Skip to main content

Evasive Maneuvering for UAVs: An MPC Approach

  • Conference paper
  • First Online:
ROBOT 2017: Third Iberian Robotics Conference (ROBOT 2017)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 693))

Included in the following conference series:

Abstract

Flying autonomously in a workspace populated by obstacles is one of the main goals when working with Unmanned Aerial Vehicles (UAV). To address this challenge, this paper presents a model predictive flight controller that drives the UAV through collision-free trajectories to reach a given pose or follow a waypoint path. The major advantage of this approach lies on the inclusion of three-dimensional obstacle avoidance in the control layer by adding ellipsoidal constraints to the optimal control problem. The obstacles can be added, moved and resized online, providing a way to perform waypoint navigation without the need of motion planning. In addition, the delays of the system are cosidered in the prediction by an experimental first order with delay model of the system. Successful experiments in 3D path tracking and obstacle avoidance validates its effectiveness for sense-and-avoid and surveillance applications presenting the proper structure to extent its autonomy and applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Lenovo Y50-70 laptop with Intel® i7-4710HQ CPU at 2.50 GHz and 8 GiB of DDR3 1600 MHz RAM.

  2. 2.

    ROS Indigo [14] (The Robot Operating System) under Ubuntu 14.04.

  3. 3.

    A ROS package based on the official AR-Drone SDK to control the UAV [15].

References

  1. Valavanis, K.P., Vachtsevanos, G.J.: Handbook of Unmanned Aerial Vehicles, Section XX: UAV Applications. Springer Publishing Company, Incorporated (2014)

    Google Scholar 

  2. Goerzen, C., Kong, Z., Mettler, B.: A survey of motion planning algorithms from the perspective of autonomous UAV guidance. J. Intell. Rob. Syst. 57(1–4), 65–100 (2010)

    Article  MATH  Google Scholar 

  3. Abdolhosseini, M., Zhang, Y., Rabbath, C.A.: An efficient model predictive control scheme for an unmanned quadrotor helicopter. J. Intell. Rob. Syst. 1–12 (2013)

    Google Scholar 

  4. Alexis, K., Papachristos, C., Siegwart, R., Tzes, A.: Robust model predictive flight control of unmanned rotorcrafts. J. Intell. Rob. Syst. 81(3–4), 443–469 (2016)

    Article  Google Scholar 

  5. Andersson, O., Wzorek, M., Rudol, P., Doherty, P.: Model-predictive control with stochastic collision avoidance using Bayesian policy optimization. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 4597–4604. IEEE (2016)

    Google Scholar 

  6. Darivianakis, G., Alexis, K., Burri, M., Siegwart, R.: Hybrid predictive control for aerial robotic physical interaction towards inspection operations. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 53–58. IEEE (2014)

    Google Scholar 

  7. Desaraju, V.R., Michael, N.: Fast nonlinear model predictive control via partial enumeration. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 1243–1248. IEEE (2016)

    Google Scholar 

  8. Garimella, G., Kobilarov, M.: Towards model-predictive control for aerial pick-and-place. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 4692–4697. IEEE (2015)

    Google Scholar 

  9. Vlantis, P., Marantos, P., Bechlioulis, C.P., Kyriakopoulos, K.J.: Quadrotor landing on an inclined platform of a moving ground vehicle. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 2202–2207. IEEE (2015)

    Google Scholar 

  10. Zhang, T., Kahn, G., Levine, S., Abbeel, P.: Learning deep control policies for autonomous aerial vehicles with MPC-guided policy search. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 528–535. IEEE (2016)

    Google Scholar 

  11. Dentler, J., Kannan, S., Mendez, M.A.O., Voos, H.: A real-time model predictive position control with collision avoidance for commercial low-cost quadrotors. In: 2016 IEEE Conference on Control Applications (CCA), pp. 519–525. IEEE (2016)

    Google Scholar 

  12. Bouffard, P., Aswani, A., Tomlin, C.: Learning-based model predictive control on a quadrotor: onboard implementation and experimental results. In: 2012 IEEE International Conference on Robotics and Automation (ICRA), pp. 279–284. IEEE (2012)

    Google Scholar 

  13. Houska, B., Ferreau, H., Vukov, M., Quirynen, R.: ACADO Toolkit User’s Manual (2009–2013). http://acado.github.io

  14. Garage, W.: ROS. The Robot Operating System. www.ros.org

  15. Olivares-Mendez, M.A., Kannan, S., Voos, H.: Setting up a testbed for UAV vision based control using V-REP & ROS: a case study on aerial visual inspection. In: 2014 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 447–458. IEEE (2014)

    Google Scholar 

  16. Rohmer, E., Singh, S.P.N., Freese, M.: V-REP: a versatile and scalable robot simulation framework. In: Proceedings of The International Conference on Intelligent Robots and Systems (IROS) (2013)

    Google Scholar 

  17. Quirynen, R., Vukov, M., Zanon, M., Diehl, M.: Autogenerating microsecond solvers for nonlinear MPC: a tutorial using ACADO integrators. Optim. Control Appl. Methods 36(5), 685–704 (2014)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the “Fonds National de la Recherche” (FNR), Luxembourg, under the project C15/15/10484117 (BEST-RPAS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Castillo-Lopez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Castillo-Lopez, M., Olivares-Mendez, M.A., Voos, H. (2018). Evasive Maneuvering for UAVs: An MPC Approach. In: Ollero, A., Sanfeliu, A., Montano, L., Lau, N., Cardeira, C. (eds) ROBOT 2017: Third Iberian Robotics Conference. ROBOT 2017. Advances in Intelligent Systems and Computing, vol 693. Springer, Cham. https://doi.org/10.1007/978-3-319-70833-1_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70833-1_67

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70832-4

  • Online ISBN: 978-3-319-70833-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics