Skip to main content

Introductory remarks about the Volume II of the Complete Works of Gabrio Piola

  • Chapter
  • First Online:
The Complete Works of Gabrio Piola: Volume II

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 97))

Abstract

In this Volume II of the translations into English of the works by Gabrio Piola, we begin from the true first work written by the young Gabrio before 1824, when he was less than 30 years old. The content of the work Sull’applicazione de’ principj della meccanica analitica del Lagrange ai principali problemi. Memoria di Gabrio Piola presentata al concorso del premio e coronata dall’I.R. Istituto di Scienze, ecc. nella solennità del giorno 4 ottobre 1824, Milano, Imp. Regia stamperia, 1825, submitted to respond to a research program proposed by the I.R. Istituto on 4th October 1822, is in some aspects very modern and astonishingly topical.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Harrison, P. “Modelling the forming mechanics of engineering fabrics using a mutually constrained pantographic beam and membrane mesh.” Composites Part A: Applied Science and Manufacturing 81 (2016): 145-157.

    Article  Google Scholar 

  2. Russo, L. “The forgotten revolution: how science was born in 300 BC and why it had to be reborn.” Springer Science & Business Media, Netherlands, 2013.

    Google Scholar 

  3. Gatouillat, S., Bareggi, A., Vidal-Sallé, E., and Boisse, P. “Meso modelling for composite preform shaping– simulation of the loss of cohesion of the woven fibre network.” Composites Part A: Applied Science and Manufacturing, 54 (2013): 135-144.

    Article  Google Scholar 

  4. Harrison, P., Marcos F.A., and Drew A. “Towards comprehensive characterisation and modelling of the forming and wrinkling mechanics of engineering fabrics.” International Journal of Solids and Structures, (2017): in press (doi:https://doi.org/10.1016/j.ijsolstr.2016.11.008).

    Google Scholar 

  5. dell’Isola, F., Seppecher P., and Madeo A. “How contact interactions may depend on the shape of Cauchy cuts in Nth gradient continua: approach “à la D’Alembert”.” Zeitschrift für angewandte Mathematik und Physik 63.6 (2012): 1119-1141.

    Article  MathSciNet  Google Scholar 

  6. Alibert, J.-J., and Della Corte A. “Second-gradient continua as homogenized limit of pantographic microstructured plates: a rigorous proof.” Zeitschrift für angewandte Mathematik und Physik 66.5 (2015): 2855-2870.

    Article  MathSciNet  Google Scholar 

  7. Boutin, C., dell’Isola, F., Giorgio, I., and Placidi, L. “Linear pantographic sheets: Asymptotic micro-macro models identification.” Mathematics and Mechanics of Complex Systems, 5.2 (2017), 127-162.

    Article  MathSciNet  Google Scholar 

  8. Turco, E., Golaszewski, M., Giorgio, I., and D’Annibale, F. “Pantographic lattices with non-orthogonal fibres: Experiments and their numerical simulations.” Composites Part B: Engineering 118 (2017):1-14.

    Article  Google Scholar 

  9. Steigmann, D.J. and dell’Isola, F., “Mechanical response of fabric sheets to three-dimensional bending, twisting and stretching.” Acta Mechanica Sinica 31.3 (2015): 373-382.

    Article  MathSciNet  Google Scholar 

  10. Ogden, R.W. “Non-linear Elastic Deformations.”, Dover Civil and Mechanical Engineering, Courier Corporation, Dover, New York, USA, 1997.

    Google Scholar 

  11. dell’Isola, F., Della Corte, A., and Giorgio, I. “Higher-gradient continua: The legacy of Piola, Mindlin, Sedov and Toupin and some future research perspectives.” Mathematics and Mechanics of Solids 22.4 (2017): 852-872.

    Article  MathSciNet  Google Scholar 

  12. Auffray, N., dell’Isola, F., Eremeyev, V.A., Madeo, A., and Rosi, G. “Analytical continuum mechanics ‘a la’ Hamilton– Piola: least action principle for second gradient continua and capillary fluids.” Mathematics and Mechanics of Solids 20.4 (2015): 375– 417.

    Article  MathSciNet  Google Scholar 

  13. Battista, A., Cardillo, C., Del Vescovo, D., Rizzi, N.L., and Turco, E. “Frequency shifts induced by large deformations in planar pantographic continua.” Nanomechanics Science and Technology: An International Journal 6.2 (2015): 161– 178.

    Article  Google Scholar 

  14. Boutin, C., dell’Isola, F., Giorgio, I., and Placidi, L. “Linear pantographic sheets: Asymptotic micro-macro models identification.” Mathematics and Mechanics of Complex Systems 5.2 (2017): 127– 162.

    Article  MathSciNet  Google Scholar 

  15. Challamel, N., Kocsis, A., and Wang, C.M. “Higher-order gradient elasticity models applied to geometrically nonlinear discrete systems.” Theoretical and Applied Mechanics 42.4 (2015): 223– 248.

    Article  Google Scholar 

  16. Cordero, N.M., Forest, S., and Busso, E.P. “Second strain gradient elasticity of nano-objects.” Journal of the Mechanics and Physics of Solids 97, (2016): 92-124.

    Article  MathSciNet  Google Scholar 

  17. Del Vescovo, D., and Giorgio, I. “Dynamic problems for metamaterials: review of existing models and ideas for further research.” International Journal of Engineering Science 80 (2014): 153– 172.

    Article  MathSciNet  Google Scholar 

  18. dell’Isola, F., Andreaus, U., and Placidi, L. “At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: An underestimated and still topical contribution of Gabrio Piola.” Mathematics and Mechanics of Solids 20.8 (2015): 887– 928.

    Article  MathSciNet  Google Scholar 

  19. dell’Isola, F., Della Corte, A., Esposito, R., and Russo, L. “Some cases of unrecognized transmission of scientific knowledge: From Antiquity to Gabrio Piola’s peridynamics and generalized continuum theories.” In: Generalized Continua as Models for Classical and Advanced Materials, Springer (2016): 77– 128.

    Google Scholar 

  20. dell’Isola, F., Della Corte, A., and Giorgio, I. “Higher-gradient continua: The legacy of Piola, Mindlin, Sedov and Toupin and some future research perspectives.” Mathematics and Mechanics of Solids 22.4 (2016): 852-872.

    Article  MathSciNet  Google Scholar 

  21. dell’Isola, F., Giorgio, I., Pawlikowski, M., and Rizzi, N.L. “Large deformations of planar extensible beams and pantographic lattices: Heuristic homogenisation, experimental and numerical examples of equilibrium.” Proceedings of the Royal Society of London. Series A. 472.2185 (2016): 20150790.

    Article  Google Scholar 

  22. Eugster, S.R., and dell’Isola, F. “Exegesis of the introduction and sect.I from “Fundamentals of the Mechanics of Continua”by E. Hellinger.” ZAMM 97.4 (2017): 477– 506.

    Article  MathSciNet  Google Scholar 

  23. Eugster, S. R., and dell’Isola, F. “Exegesis of Sect. II and III. A from “Fundamentals of the Mechanics of Continua”by E. Hellinger.” ZAMM 98.1 (2017): 31-68.

    Article  MathSciNet  Google Scholar 

  24. Eugster, S. R., and dell’Isola, F. “Exegesis of Sect. III. B from “Fundamentals of the Mechanics of Continua” by E. Hellinger, ZAMM 98.1 (2018): 69-105.

    Article  MathSciNet  Google Scholar 

  25. Germain, P. “La méthode des puissances virtuelles en mécanique des milieux continus. première partie: théorie du second gradient.” J. Mécanique 12 (1973): 236– 274.

    MATH  Google Scholar 

  26. Germain, P. “The method of virtual power in continuum mechanics. Part 2: Microstructure.” SIAM Journal on Applied Mathematics 25.3 (1973): 556– 575.

    Article  Google Scholar 

  27. Kline, M. “Mathematical Thought From Ancient to Modern Times: Vol. 3.”, Oxford University Press, Oxford, USA (1990).

    MATH  Google Scholar 

  28. Kuhn, T.S. “The Structure of Scientific Revolutions”, 3rd edn. University of Chicago Press, Chicago, USA (1996).

    Book  Google Scholar 

  29. Placidi, L., Andreaus, U., Della Corte, A., and Lekszycki, T. “Gedanken experiments for the determination of two-dimensional linear second gradient elasticity coefficients.” Zeitschrift für angewandte Mathematik und Physik 66.6 (2015): 3699– 3725.

    Article  MathSciNet  Google Scholar 

  30. Placidi, L., Andreaus, U., and Giorgio, I. “Identification of two-dimensional pantographic structure via a linear D4 orthotropic second gradient elastic model.” Journal of Engineering Mathematics 103.1 (2017): 1– 21.

    Article  MathSciNet  Google Scholar 

  31. Placidi, L., Barchiesi, E., Turco, E., and Rizzi, N.L. “A review on 2D models for the description of pantographic fabrics.” Zeitschrift für angewandte Mathematik und Physik 67.121 (2016), (doi: https://doi.org/10.1007/s00033-016-0716-1).

    Google Scholar 

  32. Placidi, L., Greco, L., Bucci, S., Turco, E., and Rizzi, N.L. “A second gradient formulation for a 2D fabric sheet with inextensible fibres.” Zeitschrift für angewandte Mathematik und Physik 67.114 (2016), (doi:https://doi.org/10.1007/s00033-016-0701-8).

    Google Scholar 

  33. Scerrato, D., Giorgio, I., and Rizzi, N.L. “Three-dimensional instabilities of pantographic sheets with parabolic lattices: numerical investigations.” Zeitschrift für angewandte Mathematik und Physik 67.53 (2016): 1– 19.

    MathSciNet  MATH  Google Scholar 

  34. Sedov, L.I. “Mathematical methods for constructing new models of continuous media.” Russian Mathematical Surveys 20.5 (1965): 123-182.

    Article  MathSciNet  Google Scholar 

  35. Stillwell, J. “Exceptional objects.” The American Mathematical Monthly 105.9 (1998): 850-858.

    Article  MathSciNet  Google Scholar 

  36. Toupin, R.A. “Theories of elasticity with couple-stress.” Archive for Rational Mechanics and Analysis 17.2 (1964): 85– 112.

    Article  MathSciNet  Google Scholar 

  37. Trinh, D.K., Janicke, R., Auffray, N., Diebels, S., and Forest, S. “Evaluation of generalized continuum substitution models for heterogeneous materials.” International Journal for Multiscale Computational Engineering 10.6 (2012): 527-549.

    Article  Google Scholar 

  38. Turco, E., Barcz, K., Pawlikowski, M., and Rizzi, N.L. “Non-standard coupled extensional and bending bias tests for planar pantographic lattices. Part I: numerical simulations.” Zeitschrift für angewandte Mathematik und Physik 67.122 (2016), (doi:https://doi.org/10.1007/s00033-016-0713-4).

    Google Scholar 

  39. Turco, E., Barcz, K., and Rizzi, N.L. “Non-standard coupled extensional and bending bias tests for planar pantographic lattices. Part II: comparison with experimental evidence.” Zeitschrift für Angewandte Mathematik und Physik 67.123 (2016), (doi:https://doi.org/10.1007/s00033-016-0714-3).

    Google Scholar 

  40. Turco, E., dell’Isola, F., Rizzi, N.L., Grygoruk, R., Müller, W.H., and Liebold, C. “Fiber rupture in sheared planar pantographic sheets: Numerical and experimental evidence.” Mechanics Research Communications 76 (2016): 86– 90.

