Skip to main content

Understanding Large-Strain Softening of Aluminum in Shear at Elevated Temperatures

  • Conference paper
  • First Online:
Light Metals 2018 (TMS 2018)

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Included in the following conference series:

  • 180 Accesses

Abstract

Aluminum in pure shear to large strains at elevated temperature shows pronounced softening which has been attributed to a variety of phenomena. The most widely accepted early explanations involve the development of a texture leading to a decrease in the average Taylor factor. That is, there is a decrease in Schmid factors in the deformed grains. Very recent work suggests that the texture leads to softening through an increase in the dislocation climb stress. This appears to be particularly reasonable as dislocation climb is widely regarded the rate-controlling mechanism for high temperature plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.E. Kassner, N.Q. Nguyen, G.A. Henshall, H.J. McQueen (1991) The effects of temperature and strain rate on extended ductility of aluminum. Mater. Sci. and Eng. A132: 97–105.

    Article  Google Scholar 

  2. M.E. Kassner, M.Z. Wang, M.-T. Perez-Prado, S. Alhajeri (2002) Large strain softening of aluminum in shear at elevated temperature. Metall. Mater. Trans. 33A: 3145–3154.

    Article  Google Scholar 

  3. M.E. Kassner, C.S. Campbell, R. Ermagan (2017) Large strain softening in aluminum in pure shear at elevated-temperatures: Influence of dislocation climb. Metall. and Mater. Trans. 48: 3971–3974.

    Google Scholar 

  4. S.P. Belyayev, V.A. Likhachev, M.M. Myshlyaev, O.N. Senkov (1981) Dynamic recrystallization of aluminum, Phys. Met. Metall. 52: 143–152.

    Google Scholar 

  5. V.A. Likhachev, M.M. Myshlyaev, O. Senkov, S.P. Belyayev, (1981) Creep of aluminum in torsion under superplasticity conditions, Phys. Met. Metall. 52: 156–164.

    Google Scholar 

  6. M.M. Myshlyaev, O.N. Senkov, V.A. Likhachev, H.J. McQueen, J.-P. Bailon, J.I. Dickson, J.J. Jonas, M.G. Akben (1985) Regularities of Mechanical Behavior and Evolution of Structure of Aluminum and its Alloys Under Superplasticity. Strength of Metals and Alloys. eds, Pergamon, Oxford, p 841–846.

    Google Scholar 

  7. V.A. Likachev, M.M. Myshlyaev, O.N. Senkov (1981) Laws of superplastic behavior of Al in torsion, Inst. of Solid State Physics. Chernogolovka, Russia.

    Google Scholar 

  8. C. Perdrix, M.Y. Perrin, F. Montheillet, (1981) Comportement mecanique et evolution structural de l’aluminium au cours d’une deformation a chaud de grande amplitude, Mem. Et. Sci. Rev. Metal. 78: 309–320.

    Google Scholar 

  9. M.R. Barnett, F. Montheillet (2002) The generation of new high-angle boundaries in aluminum during hot torsion, Acta Mater. 50: 2285–2296.

    Article  CAS  Google Scholar 

  10. S. Gourdet, F. Montheillet (2000) An experimental study of the recrystallization mechanism during hot deformation of aluminum. Mater. Sci and Eng. A283: 274–288.

    Article  Google Scholar 

  11. H.J. McQueen, E. Evangelista, M.E. Kassner (1991) The classification and determination of restoration mechanisms in the hot working of Al alloys, Z. Metall. 82: 336–345.

    Google Scholar 

  12. H.J. McQueen, W. Blum (2000) Dynamic recovery: sufficient mechanism in the hot deformation of Al (<99.99). Mater. Sci. and Eng. A290: 95–107.

    Article  Google Scholar 

  13. H.J. Mc Queen, J. K. Solberg, N. Ryum, E. Nes (1989) Evolution of flow stress in aluminum during ultra-high straining at elevated temperatures. Phil. Mag. 60A: 473–485.

    Google Scholar 

  14. H.J. McQueen (1999) Textures in dynamic recovery and recrystallization. ICOTOM 12. J.A. Spunar (ed) Ottawa: NRC Research Pub, p 836–841.

    Google Scholar 

  15. H.J. McQueen, W. Blum, S. Straub, M.E. Kassner (1993) Dynamic grain growth a restoration mechanism in 99.999 Al. Scripta Metall. et Mater. 28: 1299–1304.

    Article  CAS  Google Scholar 

  16. T. Pettersen, E. Nes, (2002) On the origin of strain softening during deformation of aluminum in torsion to large strains. Mat. Sci. Forum. 331–337: 601-606.

    Google Scholar 

  17. M.E. Kassner (1989) Large-strain deformation of aluminum single crystals at elevated temperature as a test of the geometric-dynamic-recrystallization concept. Metall. Trans. 20A: 2182–2185.

    Article  Google Scholar 

  18. M.E. Kassner and M.E. McMahon (1987) The dislocation microstructure of aluminum. Metall. Trans. 18A: 835–846.

    Article  Google Scholar 

  19. M.E. Kassner, H.J. McQueen, M.M. Myshlyaev (1989) Large-strain torsional deformation in aluminum at elevated temperatures. Mater. Sci. and Eng. 108A: 45–61.

    Article  Google Scholar 

  20. C.G. Schmidt, C.M. Young, B. Walser, R.H. Klundt, O.D. Sherby (1982) The influence of substructure on the elevated and room temperature strength of a 26 Cr-1 Mo ferritic stainless steel. Metall. Trans. 13a: 447–456.

    Article  Google Scholar 

  21. R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D. Juul Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, A.D. Rollett, (1997) Current issues in recrystallization: a review. Mater. Sci. and Eng. A238: 219–274.

    Google Scholar 

  22. M.E. Kassner (2015) Fundamentals of Creep in Metals and Alloys (3rd ed). Butterworth-Heinemann, Elsevier, Massachusetts.

    Chapter  Google Scholar 

  23. M.E. Kassner (2004) Taylor hardening in five-power-law creep of metals and Class M alloys. Acta Mater. 52: 1–9.

    Article  CAS  Google Scholar 

  24. U.F. Kocks, C.N. Tome, H.-R. Wenk (1998) Texture and Anisotropy. Cambridge University Press, Cambridge, United Kingdom.

    Google Scholar 

  25. S.C. Shrivastava, J.J. Jonas, G.R. Canova (1982) Equivalent strain in large deformation torsion testing: Theoretical and practical considerations. J. Mech. Phys. Solids. 30: 75–90.

    Article  CAS  Google Scholar 

  26. J.P. Porrier (1978) Is power-law creep diffusion controlled? Acta Metall. 26: 629.

    Google Scholar 

  27. G.Y. Chin, W.L. Mammel (1967) Computer solutions of the Taylor analysis for axisymmetric flow. Trans. AIME. 239: 1400–1405.

    Google Scholar 

Download references

Acknowledgements

The authors are grateful for support from the NSF under grant DMR-1401194.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael E. Kassner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kassner, M.E., Ermagan, R. (2018). Understanding Large-Strain Softening of Aluminum in Shear at Elevated Temperatures. In: Martin, O. (eds) Light Metals 2018. TMS 2018. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-319-72284-9_46

Download citation

Publish with us

Policies and ethics