (2013) Metabolism of the antituberculosis drug ethionamide. Curr Drug Metab 14(1):151–158

    Article  CAS  PubMed  Google Scholar 

  155. Shimokawa Y, Yoda N, Kondo S, Yamamura Y, Takiguchi Y, Umehara K (2015) Inhibitory potential of twenty five anti-tuberculosis drugs on CYP activities in human liver microsomes. Biol Pharm Bull 38(9):1425–1429

    Article  CAS  PubMed  Google Scholar 

  156. Berning SE, Peloquin CA (1998) Antimycobacterial agents: para-aminosalicylic acid. In: Yu VL, Merigan TC, Barriere S, White NJ (eds) Antimicrobial chemotherapy. Williams and Wilkins, Baltimore, pp 663–668

    Google Scholar 

  157. Jacobus Pharmaceutical Co (1996) Paser® granules (aminosalicylic acid granules) prescribing information. In: Physicians’ desk reference, 57th edn, Medical Economics Company Inc, Montvale; 2003, pp 1770–1771

    Google Scholar 

  158. Dey T, Brigden G, Cox H, Shubber Z, Cooke G, Ford N (2012) Outcomes of clofazamine for the treatment of drug resistant tuberculosis: a systematic review and meta- analysis. J Antimicrob Chemother 68:284–293

    Article  PubMed  CAS  Google Scholar 

  159. van Heeswijk RPG, Dannemann B, Hoetelmans RMW (2014) Bedaquiline: a review of human pharmacokinetics and drug–drug interactions. J Antimicrob Chemother 69:2310–2318

    Article  PubMed  CAS  Google Scholar 

  160. European Medicines Agency (2017) Website: http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/medicines/002552/human_med_001699.jsp&mid=WC0b01ac058001d124. Accessed 20 Aug 2017

  161. Griffith DE, Aksamit T, Brown-Elliott BA et al (2007) An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med 175:367

    Article  CAS  PubMed  Google Scholar 

  162. Wallace RJ, Brown BA, Griffith DE (1995) Reduced serum levels of clarithromycin in patients treated with multidrug regimens including rifampin or rifabutin for Mycobacterium avium-intracellulare infection. J Infect Dis 171:747–750

    Article  PubMed  Google Scholar 

  163. Peloquin CA, Berning SE (1996) Evaluation of the drug interaction between clarithromycin and rifampin. J Infect Dis Pharmacother 2:19–35

    Article  CAS  Google Scholar 

  164. Lalloo UG, Ambaram A (2010) New antituberculous drugs in development. Curr HIV/AIDS Rep 7(3):143–151

    Article  PubMed  Google Scholar 

  165. Burman WJ (2010) Rip van winkle wakes up: development of tuberculosis treatment in the 21st century. Clin Infect Dis 50(Suppl 3):S165–S172

    Article  CAS  PubMed  Google Scholar 

  166. Brigden G, Hewison C, Varaine F (2015) New developments in the treatment of drug resistant tuberculosis; clinical utility of bedaquiline and delamanid. Infect Drug Resis 8:367–378

    Article  Google Scholar 

  167. Borsari C, Ferrari S, Venturelli A, Costi MP (2016) Target based approaches for the discovery of new antimycobacterial drugs. Drug Discov Today pii: S1359-6446(16)30432-9. https://doi.org/10.1016/j.drudis.2016.11.014. [Epub ahead of print] Review

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles A. Peloquin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Namdar, R., Peloquin, C.A. (2018). Drugs for Tuberculosis. In: Pai, M., Kiser, J., Gubbins, P., Rodvold, K. (eds) Drug Interactions in Infectious Diseases: Antimicrobial Drug Interactions. Infectious Disease. Humana Press, Cham. https://doi.org/10.1007/978-3-319-72416-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72416-4_6

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-72415-7

  • Online ISBN: 978-3-319-72416-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics