Skip to main content

Advertisement

Log in

The influence of tuberculosis treatment on efavirenz clearance in patients co-infected with HIV and tuberculosis

  • Pharmacokinetics and Disposition
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Drug interactions are of concern when treating patients co-infected with human immunodeficiency virus (HIV) and tuberculosis. Concomitant use of efavirenz (EFV) with the enzyme inducer rifampicin might be expected to increase EFV clearance. We investigated the influence of concomitant tuberculosis treatment on the plasma clearance of EFV.

Methods

Fifty-eight patients were randomized to receive their EFV-containing antiretroviral therapy either during or after tuberculosis treatment. Steady-state EFV plasma concentrations (n = 209 samples) were measured, 83 in the presence of rifampicin. Data were analyzed using a non-linear mixed effects model, and the model was evaluated using non-parametric bootstrap and visual predictive checks.

Results

The patients had a median age of 32 (range 19–55) years and 43.1% were women. There was a bimodal distribution of apparent clearance, with slow EFV metabolizers accounting for 23.6% of the population and having a metabolic capacity 36.4% of that of the faster metabolizers. Apparent EFV clearance after oral administration in fast metabolizers was 12.9 L/h/70 kg whilst off tuberculosis treatment and 9.1 L/h/70 kg when on tuberculosis treatment. In slow metabolizers, the clearance estimates were 3.3 and 4.7 L/h/70 kg in the presence and absence of TB treatment, respectively. Overall there was a 29.5% reduction in EFV clearance during tuberculosis treatment.

Conclusion

Unexpectedly, concomitant rifampicin-containing tuberculosis treatment reduced apparent EFV clearance with a corresponding increase in EFV exposure. While the reasons for this interaction require further investigation, cytochrome P450 2B6 polymorphisms in the population studied may provide some explanation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. World Health Organization (2008) Global tuberculosis control: surveillance planning financing. WHO, Geneva

  2. Dean GL, Edwards SG, Ives NJ, Matthews G, Fox EF, Navaratne L, Fisher M, Taylor GP, Miller R, Taylor CB, de Ruiter A, Pozniak AL (2002) Treatment of tuberculosis in HIV-infected persons in the era of highly active antiretroviral therapy. AIDS 16(1):75–83

    Article  PubMed  CAS  Google Scholar 

  3. Gengiah TN, Gray AL, Naidoo K, Karim QA (2011) Initiating antiretrovirals during tuberculosis treatment: a drug safety review. Expert Opin Drug Saf 10:559–574. doi:10.1517/14740338.2011.546783

    Google Scholar 

  4. Finch CK, Chrisman CR, Baciewicz AM, Self TH (2002) Rifampin and rifabutin drug interactions: an update. Arch Intern Med 162(9):985–992

    Article  PubMed  CAS  Google Scholar 

  5. Desta Z, Soukhova NV, Flockhart DA (2001) Inhibition of cytochrome P450 (CYP450) isoforms by isoniazid: potent inhibition of CYP2C19 and CYP3A. Antimicrob Agents Chemother 45(2):382–392. doi:10.1128/AAC.45.2.382-392.2001

    Article  PubMed  CAS  Google Scholar 

  6. Mouly S, Lown KS, Kornhauser D, Joseph JL, Fiske WD, Benedek IH, Watkins PB (2002) Hepatic but not intestinal CYP3A4 displays dose-dependent induction by efavirenz in humans. Clin Pharmacol Ther 72(1):1–9. doi:10.1067/mcp.2002.124519

    Article  PubMed  CAS  Google Scholar 

  7. Ogburn ET, Jones DR, Masters AR, Xu C, Guo Y, Desta Z (2010) Efavirenz primary and secondary metabolism in vitro and in vivo: identification of novel metabolic pathways and cytochrome P450 2A6 as the principal catalyst of efavirenz 7-hydroxylation. Drug Metab Dispos 38(7):1218–1229. doi:10.1124/dmd.109.031393

    Article  PubMed  CAS  Google Scholar 

  8. Smith PF, DiCenzo R, Morse GD (2001) Clinical pharmacokinetics of non-nucleoside reverse transcriptase inhibitors. Clin Pharmacokinet 40(12):893–905

    Article  PubMed  CAS  Google Scholar 

  9. Marzolini C, Telenti A, Decosterd LA, Greub G, Biollaz J, Buclin T (2001) Efavirenz plasma levels can predict treatment failure and central nervous system side effects in HIV-1-infected patients. AIDS 15(1):71–75

    Article  PubMed  CAS  Google Scholar 

  10. Lopez-Cortes LF, Ruiz-Valderas R, Viciana P, Alarcon-Gonzalez A, Gomez-Mateos J, Leon-Jimenez E, Sarasanacenta M, Lopez-Pua Y, Pachon J (2002) Pharmacokinetic interactions between efavirenz and rifampicin in HIV-infected patients with tuberculosis. Clin Pharmacokinet 41(9):681–690

    Article  PubMed  CAS  Google Scholar 

  11. Matteelli A, Regazzi M, Villani P, De Iaco G, Cusato M, Carvalho AC, Caligaris S, Tomasoni L, Manfrin M, Capone S, Carosi G (2007) Multiple-dose pharmacokinetics of efavirenz with and without the use of rifampicin in HIV-positive patients. Curr HIV Res 5(3):349–353

    Article  PubMed  CAS  Google Scholar 

  12. Brennan-Benson P, Lyus R, Harrison T, Pakianathan M, Macallan D (2005) Pharmacokinetic interactions between efavirenz and rifampicin in the treatment of HIV and tuberculosis: one size does not fit all. AIDS 19(14):1541–1543

    Article  PubMed  CAS  Google Scholar 

  13. Friedland G, Khoo S, Jack C, Lalloo U (2006) Administration of efavirenz (600 mg/day) with rifampicin results in highly variable levels but excellent clinical outcomes in patients treated for tuberculosis and HIV. J Antimicrob Chemother 58(6):1299–1302. doi:10.1093/jac/dkl399

    Article  PubMed  CAS  Google Scholar 

  14. Chi J, Jayewardene AL, Stone JA, Motoya T, Aweeka FT (2002) Simultaneous determination of five HIV protease inhibitors nelfinavir, indinavir, ritonavir, saquinavir and amprenavir in human plasma by LC/MS/MS. J Pharm Biomed Anal 30(3):675–684

    Article  PubMed  CAS  Google Scholar 

  15. Beal SL SL, Boeckmann A. (1999) NONMEM user’s guide. Division of Pharmacology, University of California, San Francisco

  16. Csajka C, Marzolini C, Fattinger K, Decosterd LA, Fellay J, Telenti A, Biollaz J, Buclin T (2003) Population pharmacokinetics and effects of efavirenz in patients with human immunodeficiency virus infection. Clin Pharmacol Ther 73(1):20–30. doi:10.1067/mcp.2003.22

    Article  PubMed  CAS  Google Scholar 

  17. Holford NH (1996) A size standard for pharmacokinetics. Clin Pharmacokinet 30(5):329–332

    Article  PubMed  CAS  Google Scholar 

  18. Ramachandran G, Hemanth Kumar AK, Rajasekaran S, Kumar P, Ramesh K, Anitha S, Narendran G, Menon P, Gomathi C, Swaminathan S (2009) CYP2B6 G516T polymorphism but not rifampin coadministration influences steady-state pharmacokinetics of efavirenz in human immunodeficiency virus-infected patients in South India. Antimicrob Agents Chemother 53(3):863–868. doi:10.1128/AAC.00899-08

    Article  PubMed  CAS  Google Scholar 

  19. Cabrera SE, Cordero M, Iglesias A, Valverde MP, Dominguez-Gil A, Garcia MJ (2008) Efavirenz–rifampicin interaction: therapeutic drug monitoring to efavirenz dosage optimization in HIV/TBC patients. AIDS 22(18):2549–2551. doi:10.1097/QAD.0b013e3283189c07

    Article  PubMed  Google Scholar 

  20. Lopez-Cortes LF, Ruiz-Valderas R, Ruiz-Morales J, Leon E, de Campos AV, Marin-Niebla A, Marquez-Solero M, Lozano F, Valiente R (2006) Efavirenz trough levels are not associated with virological failure throughout therapy with 800 mg daily and a rifampicin-containing antituberculosis regimen. J Antimicrob Chemother 58(5):1017–1023. doi:10.1093/jac/dkl357

    Article  PubMed  CAS  Google Scholar 

  21. Rekic D, Roshammar D, Mukonzo J, Ashton M (2011) In silico prediction of efavirenz and rifampicin drug-drug interaction considering weight and CYP2B6 phenotype. Br J Clin Pharmacol 71(4):536–543. doi:10.1111/j.1365-2125.2010.03883.x

    Article  PubMed  CAS  Google Scholar 

  22. Ren Y, Nuttall JJ, Eley BS, Meyers TM, Smith PJ, Maartens G, McIlleron HM (2009) Effect of rifampicin on efavirenz pharmacokinetics in HIV-infected children with tuberculosis. J Acquir Immune Defic Syndr 50(5):439–443. doi:10.1097/QAI.0b013e31819c33a3

    Article  PubMed  CAS  Google Scholar 

  23. Cohen K, Grant A, Dandara C, McIlleron H, Pemba L, Fielding K, Charalombous S, Churchyard G, Smith P, Maartens G (2009) Effect of rifampicin-based antitubercular therapy and the cytochrome P450 2B6 516 G > T polymorphism on efavirenz concentrations in adults in South Africa. Antivir Ther 14(5):687–695

    PubMed  CAS  Google Scholar 

  24. Stohr W, Back D, Dunn D, Sabin C, Winston A, Gilson R, Pillay D, Hill T, Ainsworth J, Pozniak A, Leen C, Bansi L, Fisher M, Orkin C, Anderson J, Johnson M, Easterbrook P, Gibbons S, Khoo S (2008) Factors influencing efavirenz and nevirapine plasma concentration: effect of ethnicity, weight and co-medication. Antivir Ther 13(5):675–685

    PubMed  CAS  Google Scholar 

  25. Kwara A, Lartey M, Sagoe KW, Xexemeku F, Kenu E, Oliver-Commey J, Boima V, Sagoe A, Boamah I, Greenblatt DJ, Court MH (2008) Pharmacokinetics of efavirenz when co-administered with rifampin in TB/HIV co-infected patients: pharmacogenetic effect of CYP2B6 variation. J Clin Pharmacol 48(9):1032–1040. doi:10.1177/0091270008321790

    Article  PubMed  CAS  Google Scholar 

  26. Kwara A, Lartey M, Sagoe KW, Court MH (2011) Paradoxically elevated efavirenz concentrations in HIV/tuberculosis-coinfected patients with CYP2B6 516TT genotype on rifampin-containing antituberculous therapy. AIDS 25(3):388–390. doi:10.1097/QAD.0b013e3283427e05

    Article  PubMed  CAS  Google Scholar 

  27. Wyen C, Hendra H, Vogel M, Hoffmann C, Knechten H, Brockmeyer NH, Bogner JR, Rockstroh J, Esser S, Jaeger H, Harrer T, Mauss S, van Lunzen J, Skoetz N, Jetter A, Groneuer C, Fatkenheuer G, Khoo SH, Egan D, Back DJ, Owen A (2008) Impact of CYP2B6 983 T > C polymorphism on non-nucleoside reverse transcriptase inhibitor plasma concentrations in HIV-infected patients. J Antimicrob Chemother 61(4):914–918. doi:10.1093/jac/dkn029

    Article  PubMed  CAS  Google Scholar 

  28. Mehlotra RK, Bockarie MJ, Zimmerman PA (2007) CYP2B6 983 T > C polymorphism is prevalent in West Africa but absent in Papua New Guinea: implications for HIV/AIDS treatment. Br J Clin Pharmacol 64(3):391–395. doi:10.1111/j.1365-2125.2007.02884.x

    Article  PubMed  CAS  Google Scholar 

  29. Nyakutira C, Roshammar D, Chigutsa E, Chonzi P, Ashton M, Nhachi C, Masimirembwa C (2008) High prevalence of the CYP2B6 516 G– > T(*6) variant and effect on the population pharmacokinetics of efavirenz in HIV/AIDS outpatients in Zimbabwe. Eur J Clin Pharmacol 64(4):357–365. doi:10.1007/s00228-007-0412-3

    Article  PubMed  CAS  Google Scholar 

  30. Kwara A, Lartey M, Sagoe KW, Rzek NL, Court MH (2009) CYP2B6 ©.516 G-->T) and CYP2A6 (*9B and/or *17) polymorphisms are independent predictors of efavirenz plasma concentrations in HIV-infected patients. Br J Clin Pharmacol 67(4):427–436. doi:10.1111/j.1365-2125.2009.03368.x

    Article  PubMed  CAS  Google Scholar 

  31. Haas DW, Ribaudo HJ, Kim RB, Tierney C, Wilkinson GR, Gulick RM, Clifford DB, Hulgan T, Marzolini C, Acosta EP (2004) Pharmacogenetics of efavirenz and central nervous system side effects: an Adult AIDS Clinical Trials Group study. AIDS 18(18):2391–2400

    PubMed  CAS  Google Scholar 

  32. Kappelhoff BS, Huitema AD, Yalvac Z, Prins JM, Mulder JW, Meenhorst PL, Beijnen JH (2005) Population pharmacokinetics of efavirenz in an unselected cohort of HIV-1-infected individuals. Clin Pharmacokinet 44(8):849–861

    Article  PubMed  CAS  Google Scholar 

  33. Barrett JS, Joshi AS, Chai M, Ludden TM, Fiske WD, Pieniaszek HJ Jr (2002) Population pharmacokinetic meta-analysis with efavirenz. Int J Clin Pharmacol Ther 40(11):507–519

    PubMed  CAS  Google Scholar 

  34. Pfister M, Labbe L, Hammer SM, Mellors J, Bennett KK, Rosenkranz S, Sheiner LB (2003) Population pharmacokinetics and pharmacodynamics of efavirenz, nelfinavir, and indinavir: Adult AIDS Clinical Trial Group Study 398. Antimicrob Agents Chemother 47(1):130–137

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the contribution of START study staff and the staff of the Prince Cyril Zulu Communicable Disease Centre, particularly Ms. Chandraprabha Singh, Dr. Surie Chinnapa, and Sister Jeanne Liebertrau. CAPRISA is supported by the National Institute of Allergy and infectious Disease (NIAID), National Institutes of Health (NIH) (grant no. AI51794). The START study was supported by grant no. U19 AI051794-0453. The antiretroviral drugs provided were funded by the Global Fund to fight AIDS, Tuberculosis and Malaria. Efavirenz assays were funded by a Hasso Platner Foundation scholarship, awarded to TG. TG was also supported by the Columbia University–Southern African Fogarty AIDS International Training and Research Programme (grant no. D43TW00231). Efavirenz assays were performed at the Division of Clinical Pharmacology, University of Cape Town, South Africa. The assistance and advice of Prof. Peter Smith, Dr. Helen McIlleron, and Mr. Emmanuel Chigutsa are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanuja N. Gengiah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gengiah, T.N., Holford, N.H.G., Botha, J.H. et al. The influence of tuberculosis treatment on efavirenz clearance in patients co-infected with HIV and tuberculosis. Eur J Clin Pharmacol 68, 689–695 (2012). https://doi.org/10.1007/s00228-011-1166-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-011-1166-5

Keywords

Navigation