    Article  Google Scholar 

  41. Turco, E., Golaszewski, M., Cazzani, A., and Rizzi, N.L. “Large deformations induced in planar pantographic sheets by loads applied on fibers: experimental validation of a discrete Lagrangian model.” Mechanics Research Communications 76 (2016): 51– 56.

    Article  Google Scholar 

  42. Turco, E., and Rizzi, N.L. “Pantographic structures presenting statistically distributed defects: numerical investigations of the effects on deformation fields.” Mechanics Research Communications 77 (2016): 65– 69.

    Article  Google Scholar 

  43. Turro, N.J. “Paradigms lost and paradigms found: Examples of science extraordinary and science pathological and how to tell the difference.” Angewandte Chemie International Edition 39.13 (2000): 2255– 2259. .

    Article  Google Scholar 

  44. Baretti, G. “Dizionario delle lingue Italiana ed Inglese: Italiano ed Inglese.” Vol. 1. Appresso Francesco Di Niccolò Pezzana, 1787. Digitalized by Google Books.

    Google Scholar 

  45. Venturoli, G. “Elements of practical mechanics”, trad. [from Elementi di meccanica e d’idraulica, vol.2] by Daniel Cresswell, J. Smith for J. Deighton & Sons, Cambridge, 1823.

    Google Scholar 

  46. Clagett, M. “Archimedes in the Middle Ages, Vol. 1. The Arabo-Latin Tradition.” The University of Wisconsin Press, Madison, 1964.

    Google Scholar 

  47. Clagett, M. “Archimedes in the Middle Ages, Vol. 2: The translation from the Greek by William of Moerbeke”. American Philosophical Society, Philadelphia, 1967.

    Google Scholar 

  48. Clagett, M. “Archimedes in the Middle Ages, Vol. 3: The fate of the medieval Archimedes 1300– 1565”. American Philosophical Society, Philadelphia, 1978.

    Google Scholar 

  49. Clagett, M. “Archimedes in the Middle Ages, Vol.4: A supplement on the medieval Latin tradition of conic sections”. American Philosophical Society, Philadelphia, 1980.

    Google Scholar 

  50. Clagett, M. “William of Moerbeke: translator of Archimedes”. Proceedings of the American Philosophical Society 126.5 (1982): 356– 366.

    Google Scholar 

  51. Clagett, M. “Archimedes in the Middle Ages, Vol. 5: Quasi-Archimedean Geometry in the Thirteen Century”. American Philosophical Society, Philadelphia, 1984.

    Google Scholar 

  52. Heiberg, J.L. “Archimedis Opera Omnia: Cum Commentariis Eutocii” Vol.I-III. B.G. Teubneri, Leipzig, 1880-1881.

    Google Scholar 

  53. Heiberg, J.L. “Archimedis Opera Omnia: Cum Commentariis Eutocii”. Bibliotheca Scriptorum Graecorum et Romanorum Teubneriana, Vol. I. B.G. Teubneri, Stuttgart, 1910.

    Google Scholar 

  54. Heiberg, J.L. “Archimedis Opera Omnia: Cum Commentariis Eutocii”. Bibliotheca Scriptorum Graecorum et Romanorum Teubneriana, Vol. II. B.G. Teubneri, Stuttgart, 1913.

    Google Scholar 

  55. Maxwell, J.C. “A treatise on electricity and magnetism.” Clarendon press, Oxford, 1881.

    MATH  Google Scholar 

  56. Sanchez-Palencia, E. “Non-homogeneous media and vibration theory”. Springer Verlag, Berlin Heidelberg, 1980.

    MATH  Google Scholar 

  57. Bakhvalov, N. and Panasenko, G. “Homogenization: Averaging Processes in Periodic Media”, Kluwer, Dordrecht, 1989.

    Book  Google Scholar 

  58. Bensoussan, A., Lions, J.L. and Papanicolaou, G. “Asymptotic Analysis for Periodic Structures”, North-Holland, Amsterdam, 1978.

    MATH  Google Scholar 

  59. Ostoja-Starzewski, M. “Microstructural randomness and scaling in materials”, Chapman and Hall/CRC Press, Boca Raton, USA, 2007.

    Book  Google Scholar 

  60. Kozlov, S.M. “Homogenization of Random Operators.” Matem. Sbornik 109.151, 1979: 188-202. (English transl.: Math. USSR, Sb. 37:2, (1980): 167-180).

    Google Scholar 

  61. Papanicolaou, G.C., and Varadhan, S.R. “Boundary Value Problems with Rapidly Oscillating Coefficients.” In: Seria Colloq. Math. Society Janos Bolyai 27, (1981): 835-873, Amsterdam.

    Google Scholar 

  62. Berlyand, L., and Owhadi, H. “Flux Norm Approach to Finite Dimensional Homogenization Approximations with Non-Separated Scales and High Contrast.” Archive for Rational Mechanics and Analysis 198.2 (2010): 677-721.

    Article  MathSciNet  Google Scholar 

  63. Målqvist, A., and Peterseim, D. “Localization of elliptic multiscale problems”, Mathematics of Computation 83.290 (2014): 2583-2603.

    Article  MathSciNet  Google Scholar 

  64. Dal Maso, G., “An introduction to \(\Lambda \)-convergence”, Birkhauser, Basel, 1992.

    Google Scholar 

  65. Kozlov, S.M., Oleinik, O.A., and Zhikov, V.V. “Homogenization of differential operators and integral functionals”, Springer-Verlag, Berlin-Heidelberg-New York City, (1994).

    Google Scholar 

  66. Oleinik, O.A., Shamaev, A.S., and Yosifian, G.A. “Mathematical problems in elasticity and homogenization, Studies in Mathematics and its Applications”, 26, North Holland Publishing Co. , Amsterdam - London - New York City - Tokyo, (1991).

    Google Scholar 

  67. Hornung, U. (Ed.) “Homogenization and Porous Media”, Interdisciplinary Applied Mathematics, 6, Springer-Verlag, Berlin Heidelberg, (1997).

    Google Scholar 

  68. Bakhvalov, N.S., and Panasenko, G.P., “Averaging of Processes in Periodic Media” (English translation: Kluwer,1989), Moscow: Nauka, (1984).

    Google Scholar 

  69. Braides, A., and Defranceschi, A. “Homogenization of Multiple Integrals”, Oxford Lecture Series in Mathematics and Its Applications, Clarendon Press, Oxford, (1998).

    MATH  Google Scholar 

  70. Camar-Eddine, M., and Seppecher, P. “Closure of the set of diffusion functionals with respect to the Mosco-convergence.” Mathematical Models and Methods in Applied Sciences 12.08 (2002): 1153-1176.

    Article  MathSciNet  Google Scholar 

  71. Alibert, J.-J., Seppecher, P., and dell’Isola, F. “Truss modular beams with deformation energy depending on higher displacement gradients.” Mathematics and Mechanics of Solids 8.1 (2003): 51-73.

    Article  MathSciNet  Google Scholar 

  72. Pideri, C., and Seppecher, P. “Asymptotics of a non-planar rod in non-linear elasticity.” Asymptotic Analysis 48.1 (2006): 33-54.

    MathSciNet  MATH  Google Scholar 

  73. Pideri, C., and Seppecher, P. “A second gradient material resulting from the homogenization of an heterogeneous linear elastic medium.” Continuum Mechanics and Thermodynamics 9.5 (1997): 241-257.

    Article  MathSciNet  Google Scholar 

  74. Camar-Eddine, M., and Seppecher, P. “Determination of the closure of the set of elasticity functionals.” Archive for Rational Mechanics and Analysis 170.3 (2003): 211-245.

    Article  MathSciNet  Google Scholar 

  75. Camar-Eddine, M., and Seppecher, P. “Non-local interactions resulting from the homogenization of a linear diffusive medium.” Comptes Rendus de l’Académie des Sciences-Series I-Mathematics 332.5 (2001): 485-490.

    Article  MathSciNet  Google Scholar 

  76. Alibert, J.-J., and Della Corte, A. “Second-gradient continua as homogenized limit of pantographic microstructured plates: a rigorous proof.” Zeitschrift für angewandte Mathematik und Physik 66.5 (2015): 2855-2870.

    Article  MathSciNet  Google Scholar 

  77. Brunacci, V., “Compendio del calcolo sublime: ad uso delle università del regno”. Stamp. reale, Milano, (1811).

    Google Scholar 

  78. Braides, A., and Truskinovsky, L. “Asymptotic expansions by \(\Lambda \)-convergence.” Continuum Mechanics and Thermodynamics 20.1 (2008): 21-62.

    Article  MathSciNet  Google Scholar 

  79. Braides, A. “A handbook of Gamma-convergence.” Handbook of Differential Equations: stationary partial differential equations 3 (2006): 101-213.

    MATH  Google Scholar 

  80. Braides, A. “Gamma-convergence for Beginners.” Oxford lecture series in mathematics and its applications 22, Clarendon Press, Oxford, (2002).

    Google Scholar 

  81. dell’Isola, F., Andreaus, U., Cazzani, A., Perego, U., Placidi, L., Ruta, G., and Scerrato, D. “Di un principio controverso della meccanica analitica di Lagrange e delle molteplici sue applicazioni.” In The complete works of Gabrio Piola: Volume I (pp. 371-590), (ed. dell’Isola et al.), Springer, Cham, (2014).

    Google Scholar 

  82. Carcaterra, A., dell’Isola, F., Esposito, R., and Pulvirenti, M. “Macroscopic description of microscopically strongly inhomogenous systems: a mathematical basis for the synthesis of higher gradients metamaterials.” Archive for Rational Mechanics and Analysis 3.218 (2015): 1239-1262.

    Article  MathSciNet  Google Scholar 

  83. Stigler, S.M. Gieryn, F., ed. “Stigler’s law of eponymy.” Transactions of the New York Academy of Sciences 39 (1980):147– 58.

    Article  Google Scholar 

  84. Hamilton, W.R. “Theory of Systems of Rays.” Transactions of the Royal Irish Academy 15 (1828): 69-174.

    Google Scholar 

  85. Hamilton, W.R. “Supplement to an Essay on the Theory of Systems of Rays.” Transactions of the Royal Irish Academy 16, part 1 (1830): 4-62.

    Google Scholar 

  86. Hamilton, W.R. “On a General Method in Dynamics.” Philosophical Transaction of the Royal Society Part II (1834): 247– 308; Part I (1835): 95– 144.

    Google Scholar 

  87. Luongo, A., and D’Annibale, F. “Linear stability analysis of multiparameter dynamical systems via a numerical-perturbation approach.” AIAA Journal 49.9 (2011): 2047-2056.

    Article  Google Scholar 

  88. Luongo, A. “A unified perturbation approach to static/dynamic coupled instabilities of nonlinear structures.” Thin-Walled Structures 48.10 (2010): 744-751.

    Article  Google Scholar 

  89. Contento, A., and Luongo, A. “Static and dynamic consistent perturbation analysis for nonlinear inextensible planar frames.” Computers & Structures 123 (2013): 79-92.

    Article  Google Scholar 

  90. Luongo, A., and Di Egidio, A. “Divergence, Hopf and double-zero bifurcations of a nonlinear planar beam.” Computers & Structures 84.24 (2006): 1596-1605.

    Article  Google Scholar 

  91. dell’Isola, F., Giorgio, I., Pawlikowski, M., and Rizzi, N. L. “Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium.” Proc. R. Soc. A. 472.2185, (2016): 20150790.

    Article  Google Scholar 

  92. Placidi, L., and El Dhaba, A.R. “Semi-inverse method à la Saint-Venant for two-dimensional linear isotropic homogeneous second-gradient elasticity.” Mathematics and Mechanics of Solids 22.5 (2017): 919-937.

    Article  MathSciNet  Google Scholar 

  93. dell’Isola, F., and Placidi, L. “Variational principles are a powerful tool also for formulating field theories.” In:dell’Isola F., Gavrilyuk S. (eds), Variational models and methods in solid and fluid mechanics 535, Springer Vienna, (2011).

    Google Scholar 

  94. Greco, L., and Cuomo, M. “An implicit G\(^1\) multi patch B-spline interpolation for Kirchhoff-Love space rod.”, Computer Methods in Applied Mechanics and Engineering 269 (2014): 173-197.

    Article  MathSciNet  Google Scholar 

  95. Laudato, M. and Di Cosmo, F. “Euromech 579 Arpino 3-8 April 2017: Generalized and microstructured continua: new ideas in modeling and/or applications to structures with (nearly)inextensible fibers-a review of presentations and discussions”, Continuum Mech. Thermodyn. (2018) (in press, doi:https://doi.org/10.1007/s00161-018-0654-6).

    Article  Google Scholar 

  96. Di Cosmo F., Laudato M., and Spagnuolo M. “Acoustic Metamaterials Based on Local Resonances: Homogenization, Optimization and Applications.” In: Altenbach H., Pouget J., Rousseau M., Collet B., Michelitsch T. (eds) Generalized Models and Non-classical Approaches in Complex Materials 1. Advanced Structured Materials, vol 89. Springer, Cham, (2018).

    Google Scholar 

  97. Misra, A., and Huang, S. “Micromechanical stress-displacement model for rough interfaces: Effect of asperity contact orientation on closure and shear behavior.”, International Journal of Solids and Structures, 49.1 (2012): 111-120.

    Article  Google Scholar 

  98. Misra, A., and Parthasarathy, R., Singh, V., and Spencer, P. “Micro-poromechanics model of fluid-saturated chemically active fibrous media.”, ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik 95.2 (2015): 215-234.

    Article  MathSciNet  Google Scholar 

  99. Misra, A., and Poorsolhjouy, P. “Micro-macro scale instability in 2D regular granular assemblies.”, Continuum Mechanics and Thermodynamics 27.1 (2013): 63-82.

    MathSciNet  MATH  Google Scholar 

  100. Misra, A., and Singh, V. “Nonlinear granular micromechanics model for multi-axial rate-dependent behavior.”, International Journal of Solids and Structures 51.13 (2014): 2272-2282.

    Article  Google Scholar 

  101. dell’Isola, F. “A difficult problem for artificial intelligence: how to assess originality of scientific research and the dangers of apostrophes in family names.” HAL archives-ouvertes:01002678, (2014).

    Google Scholar 

  102. Barchiesi E., dell’Isola F., Laudato M., Placidi L., and Seppecher P. “A 1D Continuum Model for Beams with Pantographic Microstructure: Asymptotic Micro-Macro Identification and Numerical Results”. In: dell’Isola F., Eremeyev V., Porubov A. (eds) Advances in Mechanics of Microstructured Media and Structures. Advanced Structured Materials, vol 87. Springer, Cham.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco dell’Isola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

dell’Isola, F., Andreaus, U., Cazzani, A., Barchiesi, E. (2019). Introductory remarks about the Volume II of the Complete Works of Gabrio Piola. In: dell'Isola, F., et al. The Complete Works of Gabrio Piola: Volume II. Advanced Structured Materials, vol 97. Springer, Cham. https://doi.org/10.1007/978-3-319-70692-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70692-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70690-0

  • Online ISBN: 978-3-319-70692-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics