Skip to main content
Log in

The dislocation microstructure of aluminum Deformed to Very Large Steady-State Creep Strains

  • Mechanical Behavior
  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Aluminum of 99.999 pct purity was deformed in torsion at 644 K and an equivalent uniaxial strain rate of 5.04 × 10−4 s−1 to various steady-state strains up to 16.33. The subgrain size and density of dislocations not associated with subgrain boundaries remained fixed throughout the wide steady-state strain range. The subgrain boundaries, however, underwent two important changes. At the onset of steady state (ε ~0.2) all of the subgrain boundaries had relatively small misorientation angles averaging about 0.5 deg. With increased strain, however, an increasing fraction of the subgrain facets were high-angle boundaries. At strains greater than about four nearly a third of the boundaries were high-angle. In specimens with both types of boundaries, the high-angle boundaries have misorientation angles (θ) greater than 10 deg, while θ for low-angle boundaries is nearly always less than 3 deg. Only rarely do subgrain boundaries have misorientation angles between 3 deg and 10 deg. In aluminum, the increased high-angle boundary area at larger strains originates from the extension of the initial boundaries through the mechanism, recently introduced by others, of “geometric dynamic recrystallization” in aluminum. The average misorientation across low-angle boundaries initially increases during steady state but eventually reaches a maximum value of about 1.2 deg at ε ≃ 1.2. Since the flow stress stays nearly constant, the dramatic changes in the character of the subgrain boundaries that are observed during steady state suggest that the details of the boundaries arenot an important consideration in the rate-controlling process for creep.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Bendersky, A. Rosen, and A. K. Mukherjee:Int. Metals Rev., 1985, vol. 30, pp. 1–15.

    CAS  Google Scholar 

  2. W. Blum:Phys. Stat. Sol., 1971, vol. 45, pp. 561–71.

    Article  CAS  Google Scholar 

  3. J. Weertman:Proc. 2nd International Conf. on Creep and Fracture of Engineering Materials and Structures, Pineridge, Swansea, U.K., 1984, pp. 1–13.

    Google Scholar 

  4. M. A. Morris and J. L. Martin:Acta Metall., 1984, vol. 32, pp. 1609–23.

    Article  CAS  Google Scholar 

  5. M. A. Morris and J.L. Martin:Acta Metall., 1984, vol. 32, pp. 549–61.

    Article  CAS  Google Scholar 

  6. K. Maruyama, S. Karashima, and H. Oikawa:Res. Mechanica, 1983, vol. 7, pp. 21–36.

    Google Scholar 

  7. W. D. Nix and B. Ilschner: inStrength of Metals and Alloys, P. Haasen, V. Gerold, and G. Kostorz, eds., Pergamon Press, Oxford, 1979, pp. 1503–30.

    Chapter  Google Scholar 

  8. A. S. Argon and S. Takeuchi:Acta Metall., 1981, vol. 29, pp. 1877–84.

    Article  CAS  Google Scholar 

  9. Y. Ishida:Trans. Jap. Inst. Metals, 1986, vol. 9, pp. 120–24.

    Article  Google Scholar 

  10. M. E. Kassner, J. W. Elmer, and C. J. Echer:Metall. Trans. A, 1986, vol. 17A, pp. 2093–97.

    Article  Google Scholar 

  11. A. Orlova, M. Pahutova, and J. Cadek:Phil. Mag., 1972, vol. 25, pp. 865–77.

    Article  CAS  Google Scholar 

  12. S. Karashima, H. Oikawa, and T. Hasegawa:J. Japan Institute of Metals, 1977, vol. 31, pp. 782–87.

    Article  Google Scholar 

  13. A. Orlova, Z. Tobolova, and J. Cadek:Phil. Mag., 1972, vol. 26, pp. 1263–74.

    Article  CAS  Google Scholar 

  14. S. Karashima, T. Iikubo, T. Watanabe, and H. Oikawa:Trans. Japan Inst. Metals, 1971, vol. 12, pp. 369–74.

    Article  CAS  Google Scholar 

  15. S. H. Suh, J. B. Cohen, and J. Weertman:Metall. Trans. A, 1983, vol. 14A, pp. 117–26.

    Article  Google Scholar 

  16. F. Petry and F. Pschenitzka:Mater. Sci. and Eng., 1984, vol. 68, pp. L7-L11.

    Article  CAS  Google Scholar 

  17. C. G. Schmidt, C. M. Young, B. Walser, R.H. Klundt, and O.D. Sherby:Metall. Trans. A, 1982, vol. 13A, pp. 447–56.

    Article  CAS  Google Scholar 

  18. Ch. Perdrix, M. Y. Perrin, and F. Montheillet:Mem. Et. Sci. Rev. Metal., 1981, vol. 78, pp. 309–20.

    Article  CAS  Google Scholar 

  19. H. J. McQueen, O. Knustad, N. Ryum, and J. K. Solberg:Scripta Metall., 1985, vol. 19, pp. 73–78.

    Article  CAS  Google Scholar 

  20. H. Luthy, A.K. Miller, and O.D. Sherby:Acta Metall., 1980, vol. 28, pp. 169–78.

    Article  CAS  Google Scholar 

  21. J. L. Robbins: Engineer Thesis, Stanford Univ., Stanford, CA, 1964.

    Google Scholar 

  22. M. E. Kassner and C. J. Echer:Metallog., 1986, vol. 19, pp. 127–32.

    Article  Google Scholar 

  23. R. K. Ham and N. G. Sharp:Phil. Mag., 1961, vol. 6, pp. 1193–94.

    Article  Google Scholar 

  24. P. Hirsch, A. Howie, R.B. Nicholson, D.W. Pashley, and M.J. Wehlan:Electron Microscopy of Thin Crystals, 2nd ed., Krieger, New York, NY, 1977.

    Google Scholar 

  25. D. Caillard and J.L. Martin:Acta Metall., 1982, vol. 30, pp. 437–45.

    Article  CAS  Google Scholar 

  26. A. R. Thölen:Phys. Stat. Sol., 1970, vol. 2, pp. 537–50.

    Article  Google Scholar 

  27. T. J. Ginter and F. A. Mohamed:J. Mater. Sci., 1982, vol. 17, pp. 2007–12.

    Article  Google Scholar 

  28. D. Caillard and J.L. Martin:Acta Metall., 1982, vol. 30, pp. 791–98.

    Article  CAS  Google Scholar 

  29. W. Blum, A. Absenger, and R. Feilhauer: inStrength of Metals and Alloys, P. Haasen, V. Gerold, and G. Kostorz, eds., Pergamon Press, Oxford, 1979, pp. 271–76.

    Google Scholar 

  30. S. Daily and S.N. Alquist:Scripta Metall., 1972, vol. 6, pp. 95–100.

    Article  CAS  Google Scholar 

  31. S. Takeuchi and A. S. Argon:J. of Mater. Sci., 1976, vol. 11, pp. 1542–65.

    Article  CAS  Google Scholar 

  32. B. Bay:Scripta Metall., 1970, vol. 4, pp. 489–91.

    Article  CAS  Google Scholar 

  33. H. Hu:Trans. AIME, 1962, vol. 224, pp. 75–84.

    CAS  Google Scholar 

  34. F. J. Humphreys:Strength of Metals and Alloys, R. C. Gifkins, ed., Pergamon Press, Oxford, 1982, pp. 625–30.

    Chapter  Google Scholar 

  35. A. K. Mukherjee: inTreatise on Materials Science and Technology, R. J. Arsenault, ed., Academic Press, New York, NY, 1975, vol. 6, pp. 163–224.

    Google Scholar 

  36. L. Bendersky, A. Rosen, and A.K. Mukherjee:Strength of Metals and Alloys, R. C. Gifkins, ed., Pergamon Press, Oxford, 1982, pp. 595–600.

    Chapter  Google Scholar 

  37. S. Kikuchi and A. Yamaguchi:Strength of Metals and Alloys, H.J. McQueen, J.-P. Bailon, J. I. Dickson, J. J. Jonas, and M. G. Akben, eds., Pergamon Press, Oxford, 1985, pp. 899–904.

    Google Scholar 

  38. T. Hasegawa, S. Karashima, and Y. Ikeuchi:Acta Metall., 1973, vol. 21, pp. 887–95.

    Article  CAS  Google Scholar 

  39. J. T. Al-Haidary, N. J. Petch, and E. R. de los Rios:Phil. Mag., 1983, vol. 47A, pp. 869–90.

    Article  Google Scholar 

  40. M. E. Kassner, A.K. Miller, and O.D. Sherby:Metall. Trans. A, 1982, vol. 13A, pp. 1977–86.

    Article  Google Scholar 

  41. M. E. Kassner, A. A. Ziaai-Moayyed, and A.K. Miller:Metall. Trans. A, 1985, vol. 16A, pp. 1069–76.

    Article  CAS  Google Scholar 

  42. O. Ajaja and A. J. Ardell:Scripta Metall., 1977, vol. 11, pp. 1089–93.

    Article  CAS  Google Scholar 

  43. O. Ajaja and A.J. Ardell:Phil. Mag., 1979, vol. 39, pp. 65–73.

    Article  CAS  Google Scholar 

  44. T. G. Langdon, R. B. Vastava, and P. Yavari:Strength of Metals and Alloys, P. Haasen, V. Gerold, and G. Kostorz, eds., Pergamon Press, Oxford, 1979, pp. 271–76.

    Chapter  Google Scholar 

  45. E. Weckert and W. Blum:Strength of Metals and Alloys, H. J. McQueen, J.-P. Bailon, J. I. Dickson, J. J. Jonas, and M. G. Akben, eds., Pergamon Press, Oxford, 1985, pp. 773–78.

    Chapter  Google Scholar 

  46. D. McLean:Trans. AIME, 1968, vol. 242, pp. 1193–1203.

    CAS  Google Scholar 

  47. P. Öström and R. Lagneborg:Res. Mechanica, 1980, vol. 1, pp. 59–79.

    Google Scholar 

  48. A. J. Ardell and M.A. Przystupa:Mech. Mat., 1984, vol. 3, pp. 319–32.

    Article  Google Scholar 

  49. J. D. Parker and B. Wilshire:Phil. Mag., 1980, vol. 41A, pp. 665–80.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kassner, M.E., McMahon, M.E. The dislocation microstructure of aluminum Deformed to Very Large Steady-State Creep Strains. Metall Trans A 18, 835–846 (1987). https://doi.org/10.1007/BF02646925

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02646925

Keywords

Navigation