Skip to main content
  • 1015 Accesses

Abstract

Varicocele is defined as a dilatation of the pampiniform plexus veins. It is a common condition affecting both men with normal spermatogenesis and men with abnormal semen parameters. Recent pathophysiology studies have indicated that varicocele exacerbates the generation of reactive oxygen species (ROS). Excessive ROS results in oxidative stress (OS) that may affect the sperm chromatin integrity and consequently fertility. Damage to the sperm chromatin may result in sperm DNA fragmentation (SDF), a condition that has been associated with varicocele-related infertility. Although sperm with fragmented DNA are able to fertilize an oocyte with apparently similar efficiency as sperm without DNA fragmentation, DNA-damaged sperm may negatively impact the embryo development. In fact, SDF has been associated not only with infertility but also with poor outcomes in assisted reproduction treatments, including miscarriage. On the contrary, varicocele repair may alleviate OS and reduce SDF, thus leading to improved fertility both natural and assisted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Esteves SC, Miyaoka R, Agarwal A. An update on the clinical assessment of the infertile male. [corrected]. Clinics (Sao Paulo). 2011;66:691–700.

    Article  Google Scholar 

  2. Shiraishi K, Matsuyama H, Takihara H. Pathophysiology of varicocele in male infertility in the era of assisted reproductive technology. Int J Urol. 2012;19:538–50.

    Article  CAS  PubMed  Google Scholar 

  3. Gorelick JI, Goldstein M. Loss of fertility in men with varicocele. Fertil Steril. 1993;59:613–6.

    Article  CAS  PubMed  Google Scholar 

  4. Alsaikhan B, Alrabeeah K, Delouya G, Zini A. Epidemiology of varicocele. Asian J Androl. 2016;18:179–81.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Agarwal A, Hamada A, Esteves SC. Insight into oxidative stress in varicocele-associated male infertility: part 1. Nat Rev Urol. 2012;9:678–90.

    Article  PubMed  Google Scholar 

  6. Practice Committee of the American Society for Reproductive Medicine, Society for Male Reproduction and Urology. Report on varicocele and infertility: a committee opinion. Fertil Steril. 2014;102:1556–60.

    Article  Google Scholar 

  7. Miyaoka R, Esteves SC. A critical appraisal on the role of varicocele in male infertility. Adv Urol. 2012;2012:597495.

    Article  PubMed  Google Scholar 

  8. Agarwal A, Sharma RK, Desai NR, Prabakaran S, Tavares A, Sabanegh E. Role of oxidative stress in pathogenesis of varicocele and infertility. Urology. 2009;73:461–9.

    Article  PubMed  Google Scholar 

  9. Zini A, Dohle G. Are varicoceles associated with increased deoxyribonucleic acid fragmentation? Fertil Steril. 2011;96:1283–7.

    Article  CAS  PubMed  Google Scholar 

  10. Cho CL, Esteves SC, Agarwal A. Novel insights into the pathophysiology of varicocele and its association with reactive oxygen species and sperm DNA fragmentation. Asian J Androl. 2016;18:186–93.

    Article  CAS  PubMed  Google Scholar 

  11. Esteves SC. Novel concepts in male factor infertility: clinical and laboratory perspectives. J Assist Reprod Genet. 2016;33:1319–35.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Griveau JF, Le Lannou D. Reactive oxygen species and human spermatozoa: physiology and pathology. Int J Androl. 1997;20:61–9.

    Article  CAS  PubMed  Google Scholar 

  13. Ni K, Steger K, Yang H, Wang H, Hu K, Zhang T, Chen B. A comprehensive investigation of sperm DNA damage and oxidative stress injury in infertile patients with subclinical, normozoospermic and astheno/oligozoospermic clinical varicocele. Andrology. 2016;4:816–24.

