Skip to main content

Path Planning for Automatic Recharging System for Steep-Slope Vineyard Robots

  • Conference paper
  • First Online:
ROBOT 2017: Third Iberian Robotics Conference (ROBOT 2017)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 693))

Included in the following conference series:

Abstract

Develop cost-effective ground robots for crop monitoring in steep slope vineyards is a complex challenge. The terrain presents harsh conditions for mobile robots and most of the time there is no one available to give support to the robots. So, a fully autonomous steep-slope robot requires a robust automatic recharging system. This work proposes a multilevel system that monitors a vineyard robot autonomy, to plan off-line the trajectory to the nearest recharging point and dock the robot on that recharging point considering visual tags. The proposed system called VineRecharge was developed to be deployed into a cost-effective robot with low computational power. Besides, this paper benchmarks several visual tags and detectors and integrates the best one into the VineRecharge system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    agrob.inesctec.pt.

  2. 2.

    VispAutoTracker implementation: http://wiki.ros.org/visp_auto_tracker.

  3. 3.

    ArSys implementation: http://wiki.ros.org/ar_sys.

  4. 4.

    ArTrackAlvar implementation: http://wiki.ros.org/ar_track_alvar.

  5. 5.

    AprilTags original implementation: http://people.csail.mit.edu/kaess/apriltags.

  6. 6.

    AprilTags RIVeR-Lab implementation: http://wiki.ros.org/apriltags_ros.

  7. 7.

    AprilTags Xenobot implementation: https://github.com/xenobot-dev/apriltags_ros.

References

  1. euRobotics: Strategic research agenda for robotics in Europe Information (2013). http://ec.europa.eu/research/industrial_technologies/pdf/robotics-ppp-roadmap_en.pdf

  2. Bac, C.W., Henten, E.J., Hemming, J., Edan, Y.: “Harvesting robots for high-value crops: state” of-the-art review and challenges ahead. J. Field Robot. 31(6), 888–911 (2014)

    Article  Google Scholar 

  3. VineRobot - FP7 project. Information. http://www.vinerobot.eu/

  4. Vinbot - FP7 project. Information. http://vinbot.eu/?lang=pt

  5. Dos Santos, F.N., et al.: Towards a reliable robot for steep slope vineyards monitoring. J. Intell. Robot. Syst. Article 340 (2016). https://doi.org/10.1007/s10846-016-0340-5

  6. Won, P., Biglarbegian, M., Melek, W.: Development of an effective docking system for modular mobile self-reconfigurable robots using extended kalman filter and particle filter. Robotics 4(1), 25–49 (2015)

    Article  Google Scholar 

  7. Kim, M., Kim, H.W., Chong, N.Y.: Automated robot docking using direction sensing RFID. In: 2007 IEEE International Conference on Robotics and Automation, pp. 4588-4593 (2007)

    Google Scholar 

  8. Mintchev, S., et al.: Towards docking for small scale underwater robots. Auton. Robots 38(3), 283–299 (2015)

    Article  Google Scholar 

  9. Zhu, Y., et al.: A multi-sensory autonomous docking approach for a self-reconfigurable robot without mechanical guidance. Int. J. Adv. Robot. Syst. 11, 10 (2014)

    Article  Google Scholar 

  10. Roh, S., Park, J.H., Lee, Y.H., Song, Y.K., Yang, K.W., Choi, M., Kim, H.-S., Lee, H., Choi, H.R.: Flexible docking mechanism with error-compensation capability for auto recharging system of mobile robot. Int. J. Control Autom. Syst. 6(5), 731–739 (2008)

    Google Scholar 

  11. Acuna, R., Li, Z., Willert, V.: MOMA: Visual Mobile Marker Odometry (2017). arXiv preprint arXiv:1704.02222

  12. Briggs, A.J., Scharstein, D., Braziunas, D., Dima, C., Wall, P.: Mobile robot navigation using self-similar landmarks. In: 2000 Proceedings of the IEEE International Conference on Robotics and Automation, ICRA 2000, vol. 2, pp. 1428-1434 (2000)

    Google Scholar 

  13. Dutta, V.: Mobile robot applied to QR landmark localization based on the keystone effect. In: Mechatronics and Robotics Engineering for Advanced and Intelligent Manufacturing, pp. 45–60 (2017)

    Google Scholar 

  14. Yoon, K.J., Jang, G.J., Kim, S.H., Kweon, I.S.: Fast landmark tracking and localization algorithm for the mobile robot self-localization. In: IFAC Workshop on Mobile Robot Technology, pp. 190–195 (2001)

    Google Scholar 

  15. Lo, D., Mendonça, P.R., Hopper, A.: TRIP: A low-cost vision-based location system for ubiquitous computing. Pers. Ubiquit. Comput. 6(3), 206–219 (2002)

    Article  Google Scholar 

  16. Zeybek, T., Chang, H.: Delay tolerant network for autonomous robotic vehicle charging and hazard detection. In: 2014 IEEE/ACIS 13th International Conference on Computer and Information Science (ICIS), pp. 79–85 (2014)

    Google Scholar 

  17. Chae, H., Han, K.: Combination of RFID and vision for mobile robot localization. In: Proceedings of the 2005 International Conference on Intelligent Sensors, Sensor Networks and Information Processing Conference, pp. 75–80 (2005)

    Google Scholar 

  18. Jang, G., Lee, S., Kweon, I.: Color landmark based self-localization for indoor mobile robots. In: 2002 Proceedings of the IEEE International Conference on Robotics and Automation, ICRA 2002, vol. 1, pp. 1037–1042 (2002)

    Google Scholar 

  19. Lin, C.C., Tummala, R.L.: Mobile robot navigation using artificial landmarks. J. Field Robot. 14(2), 93–106 (1997)

    Google Scholar 

  20. Boley, D.L., Steinmetz, E.S., Sutherland, K.T.: Robot localization from landmarks using recursive total least squares. In: 1996 Proceedings of the IEEE International Conference on Robotics and Automation, vol. 2, pp. 1381-1386 (1996)

    Google Scholar 

  21. Fernandes, E., Costa, P., Lima, J., Veiga, G.: Towards an orientation enhanced astar algorithm for robotic navigation. In: 2015 IEEE International Conference on Industrial Technology (ICIT), pp. 3320–3325 (2015)

    Google Scholar 

Download references

Acknowledgment

This work is financed by the ERDF – European Regional Development Fund through the Operational Programme for Competitiveness and Internationalisation - COMPETE 2020 Programme within project “POCI-01-0145-FEDER-006961”, and by National Funds through the FCT – Fundaçao para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) as part of project UID/EEA/50014/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filipe Neves dos Santos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Santos, L. et al. (2018). Path Planning for Automatic Recharging System for Steep-Slope Vineyard Robots. In: Ollero, A., Sanfeliu, A., Montano, L., Lau, N., Cardeira, C. (eds) ROBOT 2017: Third Iberian Robotics Conference. ROBOT 2017. Advances in Intelligent Systems and Computing, vol 693. Springer, Cham. https://doi.org/10.1007/978-3-319-70833-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70833-1_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70832-4

  • Online ISBN: 978-3-319-70833-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics