Skip to main content

Porous Silicon Formation by Galvanic Etching

  • Reference work entry
  • First Online:
Handbook of Porous Silicon
  • 304 Accesses

Abstract

Galvanic etching of silicon is reviewed. Galvanic etching is an anodic process that occurs at open circuit. It results from the exposure of a metal contact on a semiconductor surface to an appropriate solution. It can be performed in either acidic or alkaline solutions and can be used to form porous layers or for complete removal of a region of semiconductor. Recently it has found particular application to form combustible layers, which act as high-density energy sources for micromechanical systems. Galvanic etching has also been used in the fabrication of membranes, freestanding beams, and MEMS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abraham A, Piekiel NW, Morris CJ, Dreizin EL (2016) Combustion of energetic porous silicon composites containing different oxidizers. Propellants Explos Pyrotechnics 41:179–188

    Article  CAS  Google Scholar 

  • Allongue P, Maroun F (2006) Metal electrodeposition on single crystal metal surfaces: mechanisms, structure and applications. Curr Opin Solid State Mater Sci 10:173–181

    Article  CAS  Google Scholar 

  • Archer RJ (1960) Stain films on silicon. J Phys Chem Solid 14:104–110

    Article  CAS  Google Scholar 

  • Ashruf CMA, French PJ, Bressers PMMC, Sarro PM, Kelly JJ (1998) A new contactless electrochemical etch-stop based on a gold/silicon/TMAH galvanic cell. Sens Actuators A 66:284–291

    Article  CAS  Google Scholar 

  • Ashruf CMA, French PJ, Bressers PMMC, Kelly JJ (1999) Galvanic porous silicon formation without external contacts. Sens Actuators A 74:118–122

    Article  CAS  Google Scholar 

  • Ashruf CMA, French PJ, Sarro PM, Kazinczi R, Xia XH, Kelly JJ (2000) Galvanic etching for sensor fabrication. J Micromech Microeng 10:505–515

    Article  CAS  Google Scholar 

  • Balderas-Valadez RF, Agarwal V, Pacholski C (2016) Fabrication of porous silicon-based optical sensors using metal-assisted chemical etching. RSC Adv 6:21430–21434

    Article  CAS  Google Scholar 

  • Becker CR, Currano LJ, Churaman WA, Stoldt CR (2010a) Thermal analysis of the exothermic reaction between galvanic porous silicon and sodium perchlorate. ACS Appl Mater Interfaces 2:2998–3003

    Article  CAS  Google Scholar 

  • Becker CR, Miller DC, Stoldt CR (2010) Galvanically coupled gold/silicon-on-insulator microstructures in hydrofluoric acid electrolytes: finite element simulation and morphological analysis of electrochemical corrosion. J Micromech Microeng 20:085017

    Article  CAS  Google Scholar 

  • Becker CR, Apperson S, Morris CJ, Gangopadhyay S, Currano LJ, Churaman WA, Stoldt CR (2011) Galvanic porous silicon composites for high-velocity nanoenergetics. Nano Lett 11:803–807

    Article  CAS  Google Scholar 

  • Becker CR, Gillen GJ, Staymates ME, Stoldt CR (2015) Nanoporous silicon combustion: observation of shock wave and flame synthesis of nano-particle silica. ACS Appl Mater Interfaces 7:25539–25545

    Article  CAS  Google Scholar 

  • Bressers PMMC, Plakman M, Kelly JJ (1996) Etching and electrochemistry of silicon in acidic bromine solutions. J Electroanal Chem 406:131–137

    Article  Google Scholar 

  • Broas M, Liu X, Ge Y, Mattila TT, Paulasto-Krockel M (2015) Galvanic corrosion of structural non-stoichiometric silicon nitride thin films and its implications on reliability of microelectromechanical devices. J Appl Phys 117:245304

    Article  CAS  Google Scholar 

  • Carraro C, Maboudian R, Magagnin L (2007) Metallization and nanostructuring of semiconductor surfaces by galvanic displacement processes. Surf Sci Rep 62:499–525

    Article  CAS  Google Scholar 

  • Chabal YJ, Harris AL, Raghavachari K, Tully JC (1993) Infrared spectroscopy of H-terminated silicon surfaces. Internat J Mod Phys B 7:1031–1078

    Article  CAS  Google Scholar 

  • Chasiotis I, Knauss WG (2003) The mechanical strength of polysilicon films: part 1. The influence of fabrication governed surface conditions. J Mech Phys Solids 51:1533–1550

    Article  CAS  Google Scholar 

  • Chattopadhyay S, Li X, Bohn PW (2002) In-plane control of morphology and tunable photoluminescence in porous silicon produced by metal-assisted electroless chemical etching. J Appl Phys 91:6134–6140

    Article  CAS  Google Scholar 

  • Chiappini C (2014) MACE silicon nanostructures. In: Canham LT (ed) Handbook of porous silicon, 1st edn. Springer Verlag, Berlin, pp 171–186

    Google Scholar 

  • Churaman WA, Morris CJ, Ramachandran R, Bergbreiter S (2015) The effect of porosity on energetic porous silicon solid propellant micro-propulsion. J Micromech Microeng 25:115022

    Article  CAS  Google Scholar 

  • Clark IT, Aldinger BS, Gupta A, Hines MA (2010) Aqueous etching produces Si(100) surfaces of near-atomic flatness: strain minimization does not predict surface morphology. J Phys Chem C 114:423–428

    Article  CAS  Google Scholar 

  • Clement D, Diener J, Gross E, Kunzner N, Timoshenko VY, Kovalev D (2005) Highly explosive nanosilicon-based composite materials. Phys Status Solidi A 202:1357–1364

    Article  CAS  Google Scholar 

  • da Rosa CP, Maboudian R, Iglesia E (2008) Copper deposition onto silicon by galvanic displacement: effect of silicon dissolution rate. J Electrochem Soc 155:E70–E78

    Article  CAS  Google Scholar 

  • DelRio FW, Cook RF, Boyce BL (2015) Fracture strength of micro- and nano-scale silicon components. Appl Phys Rev 2:021303

    Article  CAS  Google Scholar 

  • du Plessis M (2014) A decade of porous silicon as nano-explosive material. Propellants Explos Pyrotechnics 39:348–364

    Article  CAS  Google Scholar 

  • Dudley ME, Kolasinski KW (2008) Wet etching of pillar covered silicon surface: formation of crystallographically defined macropores. J Electrochem Soc 155:H164–H171

    Article  CAS  Google Scholar 

  • Gondek C, Lippold M, Röver I, Bohmhammel K, Kroke E (2014) Etching silicon with HF-H2O2-based mixtures: reactivity studies and surface investigations. J Phys Chem C 118:2044–2051

    Article  CAS  Google Scholar 

  • Gorostiza P, Anbu Kulandainathan M, Díaz R, Sanz F, Allongue P, Morante JR (2000) Charge exchange processes during the open-circuit deposition of nickel on silicon from fluoride solutions. J Electrochem Soc 147:1026–1030

    Article  CAS  Google Scholar 

  • Gorostiza P, Allongue P, Díaz R, Morante JR, Sanz F (2003) Electrochemical characterization of the open-circuit deposition of platinum on silicon from fluoride solutions. J Phys Chem B 107:6454–6461

    Article  CAS  Google Scholar 

  • Harada Y, Li X, Bohn PW, Nuzzo RG (2001) Catalytic amplification of the soft lithographic patterning of Si. Nonelectrochemical orthogonal fabrication of photoluminescent porous Si pixel arrays. J Am Chem Soc 123:8709–8717

    Article  CAS  Google Scholar 

  • Hines MA (2003) In search of perfection: understanding the highly defect-selective chemistry of anisotropic etching. Annu Rev Phys Chem 54:29–56

    Article  CAS  Google Scholar 

  • Hines MA, Faggin MF, Gupta A, Aldinger BS, Bao K (2012) Self-propagating reaction produces near-ideal functionalization of Si(100) and flat surfaces. J Phys Chem C 116:18920–18929

    Article  CAS  Google Scholar 

  • Huang Z, Geyer N, Werner P, de Boor J, Gösele U (2011) Metal-assisted chemical etching of silicon: a review. Adv Mater 23:285–308

    Article  CAS  Google Scholar 

  • Huh M, Yu Y, Kahn H, Payer J, Heuer A (2006) Galvanic corrosion during processing of polysilicon microelectromechanical systems – the effect of Au metallization. J Electrochem Soc 153:G644–G649

    Article  CAS  Google Scholar 

  • Kahn H, Deeb C, Chasiotis I, Heuer AH (2005) Anodic oxidation during MEMS processing of silicon and polysilicon: native oxides can be thicker than you think. J Microelectromech Syst 14:914–923

    Article  CAS  Google Scholar 

  • Kelly JJ, Philipsen HGG (2005) Anisotropy in the wet-etching of semiconductors. Curr Opin Solid State Mater Sci 9:84–90

    Article  CAS  Google Scholar 

  • Kelly JJ, Xia XH, Ashruf CMA, French PJ (2001) Galvanic cell formation: a review of approaches to silicon etching for sensor fabrication. IEEE Sensors J 1:127–142

    Article  CAS  Google Scholar 

  • Koker L, Kolasinski KW (2000) Photoelectrochemical etching of Si and porous Si in aqueous HF. Phys Chem Chem Phys 2:277–281

    Article  CAS  Google Scholar 

  • Koker L, Kolasinski KW (2001) Laser-assisted formation of porous silicon in diverse fluoride solutions: reactions kinetics and mechanistic implications. J Phys Chem B 105:3864–3871

    Article  CAS  Google Scholar 

  • Kolasinski KW (2003) The mechanism of Si etching in fluoride solutions. Phys Chem Chem Phys 5:1270–1278

    Article  CAS  Google Scholar 

  • Kolasinski KW (2009) Etching of silicon in fluoride solutions. Surf Sci 603:1904–1911

    Article  CAS  Google Scholar 

  • Kolasinski KW (2010) Charge transfer and nanostructure formation during electroless etching of silicon. J Phys Chem C 114:22098–22105

    Article  CAS  Google Scholar 

  • Kolasinski KW (2014) The mechanism of galvanic/metal-assisted etching of silicon. Nanoscale Res Lett 9:432

    Article  CAS  Google Scholar 

  • Kolasinski KW (2015) The mechanism of metal-assisted etching. In: Korotcenkov G (ed) Porous silicon: from formation to application: formation and properties, vol 1. CRC Press, Boca Roton, pp 291–304

    Chapter  Google Scholar 

  • Kolasinski KW (2016) Electron transfer during metal-assisted and stain etching of silicon. Semicond Sci Technol 31:014002

    Article  CAS  Google Scholar 

  • Kolasinski KW, Gogola JW (2012) Electroless etching of Si with IO3− and related species. Nanoscale Res Lett 7:323

    Article  Google Scholar 

  • Kolasinski KW, Gogola JW, Barclay WB (2012) A test of Marcus theory predictions for electroless etching of silicon. J Phys Chem C 116:21472–21481

    Article  CAS  Google Scholar 

  • Kolasinski KW, Barclay WB, Sun Y, Aindow M (2015) The stoichiometry of metal assisted etching of Si in V2O5 + HF and HOOH + HF solutions. Electrochim Acta 158:219–228

    Article  CAS  Google Scholar 

  • Kovalev D, Timoshenko VY, Künzner N, Gross E, Koch F (2001) Strong explosive interaction of hydrogenated porous silicon with oxygen at cryogenic temperatures. Phys Rev Lett 87:068301

    Article  CAS  Google Scholar 

  • Lehmann V (2002) Electrochemistry of silicon: instrumentation, science, materials and applications. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Li XL (2012) Metal assisted chemical etching for high aspect ratio nanostructures: a review of characteristics and applications in photovoltaics. Curr Opin Solid State Mater Sci 16:71–81

    Article  CAS  Google Scholar 

  • Li X, Bohn PW (2000) Metal-assisted chemical etching in HF/H2O2 produces porous silicon. Appl Phys Lett 77:2572–2574

    Article  CAS  Google Scholar 

  • Liu YF, Xie J, Zhao H, Luo W, Yang JL, An J, Yang FH (2012) An effective approach for restraining electrochemical corrosion of polycrystalline silicon caused by an HF-based solution and its application for mass production of MEMS devices. J Micromech Microeng 22:035003

    Article  CAS  Google Scholar 

  • Macuk AL, Timpe SJ (2013) Effect of galvanic corrosion-induced roughness on sidewall adhesion in polycrystalline silicon microelectromechanical systems. J Microelectromech Sys 22:259–261

    Article  CAS  Google Scholar 

  • Magagnin L, Maboudian R, Carraro C (2002) Gold deposition by galvanic displacement on semiconductor surfaces: effect of substrate on adhesion. J Phys Chem B 106:401–407

    Article  CAS  Google Scholar 

  • Meltzer S, Mandler D (1995) Study of silicon etching in HBr solutions using a scanning electrochemical microscope. J Chem Soc Faraday Trans 91:1019–1024

    Article  CAS  Google Scholar 

  • Miller DC, Gall K, Stoldt CR (2005) Galvanic corrosion of miniaturized polysilicon structures morphological, electrical, and mechanical effects. Electrochem Solid State Lett 8:G223–G226

    Article  CAS  Google Scholar 

  • Miller DC, Hughes WL, Wang ZL, Gall K, Stoldt CR (2007) Mechanical effects of galvanic corrosion on structural polysilicon. J Microelectromech Syst 16:87–101

    Article  CAS  Google Scholar 

  • Miller DC, Becker CR, Stoldt CR (2008) Relation between morphology, etch rate, surface wetting, and electrochemical characteristics for micromachined silicon subject to galvanic corrosion. J Electrochem Soc 155:F253–F265

    Article  CAS  Google Scholar 

  • Muhlstein CL, Stach EA, Ritchie RO (2002) A reaction-layer mechanism for the delayed failure of micron-scale polycrystalline silicon structural films subjected to high-cycle fatigue loading. Acta Mater 50:3579–3595

    Article  CAS  Google Scholar 

  • Nakamura T, Hosoya N, Tiwari BP, Adachi S (2010) Properties of silver/porous-silicon nanocomposite powders prepared by metal assisted electroless chemical etching. J Appl Phys 108:104315

    Article  CAS  Google Scholar 

  • Nakamura T, Tiwari BP, Adachi S (2011) Direct synthesis and enhanced catalytic activities of platinum and porous-silicon composites by metal-assisted chemical etching. Jpn J Appl Phys 50:081301

    Article  Google Scholar 

  • Nielsen D, Abuhassan L, Alchihabi M, Al-Muhanna A, Host J, Nayfeh MH (2007) Current-less anodization of intrinsic silicon powder grains: formation of fluorescent Si nanoparticles. J Appl Phys 101:114302

    Article  CAS  Google Scholar 

  • Noguchi N, Suemune I (1993) Luminescent porous silicon synthesized by visible light irradiation. Appl Phys Lett 62:1429–1431

    Article  CAS  Google Scholar 

  • Noguchi N, Suemune I (1994) Selective formation of luminescent porous silicon by photosynthesis. J Appl Phys 75:4765–4767

    Article  CAS  Google Scholar 

  • Ogata YH, Kobayashi K (2006) Electrochemical metal deposition on silicon. Curr Opin Solid State Mater Sci 10:163–172

    Article  CAS  Google Scholar 

  • Ohkura Y, Weisse JM, Cai LL, Zheng XL (2013) Flash ignition of freestanding porous silicon films: effects of film thickness and porosity. Nano Lett 13:5528–5533

    Article  CAS  Google Scholar 

  • Parimi VS, Tadigadapa SA, Yetter RA (2014) Reactive wave propagation mechanisms in energetic porous silicon composites. Combust Sci Technol 187:249–268

    Article  CAS  Google Scholar 

  • Parimi VS, Tadigadapa SA, Yetter RA (2014) Effect of substrate doping on microstructure and reactivity of porous silicon. Chem Phys Lett 609:129–133

    Article  CAS  Google Scholar 

  • Peng K-Q, Yan Y-J, Gao S-P, Zhu J (2002) Synthesis of large-area silicon nanowire arrays via self-assembling nanoelectrochemistry. Adv Mater 14:1164–1167

    Article  CAS  Google Scholar 

  • Peng K-Q, Yan Y-J, Gao S-P, Zhu J (2003) Dendrite-assisted growth of silicon nanowires in electroless metal deposition. Adv Func Mater 13:127–132

    Article  CAS  Google Scholar 

  • Piekiel NW, Morris CJ (2015) Small-scale, self-propagating combustion realized with on-chip porous silicon. ACS Appl Mater Interfaces 7:9889–9897

    Article  CAS  Google Scholar 

  • Piekiel NW, Morris CJ, Churaman WA, Cunningham ME, Lunking DM, Currano LJ (2015) Combustion and material characterization of highly tunable on-chip energetic porous silicon. Propellants Explos Pyrotechnics 40:16–26

    Article  CAS  Google Scholar 

  • Pierron ON, Macdonald DD, Muhlstein CL (2005) Galvanic effects in Si-based microelectromechanical systems: thick oxide formation and its implications for fatigue reliability. Appl Phys Lett 86:211919

    Article  CAS  Google Scholar 

  • Quint SB, Pacholski C (2009) A chemical route to sub-wavelength hole arrays in metallic films. J Mater Chem 19:5906–5908

    Article  CAS  Google Scholar 

  • Song YY, Gao ZD, Kelly JJ, Xia XH (2005) Galvanic deposition of nanostructured noble-metal films on silicon. Electrochem Solid State Lett 8:C148–C150

    Article  CAS  Google Scholar 

  • Splinter A, Stürmann J, Benecke W (2001) Novel porous silicon formation technology using internal current generation. Mater Sci Eng C 15:109–112

    Article  Google Scholar 

  • Splinter A, Sturmann J, Benecke W (2001) New porous silicon formation technology using internal current generation with galvanic elements. Sens Actuators A 92:394–399

    Article  CAS  Google Scholar 

  • Sun NN, Chen JM, Jiang C, Zhang YJ, Shi F (2012) Enhanced wet-chemical etching to prepare patterned silicon mask with controlled depths by combining photolithography with galvanic reaction. Ind Eng Chem Res 51:793–799

    Google Scholar 

  • Turner DR (1960) On the mechanism of chemically etching germanium and silicon. J Electrochem Soc 107:810–816

    Article  CAS  Google Scholar 

  • Wang CH, Sun DC, Xia XH (2006) One-step formation of nanostructured gold layers via a galvanic exchange reaction for surface enhancement Raman scattering. Nanotechnology 17:651–657

    Article  CAS  Google Scholar 

  • Xia XH, Ashruf CMA, French PJ, Kelly JJ (2000) Galvanic cell formation in silicon/metal contacts: the effect on silicon surface morphology. Chem Mater 12:1671–1678

    Article  CAS  Google Scholar 

  • Zhou X, Torabi M, Lu J, Shen RQ, Zhang KL (2014) Nanostructured energetic composites: synthesis, ignition/combustion modeling, and applications. ACS Appl Mater Interfaces 6:3058–3074

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt W. Kolasinski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kolasinski, K.W. (2018). Porous Silicon Formation by Galvanic Etching. In: Canham, L. (eds) Handbook of Porous Silicon. Springer, Cham. https://doi.org/10.1007/978-3-319-71381-6_3

Download citation

Publish with us

Policies and ethics