    Article  CAS  PubMed  Google Scholar 

  14. Tremellen K. Oxidative stress and male infertility—a clinical perspective. Hum Reprod Update. 2008;14:243–58.

    Article  CAS  PubMed  Google Scholar 

  15. Blumer CG, Restelli AE, Giudice PT, Soler TB, Fraietta R, Nichi M, Bertolla RP, Cedenho AP. Effect of varicocele on sperm function and semen oxidative stress. BJU Int. 2012;109:259–65.

    Article  CAS  PubMed  Google Scholar 

  16. Hamada A, Esteves SC, Agarwal A. Insight into oxidative stress in varicocele-associated male infertility: part 2. Nat Rev Urol. 2012;10:26–37.

    Article  PubMed  Google Scholar 

  17. Sakkas D, Alvarez JG. Sperm DNA fragmentation: mechanisms of origin, impact on reproductive outcome, and analysis. Fertil Steril. 2010;93:1027–36.

    Article  CAS  PubMed  Google Scholar 

  18. Aitken RJ, Krausz C. Oxidative stress, DNA damage and the Y chromosome. Reproduction. 2001;122:497–506.

    Article  CAS  PubMed  Google Scholar 

  19. Seli E, Gardner DK, Schoolcraft WB, Moffatt O, Sakkas D. Extent of nuclear DNA damage in ejaculated spermatozoa impacts on blastocyst development after in vitro fertilization. Fertil Steril. 2004;82:378–83.

    Article  PubMed  Google Scholar 

  20. Avendaño C, Franchi A, Duran H, Oehninger S. DNA fragmentation of normal spermatozoa negatively impacts embryo quality and intracytoplasmic sperm injection outcome. Fertil Steril. 2010;94:549–57.

    Article  PubMed  Google Scholar 

  21. Robinson L, Gallos ID, Conner SJ, Rajkhowa M, Miller D, Lewis S, Kirkman O, Brown J, Coomarasamy A. The effect of sperm DNA fragmentation on miscarriage rates: a systematic review and meta-analysis. Hum Reprod. 2012;27:2908–17.

    Article  CAS  PubMed  Google Scholar 

  22. Zini A, Boman JM, Belzile E, Ciampi A. Sperm DNA damage is associated with an increased risk of pregnancy loss after IVF and ICSI: systematic review and meta-analysis. Hum Reprod. 2008;23:2663–8.

    Article  CAS  PubMed  Google Scholar 

  23. Practice Committee of the American Society for Reproductive Medicine. The clinical utility of sperm DNA integrity testing: a guideline. Fertil Steril. 2013;99:673–7.

    Article  Google Scholar 

  24. Esteves SC. Clinical relevance of routine semen analysis and controversies surrounding the 2010 World Health Organization criteria for semen examination. Int Braz J Urol. 2014;40:443–53.

    Article  PubMed  Google Scholar 

  25. Esteves SC, Sharma RK, Gosálvez J, Agarwal A. A translational medicine appraisal of specialized andrology testing in unexplained male infertility. Int Urol Nephrol. 2014;46:1037–52.

    Article  PubMed  Google Scholar 

  26. Majzoub A, Esteves SC, Gonsálvez J, Agarwal A. Specialized sperm function tests in varicocele and the future of andrology laboratory. Asian J Androl. 2016;18:205–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zini A, Blumenfeld A, Libman J, et al. Beneficial effect of microsurgical subinguinal varicocelectomy on human sperm DNA integrity. Hum Reprod. 2005;20:1018–21.

    Article  CAS  PubMed  Google Scholar 

  28. Marmar JL, Agarwal A, Prabaskan S, Agarwal R, Short RA, et al. Reassessing the value of varicocelectomy as a treatment for male subfertility with a new meta-analysis. Fertil Steril. 2007;88:639–48.

    Article  PubMed  Google Scholar 

  29. Kroese AC, de Lange NM, Collins J, Evers JL. Surgery or embolization for varicoceles in subfertile men. Cochrane Database Syst Rev. 2012;10:CD000479.

    PubMed  Google Scholar 

  30. Tiseo BC, Esteves SC, Cocuzza MS. Summary evidence on the effects of varicocele treatment to improve natural fertility in subfertile men. Asian J Androl. 2016;18:239–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Esteves SC, Roque M, Agarwal A. Outcome of assisted reproductive technology in men with treated and untreated varicocele: systematic review and meta-analysis. Asian J Androl. 2016;18:254–8.

    Article  PubMed  Google Scholar 

  32. Pasqualotto FF, Sundaram A, Sharma RK, Borges E Jr, Pasqualotto EB, Agarwal A. Semen quality and oxidative stress scores in fertile and infertile patients with varicocele. Fertil Steril. 2008;89:602–7.

    Article  PubMed  Google Scholar 

  33. Mostafa T, Anis T, Imam H, El-Nashar AR, Osman IA. Seminal reactive oxygen species—antioxidant relationship in fertile males with and without varicocele. Andrologia. 2009;41:125–9.

    Article  CAS  PubMed  Google Scholar 

  34. Zylbersztejn DS, Andreoni C, Del Giudice PT, Spaine DM, Borsari L, Souza GH, Bertolla RP, Fraietta R. Proteomic analysis of seminal plasma in adolescents with and without varicocele. Fertil Steril. 2013;99:92–8.

    Article  CAS  PubMed  Google Scholar 

  35. Saleh RA, Agarwal A, Sharma RK, Said TM, Sikka SC, Thomas AJ Jr. Evaluation of nuclear DNA damage in spermatozoa from infertile men with varicocele. Fertil Steril. 2003;80:1431–6.

    Article  PubMed  Google Scholar 

  36. Mehraban D, Ansari M, Keyhan H, Sedighi Gilani M, Naderi G, Esfehani F. Comparison of nitric oxide concentration in seminal fluid between infertile patients with and without varicocele and normal fertile men. Urol J. 2005;2:106–10.

    PubMed  Google Scholar 

  37. Sakamoto Y, Ishikawa T, Kondo Y, Yamaguchi K, Fujisawa M. The assessment of oxidative stress in infertile patients with and without varicocele. BJU Int. 2008;101:1547–52.

    Article  CAS  PubMed  Google Scholar 

  38. Köksal IT, Tefekli A, Usta M, Erol H, Abbasoglu S, Kadioglu A. The role of reactive oxygen species in testicular dysfunction associated with varicocele. BJU Int. 2000;86:549–52.

    Article  PubMed  Google Scholar 

  39. Allamaneni SS, Naughton CK, Sharma RK, Thomas AJ Jr, Agarwal A. Increased seminal reactive oxygen species levels in patients with varicoceles correlate with varicocele grade but not with testicular size. Fertil Steril. 2004;82:1684–6.

    Article  PubMed  Google Scholar 

  40. Ishikawa T, Fujioka H, Ishimura T, Takenaka A, Fujisawa M. Increased testicular 8-hydroxy-2′-deoxyguanosine in patients with varicocele. BJU Int. 2007;100:863–6.

    Article  CAS  PubMed  Google Scholar 

  41. Abd-Elmoaty MA, Saleh R, Sharma R, Agarwal A. Increased levels of oxidants and reduced antioxidants in semen of infertile men with varicocele. Fertil Steril. 2010;94:1531–4.

    Article  CAS  PubMed  Google Scholar 

  42. Mostafa T, Anis TH, El-Nashar A, Imam H, Othman IA. Varicocelectomy reduces reactive oxygen species levels and increases antioxidant activity of seminal plasma from infertile men with varicocele. Int J Androl. 2001;24:261–5.

    Article  CAS  PubMed  Google Scholar 

  43. Pasqualotto FF, Sharma RK, Nelson DR, Thomas AJ Jr, Agarwal A. Relationship between oxidative stress, semen characteristics, and clinical diagnosis in men undergoing infertility investigation. Fertil Steril. 2000;73:459–64.

    Article  CAS  PubMed  Google Scholar 

  44. Sharma RK, Pasqualotto FF, Nelson DR, Thomas AJ Jr, Agarwal A. The reactive oxygen species-total antioxidant capacity score is a new measure of oxidative stress to predict male infertility. Hum Reprod. 1999;14:2801–7.

    Article  CAS  PubMed  Google Scholar 

  45. Hendin BN, Kolettis PN, Sharma RK, Thomas AJ Jr, Agarwal A. Varicocele is associated with elevated spermatozoal reactive oxygen species production and diminished seminal plasma antioxidant capacity. J Urol. 1999;161:1831–4.

    Article  CAS  PubMed  Google Scholar 

  46. Esteves SC, Gosálvez J, López-Fernández C, Núñez-Calonge R, Caballero P, Agarwal A, Fernández J. Diagnostic accuracy of sperm DNA degradation index (DDSi) as a potential noninvasive biomarker to identify men with varicocele-associated infertility. Int Urol Nephrol. 2015;47:1471–7.

    Article  CAS  PubMed  Google Scholar 

  47. Gat Y, Zukerman Z, Chakraborty J, Gornish M. Varicocele, hypoxia and male infertility. Fluid mechanics analysis of the impaired testicular venous drainage system. Hum Reprod. 2005;20:2614–9.

    Article  PubMed  Google Scholar 

  48. Gat Y, Gornish M, Navon U, Chakraborty J, Bachar GN, Ben-Shlomo I. Right varicocele and hypoxia, crucial factors in male infertility: fluid mechanics analysis in male infertility: fluid mechanics analysis of the impaired testicular drainage system. Reprod BioMed Online. 2006;13:510–5.

    Article  PubMed  Google Scholar 

  49. Ambrosini G, Nath AK, Sierra-Honigmann MR, Flores-Riveros J. Transcriptional activation of the human leptin gene in response to hypoxia. Involvement of hypoxia inducible factor 1. J Biol Chem. 2002;277:34601–9.

    Article  CAS  PubMed  Google Scholar 

  50. Nallella KP, Allamaneni SS, Pasqualotto FF, Sharma RK, Thomas AJ Jr, Agarwal A. Relationship of interleukin-6 with semen characteristics and oxidative stress in patients with varicocele. Urology. 2004;64:1010–3.

    Article  PubMed  Google Scholar 

  51. Sahin Z, Celik-Ozenci C, Akkoyunlu G, Korgun ET, Acar N, Erdogru T, Demir R, Ustunel I. Increased expression of interleukin-1α and interleukin-1β is associated with experimental varicocele. Fertil Steril. 2006;85(Suppl 1):1265–75.

    Article  CAS  PubMed  Google Scholar 

  52. Ito H, Fuse H, Minagawa H, Kawamura K, Murakami M, Shimazaki J. Internal spermatic vein prostaglandins in varicocele patients. Fertil Steril. 1982;37:218–22.

    Article  CAS  PubMed  Google Scholar 

  53. Benoff S, Hurley IR, Barcia M, Mandel FS, Cooper GW, Hershlag A. A potential role for cadmium in the etiology of varicocele-associated infertility. Fertil Steril. 1997;67:336–47.

    Article  CAS  PubMed  Google Scholar 

  54. Benoff SH, Millan C, Hurley IR, Napolitano B, Marmar JL. Bilateral increased apoptosis and bilateral accumulation of cadmium in infertile men with left varicocele. Hum Reprod. 2004;19:616–27.

    Article  CAS  PubMed  Google Scholar 

  55. Jeng SY, Wu SM, Lee JD. Cadmium accumulation and metallothionein overexpression in internal spermatic vein of patients with varicocele. Urology. 2009;73:1231–5.

    Article  PubMed  Google Scholar 

  56. Wang YJ, Zhang RQ, Lin YJ, Zhang RG, Zhang WL. Relationship between varicocele and sperm DNA damage and the effect of varicocele repair: a meta-analysis. Reprod BioMed Online. 2012;25:307–14.

    Article  CAS  PubMed  Google Scholar 

  57. Fernández JL, Muriel L, Goyanes V, Segrelles E, Gosálvez J, Enciso M, LaFromboise M, De Jonge C. Simple determination of human sperm DNA fragmentation with an improved sperm chromatin dispersion (SCD) test. Fertil Steril. 84:833–42.

    Google Scholar 

  58. Enciso M, Muriel L, Fernández JL, Goyanes V, Segrelles E, Marcos M, Montejo JM, Ardoy M, Pacheco A, Gosálvez J. Infertile men with varicocele show a high relative proportion of sperm cells with intense nuclear damage level, evidenced by the sperm chromatin dispersion (SCD) test. J Androl. 2006;27:106–11.

    Article  PubMed  Google Scholar 

  59. Gosálvez J, Rodríguez-Predreira M, Mosquera A, López-Fernández C, Esteves SC, Agarwal A. Characterization of a subpopulation with massive nuclear damage, as recognized with the sperm chromatin dispersion (SCD) test. Andrologia. 2014;46:602–9.

    Article  PubMed  Google Scholar 

  60. Feijó CM, Esteves SC. Diagnostic accuracy of sperm chromatin dispersion test to evaluate sperm deoxyribonucleic acid damage in men with unexplained infertility. Fertil Steril. 2014;101:58–63.

    Article  PubMed  Google Scholar 

  61. Agarwal A, Cho CL, Esteves SC. Should we evaluate and treat sperm DNA fragmentation? Curr Opin Obstet Gynecol. 2016;28:164–71.

    Article  PubMed  Google Scholar 

  62. Esteves SC, Oliveira FV, Bertolla RP. Clinical outcome of intracytoplasmic sperm injection in infertile men with treated and untreated clinical varicocele. J Urol. 2010;184:1442–6.

    Article  PubMed  Google Scholar 

  63. Chen SS, Huang WJ, Chang LS, Wei YH. Attenuation of oxidative stress after varicocelectomy in subfertile patients with varicocele. J Urol. 2008;179:639–42.

    Article  CAS  PubMed  Google Scholar 

  64. Cervellione RM, Cervato G, Zampieri N, Corroppolo M, Camoglio F, Cestaro B, Ottolenghi A. Effect of varicocelectomy on the plasma oxidative stress parameters. J Pediatr Surg. 2006;41:403–6.

    Article  PubMed  Google Scholar 

  65. Hurtado de Catalfo GE, Ranieri-Casilla A, Marra FA, de Alaniz MJ, Marra CA. Oxidative stress biomarkers and hormonal profile in human patients undergoing varicocelectomy. Int J Androl. 2007;30:519–30.

    Article  CAS  PubMed  Google Scholar 

  66. Yesilli C, Mungan G, Seçkiner I, Akduman B, Açikgöz S, Altan K, Mungan A. Effect of varicocelectomy on sperm creatine kinase, HspA2 chaperone protein (creatine kinase-M type), LDH, LDH-X, and lipid peroxidation product levels in infertile men with varicocele. Urology. 2005;66:610–5.

    Article  PubMed  Google Scholar 

  67. Rodriguez Peña M, Alescio L, Russell A, Lourenco da Cunha J, Alzu G, Bardoneschi E. Predictors of improved seminal parameters and fertility after varicocele repair in young adults. Andrologia. 2009;41:277–81.

    Article  PubMed  Google Scholar 

  68. Lacerda JI, Del Giudice PT, da Silva BF, Nichi M, Fariello RM, Fraietta R, Restelli AE, Blumer CG, Bertolla RP, Cedenho AP. Adolescent varicocele: improved sperm function after varicocelectomy. Fertil Steril. 2011;95:994–9.

    Article  PubMed  Google Scholar 

  69. Redmon JB, Carey P, Pryor JL. Varicocele—the most common cause of male factor infertility? Hum Reprod Update. 2002;8:53–8.

    Article  PubMed  Google Scholar 

  70. Kadioglu TC, Aliyev E, Celtik M. Microscopic varicocelectomy significantly decreases the sperm DNA fragmentation index in patients with infertility. Biomed Res Int. 2014;2014:695713.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Ni K, Steger K, Yang H, Wang H, Hu K, Chen B. Sperm protramine mRNA ratio and DNA fragmentation index represent reliable clinical biomarkers for men with varicocele after microsurgical varicocele ligation. J Urol. 2014;192:170–6.

    Article  CAS  PubMed  Google Scholar 

  72. Smit M, Romijn JC, Wildhagen MF, Veldhoven JLM, Webert RFA, Dohle GR. Decreased sperm DNA fragmentation after surgical varicocelectomy is associated with increased pregnancy rate. J Urol. 2013;189(1 Suppl):S146–50.

    Article  PubMed  Google Scholar 

  73. Werthman P, Wixon R, Kasperson K, Evenson DP. Significant decrease in sperm deoxyribonucleic acid fragmentation after varicocelectomy. Fertil Steril. 2008;90:1800–4.

    Article  PubMed  Google Scholar 

  74. Moskovtsev SI, Lecker I, Mullen JB, Jarvi K, Willis J, White J, Lo KC. Cause-specific treatment in patients with high sperm DNA damage resulted in significant DNA improvement. Syst Biol Reprod Med. 2009;55:109–15.

    Article  CAS  PubMed  Google Scholar 

  75. Smit M, Romijn JC, Wildhagen MF, Veldhoven JL, Weber RF, Dohle GR. Decreased sperm DNA fragmentation after surgical varicocelectomy is associated with increased pregnancy rate. J Urol. 2010;183:270–4.

    Article  PubMed  Google Scholar 

  76. Vignera L, Condorelli R, Vicari E, D’Agata R, Calogero AE. Effects of varicocelectomy on sperm DNA fragmentation, mitochondrial function, chromatin condensation, and apoptosis. J Androl. 2012;33:389–96.

    Article  PubMed  Google Scholar 

  77. Li F, Yamaguchi K, Okada K, Matsushita K, Ando M, Chiba K, Yue H, Fujisawa M. Significant improvement of sperm DNA quality after microsurgical repair of varicocele. Syst Biol Reprod Med. 2012;58:274–7.

    Article  PubMed  Google Scholar 

  78. Baker K, McGill J, Sharma R, Agarwal A, Sabanegh E Jr. Pregnancy after varicocelectomy: impact of postoperative motility and DFI. Urology. 2013;81:760–6.

    Article  PubMed  Google Scholar 

  79. García-Peiró A, Ribas-Maynou J, Oliver-Bonet M, Navarro J, Checa MA, Nikolaou A, Amengual MJ, Abad C, Benet J. Multiple determinations of sperm DNA fragmentation show that varicocelectomy is not indicated for infertile patients with subclinical varicocele. Biomed Res Int. 2014;2014:181396.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Agarwal A, Majzoub A, Esteves SC, Ko E, Ramasamy R, Zini A. Clinical utility of sperm DNA fragmentation testing: practice recommendations based on clinical scenarios. Transl Androl Urol. 2016;5:935–50.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Camargo M, Intasqui P, Bertolla RP. Proteomic profile of seminal plasma in adolescents and adults with treated and untreated varicocele. Asian J Androl. 2016;18:194–201.

    Article  CAS  PubMed  Google Scholar 

  82. Agarwal A, Sharma R, Samanta L, Durairajanayagam D, Sabanegh E. Proteomic signatures of infertile men with clinical varicocele and their validation studies reveal mitochondrial dysfunction leading to infertility. Asian J Androl. 2016;18:282–91.

    Article  CAS  PubMed  Google Scholar 

  83. Esteves SC, Agarwal A. Afterword to varicocele and male infertility: current concepts and future perspectives. Asian J Androl. 2016;18:319–22.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandro C. Esteves .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roque, M., Esteves, S.C. (2018). Varicocelectomy. In: Zini, A., Agarwal, A. (eds) A Clinician's Guide to Sperm DNA and Chromatin Damage. Springer, Cham. https://doi.org/10.1007/978-3-319-71815-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71815-6_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71814-9

  • Online ISBN: 978-3-319-71815-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics