Skip to main content

Sensing Sound Through Thalamocortical Afferent Architecture and Cortical Microcircuits

  • Chapter
  • First Online:
The Mammalian Auditory Pathways

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 65))

Abstract

Mammals have multiple cortical fields with neurons responding to the full range of sound frequencies sensed by the sensory epithelium of the ear, the cochlea. At first glance, sensitivities to sound frequency seem highly similar or even redundant across different auditory cortical fields; however, closer inspection reveals marked differences in the architecture of underlying thalamocortical pathways, afferents, and sound sensitivities within each cortical field. Here we summarize the differences in the architecture of the thalamocortical pathway and the termination patterns across auditory cortices. A conceptual framework is presented for how pathway architecture in combination with intrinsic cortical microcircuits can account for observed differences in sound sensitivity. This organization has the capacity to create parallel sound processing streams with diverse and even dynamic sound processing properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aizenberg, M., Mwilambwe-Tshilobo, L., Briguglio, J. J., Natan, R. G., & Geffen, M. N. (2015). Bidirectional regulation of innate and learned behaviors that rely on frequency discrimination by cortical inhibitory neurons. PLoS Biology, 13(12), e1002308.

    Article  PubMed  PubMed Central  Google Scholar 

  • Anderson, L. A., Wallace, M. N., & Palmer, A. R. (2007). Identification of subdivisions in the medial geniculate body of the guinea pig. Hearing Research, 228(1-2), 156–167.

    Article  CAS  PubMed  Google Scholar 

  • Atencio, C. A., & Schreiner, C. E. (2012). Spectrotemporal processing in spectral tuning modules of cat primary auditory cortex. PLoS One, 7(2), e31537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baumann, S., Joly, O., Rees, A., Petkov, C. I., Sun, L., Thiele, A., et al. (2015). The topography of frequency and time representation in primate auditory cortices. eLife, 4. https://doi.org/10.7554/eLife.03256.001.

  • Bizley, J. K., & King, A. J. (2009). Visual influences on ferret auditory cortex. Hearing Research, 258(1-2), 55–63.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brett-Green, B., Fifkova, E., Larue, D. T., Winer, J. A., & Barth, D. S. (2003). A multisensory zone in rat parietotemporal cortex: Intra- and extra-cellular physiology and thalamocortical connections. Journal of Comparative Neurology, 460(2), 223–237.

    Article  PubMed  Google Scholar 

  • Butler, B. E., Chabot, N., & Lomber, S. G. (2016). Quantifying and comparing the pattern of thalamic and cortical projections to the posterior auditory field in hearing and deaf cats. The Journal of Comparative Neurology, 524(15), 3042–3063.

    Article  CAS  PubMed  Google Scholar 

  • Cant, N. B., & Benson, C. G. (2007). Multiple topographically organized projections connect the central nucleus of the inferior colliculus to the ventral division of the medial geniculate nucleus in the gerbil, Meriones unguiculatus. The Journal of Comparative Neurology, 503(3), 432–453.

    Article  PubMed  Google Scholar 

  • Carlyon, R. P., Macherey, O., Frijns, J. H., Axon, P. R., Kalkman, R. K., Boyle, P., et al. (2010). Pitch comparisons between electrical stimulation of a cochlear implant and acoustic stimuli presented to a normal-hearing contralateral ear. Journal of the Association for Research in Otolaryngology, 11(4), 625–640.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheung, S. W., Bedenbaugh, P. H., Nagarajan, S. S., & Schreiner, C. E. (2001). Functional organization of squirrel monkey primary auditory cortex: Responses to pure tones. Journal of Neurophysiology, 85(4), 1732–1749.

    Article  CAS  PubMed  Google Scholar 

  • Clerici, W. J., & Coleman, J. R. (1990). Anatomy of the rat medial geniculate body: I. Cytoarchitecture, myeloarchitecture, and neocortical connectivity. The Journal of Comparative Neurology, 297(1), 14–31.

    Article  CAS  PubMed  Google Scholar 

  • de la Rocha, J., Marchetti, C., Schiff, M., & Reyes, A. D. (2008). Linking the response properties of cells in auditory cortex with network architecture: Cotuning versus lateral inhibition. The Journal of Neuroscience, 28(37), 9151–9163.

    Article  PubMed  PubMed Central  Google Scholar 

  • Doron, N. N., Ledoux, J. E., & Semple, M. N. (2002). Redefining the tonotopic core of rat auditory cortex: Physiological evidence for a posterior field. The Journal of Comparative Neurology, 453(4), 345–360.

    Article  PubMed  Google Scholar 

  • Escabi, M. A., Higgins, N. C., Galaburda, A. M., Rosen, G. D., & Read, H. L. (2007). Early cortical damage in rat somatosensory cortex alters acoustic feature representation in primary auditory cortex. Neuroscience, 150(4), 970–983.

    Article  CAS  PubMed  Google Scholar 

  • Escabi, M. A., Read, H. L., Viventi, J., Kim, D. H., Higgins, N. C., Storace, D. A., et al. (2014). A high-density, high-channel count, multiplexed muECoG array for auditory-cortex recordings. Journal of Neurophysiology, 112(6), 1566–1583.

    Article  PubMed  PubMed Central  Google Scholar 

  • Formisano, E., Kim, D. S., Di Salle, F., van de Moortele, P. F., Ugurbil, K., & Goebel, R. (2003). Mirror-symmetric tonotopic maps in human primary auditory cortex. Neuron, 40(4), 859–869.

    Article  CAS  PubMed  Google Scholar 

  • Greenwood, D. D. (1990). A cochlear frequency-position function for several species—29 years later. The Journal of the Acoustical Society of America, 87(6), 2592–2605.

    Article  CAS  PubMed  Google Scholar 

  • Guo, W., Chambers, A. R., Darrow, K. N., Hancock, K. E., Shinn-Cunningham, B. G., & Polley, D. B. (2012). Robustness of cortical topography across fields, laminae, anesthetic states, and neurophysiological signal types. The Journal of Neuroscience, 32(27), 9159–9172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hackett, T. A., Barkat, T. R., O’Brien, B. M., Hensch, T. K., & Polley, D. B. (2011). Linking topography to tonotopy in the mouse auditory thalamocortical circuit. The Journal of Neuroscience, 31(8), 2983–2995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hackett, T. A., Clause, A. R., Takahata, T., Hackett, N. J., & Polley, D. B. (2016). Differential maturation of vesicular glutamate and GABA transporter expression in the mouse auditory forebrain during the first weeks of hearing. Brain Structure and Function, 221(5), 2619–2673.

    Article  CAS  PubMed  Google Scholar 

  • Haider, B., Krause, M. R., Duque, A., Yu, Y., Touryan, J., Mazer, J. A., et al. (2010). Synaptic and network mechanisms of sparse and reliable visual cortical activity during nonclassical receptive field stimulation. Neuron, 65(1), 107–121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall, A. J., & Lomber, S. G. (2015). High-field fMRI reveals tonotopically organized core auditory cortex in the cat. Hearing Research, 325, 1–11.

    Article  PubMed  Google Scholar 

  • Harrington, I. A., Stecker, G. C., Macpherson, E. A., & Middlebrooks, J. C. (2008). Spatial sensitivity of neurons in the anterior, posterior, and primary fields of cat auditory cortex. Hearing Research, 240(1-2), 22–41.

    Article  PubMed  PubMed Central  Google Scholar 

  • Heffner, R. S. (2004). Primate hearing from a mammalian perspective. The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 281(1), 1111–1122.

    Article  Google Scholar 

  • Higgins, N. C., Storace, D. A., Escabi, M. A., & Read, H. L. (2010). Specialization of binaural responses in ventral auditory cortices. The Journal of Neuroscience, 30(43), 14522–14532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horie, M., Tsukano, H., Hishida, R., Takebayashi, H., & Shibuki, K. (2013). Dual compartments of the ventral division of the medial geniculate body projecting to the core region of the auditory cortex in C57BL/6 mice. Neuroscience Research, 76(4), 207–212.

    Article  PubMed  Google Scholar 

  • Imaizumi, K., & Schreiner, C. E. (2007). Spatial interaction between spectral integration and frequency gradient in primary auditory cortex. Journal of Neurophysiology, 98(5), 2933–2942.

    Article  PubMed  Google Scholar 

  • Imaizumi, K., Priebe, N. J., Sharpee, T. O., Cheung, S. W., & Schreiner, C. E. (2010). Encoding of temporal information by timing, rate, and place in cat auditory cortex. PLoS One, 5(7), e11531.

    Article  PubMed  PubMed Central  Google Scholar 

  • Imig, T. J., & Reale, R. A. (1980). Patterns of cortico-cortical connections related to tonotopic maps in cat auditory cortex. The Journal of Comparative Neurology, 192(2), 293–332.

    Article  CAS  PubMed  Google Scholar 

  • Imig, T. J., & Morel, A. (1985). Tonotopic organization in ventral nucleus of medial geniculate body in the cat. Journal of Neurophysiology, 53(1), 309–340.

    Article  CAS  PubMed  Google Scholar 

  • Issa, J. B., Haeffele, B. D., Agarwal, A., Bergles, D. E., Young, E. D., & Yue, D. T. (2014). Multiscale optical Ca2+ imaging of tonal organization in mouse auditory cortex. Neuron, 83(4), 944–959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito, T., & Oliver, D. L. (2012). The basic circuit of the IC: Tectothalamic neurons with different patterns of synaptic organization send different messages to the thalamus. Frontiers in Neural Circuits, 6, 48. https://doi.org/10.3389/fncir.2012.00048.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ito, T., Bishop, D. C., & Oliver, D. L. (2011). Expression of glutamate and inhibitory amino acid vesicular transporters in the rodent auditory brainstem. The Journal of Comparative Neurology, 519(2), 316–340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito, T., Inoue, K., & Takada, M. (2015). Distribution of glutamatergic, GABAergic, and glycinergic neurons in the auditory pathways of macaque monkeys. Neuroscience, 310, 128–151.

    Article  CAS  PubMed  Google Scholar 

  • Jenkins, W. M., & Merzenich, M. M. (1984). Role of cat primary auditory cortex for sound-localization behavior. The Journal of Neuroscience, 52(5), 819–847.

    CAS  Google Scholar 

  • Kaas, J. H., & Hackett, T. A. (2000). Subdivisions of auditory cortex and processing streams in primates. Proceedings of the National Academy of Sciences of the United States of America, 97(22), 11793–11799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalatsky, V. A., Polley, D. B., Merzenich, M. M., Schreiner, C. E., & Stryker, M. P. (2005). Fine functional organization of auditory cortex revealed by Fourier optical imaging. Proceedings of the National Academy of Sciences of the United States of America, 102(37), 13325–13330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanold, P. O., Nelken, I., & Polley, D. B. (2014). Local versus global scales of organization in auditory cortex. Trends in Neurosciences, 37(9), 502–510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, H., & Bao, S. (2013). Experience-dependent overrepresentation of ultrasonic vocalization frequencies in the rat primary auditory cortex. Journal of Neurophysiology, 110(5), 1087–1096.

    Article  PubMed  PubMed Central  Google Scholar 

  • Koka, K., Read, H. L., & Tollin, D. J. (2008). The acoustical cues to sound location in the rat: Measurements of directional transfer functions. The Journal of the Acoustical Society of America, 123(6), 4297–4309.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lamme, V. A., Zipser, K., & Spekreijse, H. (1998). Figure-ground activity in primary visual cortex is suppressed by anesthesia. Proceedings of the National Academy of Sciences of the United States of America, 95(6), 3263–3268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, C. C., Imaizumi, K., Schreiner, C. E., & Winer, J. A. (2004). Concurrent tonotopic processing streams in auditory cortex. Cerebral Cortex, 14(4), 441–451.

    Article  PubMed  Google Scholar 

  • Lee, C. M., Osman, A. F., Volgushev, M., Escabi, M. A., & Read, H. L. (2016). Neural spike-timing patterns vary with sound shape and periodicity in three auditory cortical fields. Journal of Neurophysiology, 115(4), 1886–1904.

    Article  PubMed  PubMed Central  Google Scholar 

  • LePage, E. L. (2003). The mammalian cochlear map is optimally warped. The Journal of the Acoustical Society of America, 114(2), 896–906.

    Article  PubMed  Google Scholar 

  • Levy, R. B., & Reyes, A. D. (2011). Coexistence of lateral and co-tuned inhibitory configurations in cortical networks. PLoS Computational Biology, 7(10), e1002161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levy, R. B., & Reyes, A. D. (2012). Spatial profile of excitatory and inhibitory synaptic connectivity in mouse primary auditory cortex. The Journal of Neuroscience, 32(16), 5609–5619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, L. Y., Ji, X. Y., Liang, F., Li, Y. T., Xiao, Z., Tao, H. W., et al. (2014). A feedforward inhibitory circuit mediates lateral refinement of sensory representation in upper layer 2/3 of mouse primary auditory cortex. The Journal of Neuroscience, 34(41), 13670–13683.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lomber, S. G., & Malhotra, S. (2008). Double dissociation of ‘what’ and ‘where’ processing in auditory cortex. Nature Neuroscience, 11(5), 609–616.

    Article  CAS  PubMed  Google Scholar 

  • Merzenich, M. M., Knight, P. L., & Roth, G. L. (1973). Cochleotopic organization of primary auditory cortex in the cat. Brain Research, 63, 343–346.

    Article  CAS  PubMed  Google Scholar 

  • Merzenich, M. M., Knight, P. L., & Roth, G. L. (1975). Representation of cochlea within primary auditory cortex in the cat. Journal of Neurophysiology, 38(2), 231–249.

    Article  CAS  PubMed  Google Scholar 

  • Miller, L. M., & Recanzone, G. H. (2009). Populations of auditory cortical neurons can accurately encode acoustic space across stimulus intensity. Proceedings of the National Academy of Sciences of the United States of America, 106(14), 5931–5935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller, L. M., Escabi, M. A., Read, H. L., & Schreiner, C. E. (2002). Spectrotemporal receptive fields in the lemniscal auditory thalamus and cortex. Journal of Neurophysiology, 87(1), 516–527.

    Article  PubMed  Google Scholar 

  • Moerel, M., De Martino, F., & Formisano, E. (2014). An anatomical and functional topography of human auditory cortical areas. Frontiers in Neuroscience, 8, 225. https://doi.org/10.3389/fnins.2014.00225.

    Article  PubMed  PubMed Central  Google Scholar 

  • Moore, B. C. (2003). Coding of sounds in the auditory system and its relevance to signal processing and coding in cochlear implants. Otology and Neurotology, 24(2), 243–254.

    Article  PubMed  Google Scholar 

  • Morest, D. K. (1964). The neuronal architecture of the medial geniculate body of the cat. Journal of Anatomy, 98, 611–630.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mrsic-Flogel, T. D., Versnel, H., & King, A. J. (2006). Development of contralateral and ipsilateral frequency representations in ferret primary auditory cortex. European Journal of Neuroscience, 23(3), 780–792.

    Article  PubMed  Google Scholar 

  • Nelken, I., Bizley, J. K., Nodal, F. R., Ahmed, B., King, A. J., & Schnupp, J. W. (2008). Responses of auditory cortex to complex stimuli: Functional organization revealed using intrinsic optical signals. Journal of Neurophysiology, 99(4), 1928–1941.

    Article  PubMed  Google Scholar 

  • Nishimura, M., & Song, W. J. (2014). Greenwood frequency-position relationship in the primary auditory cortex in guinea pigs. Neuroimage, 89, 181–191.

    Article  PubMed  Google Scholar 

  • Oliver, D. L., & Hall, W. C. (1975). Subdivisions of the medial geniculate body in the tree shrew (Tupaia glis). Brain Research, 86(2), 217–227.

    Article  CAS  PubMed  Google Scholar 

  • Oswald, A. M., Doiron, B., Rinzel, J., & Reyes, A. D. (2009). Spatial profile and differential recruitment of GABAB modulate oscillatory activity in auditory cortex. Journal of Neuroscience, 29(33), 10321–10334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pachitariu, M., Lyamzin, D. R., Sahani, M., & Lesica, N. A. (2015). State-dependent population coding in primary auditory cortex. The Journal of Neuroscience, 35(5), 2058–2073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandya, P. K., Rathbun, D. L., Moucha, R., Engineer, N. D., & Kilgard, M. P. (2008). Spectral and temporal processing in rat posterior auditory cortex. Cerebral Cortex, 18(2), 301–314.

    Article  PubMed  Google Scholar 

  • Paxinos, G., Watson, C. R., & Emson, P. C. (1980). AChE-stained horizontal sections of the rat brain in stereotaxic coordinates. Journal of Neuroscience Methods, 3(2), 129–149.

    Article  CAS  PubMed  Google Scholar 

  • Petkov, C. I., Kayser, C., Augath, M., & Logothetis, N. K. (2006). Functional imaging reveals numerous fields in the monkey auditory cortex. PLoS Biology, 4(7), e215.

    Article  PubMed  PubMed Central  Google Scholar 

  • Phillips, D. P., Semple, M. N., Calford, M. B., & Kitzes, L. M. (1994). Level-dependent representation of stimulus frequency in cat primary auditory cortex. Experimental Brain Research, 102(2), 210–226.

    Article  CAS  PubMed  Google Scholar 

  • Polley, D. B., Steinberg, E. E., & Merzenich, M. M. (2006). Perceptual learning directs auditory cortical map reorganization through top-down influences. The Journal of Neuroscience, 26(18), 4970–4982.

    Article  CAS  PubMed  Google Scholar 

  • Polley, D. B., Read, H. L., Storace, D. A., & Merzenich, M. M. (2007). Multiparametric auditory receptive field organization across five cortical fields in the albino rat. Journal of Neurophysiology, 97(5), 3621–3638.

    Article  PubMed  Google Scholar 

  • Read, H. L., Winer, J. A., & Schreiner, C. E. (2001). Modular organization of intrinsic connections associated with spectral tuning in cat auditory cortex. Proceedings of the National Academy of Sciences of the United States of America, 98(14), 8042–8047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Read, H. L., Nauen, D. W., Escabi, M. A., Miller, L. M., Schreiner, C. E., & Winer, J. A. (2011). Distinct core thalamocortical pathways to central and dorsal primary auditory cortex. Hearing Research, 274(1-2), 95–104.

    Article  PubMed  Google Scholar 

  • Reale, R. A., & Imig, T. J. (1980). Tonotopic organization in auditory cortex of the cat. The Journal of Comparative Neurology, 192(2), 265–291.

    Article  CAS  PubMed  Google Scholar 

  • Romanski, L. M., & LeDoux, J. E. (1993). Organization of rodent auditory cortex: Anterograde transport of PHA-L from MGv to temporal neocortex. Cerebral Cortex, 3(6), 499–514.

    Article  CAS  PubMed  Google Scholar 

  • Sanes, D. H., & Rubel, E. W. (1988). The ontogeny of inhibition and excitation in the gerbil lateral superior olive. The Journal of Neuroscience, 8(2), 682–700.

    CAS  PubMed  Google Scholar 

  • Schiff, M. L., & Reyes, A. D. (2012). Characterization of thalamocortical responses of regular-spiking and fast-spiking neurons of the mouse auditory cortex in vitro and in silico. Journal of Neurophysiology, 107(5), 1476–1488.

    Article  PubMed  Google Scholar 

  • Schneider, D. M., Nelson, A., & Mooney, R. (2014). A synaptic and circuit basis for corollary discharge in the auditory cortex. Nature, 513(7517), 189–194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Semple, M. N., & Kitzes, L. M. (1993). Focal selectivity for binaural sound pressure level in cat primary auditory cortex: Two-way intensity network tuning. Journal of Neurophysiology, 69(2), 462–473.

    Article  CAS  PubMed  Google Scholar 

  • Seybold, B. A., Phillips, E. A., Schreiner, C. E., & Hasenstaub, A. R. (2015). Inhibitory actions unified by network integration. Neuron, 87(6), 1181–1192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siksou, L., Silm, K., Biesemann, C., Nehring, R. B., Wojcik, S. M., Triller, A., et al. (2013). A role for vesicular glutamate transporter 1 in synaptic vesicle clustering and mobility. European Journal of Neuroscience, 37(10), 1631–1642.

    Article  PubMed  Google Scholar 

  • Smith, P. H., Uhlrich, D. J., Manning, K. A., & Banks, M. I. (2012). Thalamocortical projections to rat auditory cortex from the ventral and dorsal divisions of the medial geniculate nucleus. The Journal of Comparative Neurology, 520(1), 34–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Storace, D. A., Higgins, N. C., & Read, H. L. (2010). Thalamic label patterns suggest primary and ventral auditory fields are distinct core regions. The Journal of Comparative Neurology, 518(10), 1630–1646.

    Article  PubMed  Google Scholar 

  • Storace, D. A., Higgins, N. C., & Read, H. L. (2011). Thalamocortical pathway specialization for sound frequency resolution. The Journal of Comparative Neurology, 519(2), 177–193.

    Article  PubMed  Google Scholar 

  • Storace, D. A., Higgins, N. C., Chikar, J. A., Oliver, D. L., & Read, H. L. (2012). Gene expression identifies distinct ascending glutamatergic pathways to frequency-organized auditory cortex in the rat brain. Journal of Neuroscience, 32(45), 15759–15768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takemoto, M., Hasegawa, K., Nishimura, M., & Song, W. J. (2014). The insular auditory field receives input from the lemniscal subdivision of the auditory thalamus in mice. The Journal of Comparative Neurology, 522(6), 1373–1389.

    Article  PubMed  Google Scholar 

  • Tan, A. Y., & Wehr, M. (2009). Balanced tone-evoked synaptic excitation and inhibition in mouse auditory cortex. Neuroscience, 163(4), 1302–1315.

    Article  CAS  PubMed  Google Scholar 

  • Tan, A. Y., Atencio, C. A., Polley, D. B., Merzenich, M. M., & Schreiner, C. E. (2007). Unbalanced synaptic inhibition can create intensity-tuned auditory cortex neurons. Neuroscience, 146(1), 449–462.

    Article  CAS  PubMed  Google Scholar 

  • Tollin, D. J. (2003). The lateral superior olive: A functional role in sound source localization. Neuroscientist, 9(2), 127–143.

    Article  PubMed  Google Scholar 

  • Tsukano, H., Horie, M., Bo, T., Uchimura, A., Hishida, R., Kudoh, M., et al. (2015). Delineation of a frequency-organized region isolated from the mouse primary auditory cortex. Journal of Neurophysiology, 113(7), 2900–2920.

    Article  PubMed  PubMed Central  Google Scholar 

  • Updyke, B. V. (1986). Retinotopic organization within the cat's posterior suprasylvian sulcus and gyrus. Journal of Comparative Neurology, 246(2), 265–280.

    Article  CAS  PubMed  Google Scholar 

  • von Trapp, G., Buran, B. N., Sen, K., Semple, M. N., & Sanes, D. H. (2016). A decline in response variability improves neural signal detection during auditory task performance. The Journal of Neuroscience, 36(43), 11097–11106.

    Article  Google Scholar 

  • Wehr, M., & Zador, A. M. (2003). Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex. Nature, 426(6965), 442–446.

    Article  CAS  PubMed  Google Scholar 

  • Weinberger, N. M., & Diamond, D. M. (1987). Physiological plasticity in auditory cortex: Rapid induction by learning. Progress in Neurobiology, 29(1), 1–55.

    Article  CAS  PubMed  Google Scholar 

  • Winer, J. A., Kelly, J. B., & Larue, D. T. (1999). Neural architecture of the rat medial geniculate body. Hearing Research, 130(1-2), 19–41.

    Article  CAS  PubMed  Google Scholar 

  • Wojcik, S. M., Rhee, J. S., Herzog, E., Sigler, A., Jahn, R., Takamori, S., et al. (2004). An essential role for vesicular glutamate transporter 1 (VGLUT1) in postnatal development and control of quantal size. Proceedings of the National Academy of Sciences of the United States of America, 101(18), 7158–7163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, G. K., Li, P., Tao, H. W., & Zhang, L. I. (2006). Nonmonotonic synaptic excitation and imbalanced inhibition underlying cortical intensity tuning. Neuron, 52(4), 705–715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, M., Liang, F., Xiong, X. R., Li, L., Li, H., Xiao, Z., et al. (2014). Scaling down of balanced excitation and inhibition by active behavioral states in auditory cortex. Nature Neuroscience, 17(6), 841–850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We acknowledge funding support from the National Science Foundation (NSF) (Award 1355065 to H. L. Read and M. A. Escabí), the National Institutes of Health (NIH) (1R01DC015138-01 to M. A. Escabí, H. L. Read, and I. Stevenson; DC005787-06 to A. D. Reyes), and the University of Connecticut research foundation. This work was supported in part by the Kavli Institute for Theoretical Physics (KITP) at Santa Barbara and the National Science Foundation under Grant No. NSF PHY-1125915. 

Compliance with Ethics Requirements

Heather Read declares she has no conflict of interest.

Alex Reyes declares that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heather L. Read .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Read, H.L., Reyes, A.D. (2018). Sensing Sound Through Thalamocortical Afferent Architecture and Cortical Microcircuits. In: Oliver, D., Cant, N., Fay, R., Popper, A. (eds) The Mammalian Auditory Pathways. Springer Handbook of Auditory Research, vol 65. Springer, Cham. https://doi.org/10.1007/978-3-319-71798-2_7

Download citation

Publish with us

Policies and ethics