Skip to main content

Sex Differences and Role of Estradiol in Hypoglycemia-Associated Counter-Regulation

  • Chapter
  • First Online:
Sex and Gender Factors Affecting Metabolic Homeostasis, Diabetes and Obesity

Abstract

Vital nerve cell functions, including maintenance of transmembrane voltage and information transfer, occur at high energy expense. Inadequate provision of the obligate metabolic fuel glucose exposes neurons to risk of dysfunction or injury. Clinical hypoglycemia rarely occurs in nondiabetic individuals but is an unfortunate regular occurrence in patients with type 1 or advanced insulin-treated type 2 diabetes mellitus. Requisite strict glycemic control, involving treatment with insulin, sulfonylureas, or glinides, can cause frequent episodes of iatrogenic hypoglycemia due to defective counter-regulation, including reduced glycemic thresholds and diminished magnitude of motor responses. Multiple components of the body’s far-reaching energy balance regulatory network, including the hindbrain dorsal vagal complex, provide dynamic readout of cellular energetic disequilibrium, signals that are utilized by the hypothalamus to shape counterregulatory autonomic, neuroendocrine, and behavioral outflow toward restoration of glucostasis. The ovarian steroid hormone 17β-estradiol acts on central substrates to preserve nerve cell energy stability brain-wide, thereby providing neuroprotection against bio-energetic insults such as neurodegenerative diseases and acute brain ischemia. The current review highlights recent evidence implicating estrogen in gluco-regulation in females by control of hindbrain metabolic sensor screening and signaling of hypoglycemia-associated neuro-energetic instability. It is anticipated that new understanding of the mechanistic basis of how estradiol influences metabolic sensory input from this critical brain locus to discrete downstream regulatory network substrates will likely reveal viable new molecular targets for therapeutic simulation of hormone actions that promote positive neuronal metabolic state during acute and recurring hypoglycemia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

4CIN:

Alpha-cyano-4-hydroxycinnamate

6-OHDA:

6-Hydroxydopamine

AICAR:

5-Aminoimidazole-4-carboxamide-riboside

AMPK:

Adenosine 5′-monophosphate-activated protein kinase

ANLSH:

Astrocyte-neuron lactate shuttle hypothesis

ARH:

Arcuate hypothalamic nucleus

CA:

Catecholamine

CaMMKβ:

Ca++/calmodulin-dependent protein kinase-beta

CRH:

Corticotropin-releasing hormone

CV4:

Caudal fourth ventricle

DAB:

1,4-Dideoxy-1,4-imino-d-arabinitol

DBH:

Dopamine-beta-hydroxylase

DMH:

Dorsomedial hypothalamic nucleus

DVC:

Dorsal vagal complex

ERα:

Estrogen receptor-alpha

ERβ:

Estrogen receptor-beta

FD:

Food deprivation

GABA:

γ-Aminobutyric acid

GAD65/67 :

Glutamate decarboxylase65/67

GCK:

Glucokinase

GE:

Glucose-excited

GI:

Glucose-inhibited

GnRH:

Gonadotropin-releasing hormone

GP:

Glycogen phosphorylase

GS:

Glycogen synthase

HAAF:

Hypoglycemia-associated autonomic failure

icv :

Intracerebroventricular

ir:

Immunoreactivity

KATP :

ATP-dependent potassium channel

LH:

Luteinizing hormone

LHA:

Lateral hypothalamic area

NE:

Norepinephrine

nNOS:

Neuronal nitric oxide synthase

NPY:

Neuropeptide Y

OGDH:

Alpha ketoglutarate dehydrogenase

ORDX:

Orchidectomy

OVX:

Ovariectomy

pAMPK:

PhosphoAMPK

PFKL:

Phosphofructokinase

PHTPP:

4-[2-Phenyl-5,7-bis(trifluoromethyl)pyrazolo[1,5-a]pyrimidin-3-yl]phenol

PVH:

Paraventricular hypothalamic nucleus

RIIH:

Recurring insulin-induced hypoglycemia

rPO:

Rostral preoptic area

NTS:

Nucleus of the solitary tract

T1DM:

Type 1 diabetes mellitus

T2DM:

Type 2 diabetes mellitus

TCA:

Tricarboxylic acid cycle

VMH:

Ventromedial hypothalamic nucleus

References

  • Adachi, A., Kobashi, M., & Funahashi, M. (1995). Glucose-responsive neurons in the brainstem. Obesity Research, 3, 35S–740S.

    Article  Google Scholar 

  • Adler, B. A., Johnson, M. D., Lynch, C. O., & Crowley, W. R. (1983). Evidence that norepinephrine and epinephrine systems mediate the stimulatory effects of ovarian hormones on luteinizing hormone and luteinizing hormone-releasing hormone. Endocrinology, 113, 1431–1438.

    Article  CAS  PubMed  Google Scholar 

  • Alenazi, F. S. H., Ibrahim, B. A., & Briski, K. P. (2014). Estradiol regulates effects of hindbrain AICAR administration on hypothalamic AMPK activity and metabolic neurotransmitter mRNA and protein expression. Journal of Neuroscience Research, 93, 651–659.

    Article  PubMed  Google Scholar 

  • Alenazi, F. S. H., Ibrahim, B. A., Alhamami, H., Shakya, M., & Briski, K. P. (2016). Role of estradiol in intrinsic hindbrain AMPK regulation of hypothalamic AMPK, metabolic neuropeptide, and norepinephrine activity and food intake in the female rat. Neuroscience, 314, 35–46.

    Article  CAS  PubMed  Google Scholar 

  • Amiel, S. A., Simonsen, D. C., & Tamborlane, W. V. (1987). Rate of glucose fall does not affect counterregulatory hormone response to hypoglycemia in normal and diabetic humans. Diabetes, 36, 518–522.

    Article  CAS  PubMed  Google Scholar 

  • Amiel, S. A., Maran, A., Powrie, J. K., Umpleby, A. M., & Macdonald, I. A. (1993). Gender differences in counterregulation to hypoglycaemia. Diabetologia, 36, 460–464.

    Article  CAS  PubMed  Google Scholar 

  • Andrew, S. F., Dinh, T. T., & Ritter, S. (2007). Localized glucoprivation of hindbrain sites elicits corticosterone and glucagon secretion. American Journal of Physiology – Regulatory, Integrative and Comparative Physiology, 292, R1792–R1798.

    Article  CAS  PubMed  Google Scholar 

  • Asarian, L., & Geary, N. (2002). Cyclic estradiol treatment normalizes body weight and restores physiological patterns of spontaneous feeding and sexual receptivity in ovariectomized rats. Hormones and Behavior, 42, 461–471.

    Article  CAS  PubMed  Google Scholar 

  • Asarian, L., & Geary, N. (2006). Modulation of appetite by gonadal steroid hormones. Philosophical Transactions of the Royal Society B, 361, 1251–1263.

    Article  CAS  Google Scholar 

  • Azcoitia, I., Sierra, A., & Garcia-Segura, L. M. (1999). Localization of estrogen receptor beta-immunoreactivity in astrocytes of the adult rat brain. Glia, 26, 260–267.

    Article  CAS  PubMed  Google Scholar 

  • Balfour, R. H., Hansen, A. M. K., & Trapp, S. (2006). Neuronal responses to transient hypoglycaemia in the dorsal vagal complex of the rat brainstem. The Journal of Physiology, 570, 469–484.

    Article  CAS  PubMed  Google Scholar 

  • Barros, L. F. (2013). Metabolic signaling by lactate in the brain. Trends in Neurosciences, 36, 396–404.

    Article  CAS  PubMed  Google Scholar 

  • Bolli, C. G., De Feo, P., & Cosmo, S. (1984). A reliable and reproducible test for adequate glucose counterregulation in type 1 diabetes. Diabetes, 33, 732–737.

    Article  CAS  PubMed  Google Scholar 

  • Briski, K. P., & Nedungadi, T. P. (2009). Adaptation of feeding and counter-regulatory hormone responses to intermediate insulin-induced hypoglycaemia in the ovariectomised female rat: Effects of oestradiol. Journal of Neuroendocrinology, 21, 578–585.

    Article  CAS  PubMed  Google Scholar 

  • Briski, K. P., & Patil, G. D. (2005). Induction of Fos immunoreactivity labeling in forebrain metabolic loci by caudal fourth ventricular administration of the monocarboxylate transporter inhibitor, α-cyano-4-hydroxycinnamic acid. Neuroendocrinology, 82, 49–57.

    Article  CAS  PubMed  Google Scholar 

  • Briski, K. P., & Shrestha, P. K. (2016). Hindbrain estrogen receptor-beta antagonism normalizes reproductive and counter-regulatory hormone secretion in hypoglycemic steroid-primed ovariectomized female rats. Neuroscience, 331, 62–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Briski, K. P., & Sylvester, P. W. (1998). Effects of the glucose antimetabolite, 2-deoxy-D-glucose (2-DG), on the LH surge and Fos expression by preoptic GnRH neurons in ovariectomized, steroid-primed rats. Journal of Neuroendocrinology, 10, 769–776.

    Article  CAS  PubMed  Google Scholar 

  • Briski, K. P., Koshy Cherian, A., Genabai, N. K., & Vavaiya, K. V. (2009). In situ coexpression of glucose and monocarboxylate transporter mRNAs in metabolic-sensitive dorsal vagal complex catecholaminergic neurons: Transcriptional reactivity to insulin-induced hypoglycemia and caudal hindbrain glucose or lactate repletion during insulin-induced hypoglycemia. Neuroscience, 164, 1152–1160.

    Article  CAS  PubMed  Google Scholar 

  • Briski, K. P., Ibrahim, B. A., & Tamrakar, P. (2014). Energy metabolism and hindbrain AMPK: Regulation by estradiol. Hormone Molecular Biology and Clinical Investigation, 17, 129–136.

    Article  CAS  PubMed  Google Scholar 

  • Bröer, S., Rahman, B., Pellegri, G., Pellerin, L., Martin, J. L., Verleysdonk, S., Hamprecht, B., & Magistretti, P. J. (1997). Comparison of lactate transport in astroglial cells and monocarboxylate transporter 1 (MCT 1) expressing Xenopus laevis oocytes. Expression of two different monocarboxylate transporters in astroglial cells and neurons. The Journal of Biological Chemistry, 272, 30096–30102.

    Article  PubMed  Google Scholar 

  • Brown, A. M. (2004). Brain glycogen re-awakened. Journal of Neurochemistry, 89, 537–552.

    Article  CAS  PubMed  Google Scholar 

  • Butcher, R. L., Collins, W. E., & Fugo, N. W. (1974). Plasma concentrations of LH, FSH, progesterone, and estradiol-17beta throughout the 4-day estrous cycle of the rat. Endocrinology, 94, 1704–1708.

    Article  CAS  PubMed  Google Scholar 

  • Chan, O., Zhu, W., Ding, Y., McCrimmon, R., & Sherwin, R. (2006). Blockade of GABAA receptors in the ventromedial hypothalamus further stimulates glucagon and sympathoadrenal but not the hypothalamo-pituitary-adrenal response to hypoglycemia. Diabetes, 55, 1080–1087.

    Article  CAS  PubMed  Google Scholar 

  • Chan, O., Lawson, M., Zhu, W., Beverly, J. L., & Sherwin, R. (2007). ATP-sensitive K(+) channels regulate the release of GABA in the ventromedial hypothalamus during hypoglycemia. Diabetes, 56, 1120–1126.

    Article  CAS  PubMed  Google Scholar 

  • Chen, M. D., O’Byrne, K. T., Chiappini, S. E., Hotchkiss, J., & Knobil, E. (1992). Hypoglycemic ‘stress’ and gonadotropin-releasing hormone pulse generator activity in the rhesus monkey: Role of the ovary. Neuroendocrinology, 56, 666–673.

    Article  CAS  PubMed  Google Scholar 

  • Chen, J. Q., Brown, T. R., & Russo, J. (2009). Regulation of energy metabolism pathways by estrogens and estrogenic chemicals and potential implications in obesity associated with increased exposure to endocrine disruptors. Biochimica et Biophysica Acta, 1793, 1128–1143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cherian, A. K., & Briski, K. P. (2011). Quantitative RT PCR and immunoblot analyses reveal acclimated A2 noradrenergic neuron substrate fuel transporter, glucokinase, phospho-AMPK, and dopamine-beta-hydroxylase responses to hypoglycemia. Journal of Neuroscience Research, 89, 1114–1124.

    Article  CAS  PubMed  Google Scholar 

  • Cherian, A. K., & Briski, K. P. (2012). A2 noradrenergic nerve cell metabolic transducer and nutrient transporter adaptation to hypoglycemia: Impact of estrogen. Journal of Neuroscience Research, 90, 1347–1358.

    Article  PubMed  Google Scholar 

  • Clarke, I. J., Horton, R. J. E., & Doughton, B. W. (1990). Investigation of the mechanism by which insulin-induced hypoglycemia decreases luteinizing hormone secretion in ovariectomized ewes. Endocrinology, 127, 1470–1476.

    Article  CAS  PubMed  Google Scholar 

  • Cryer, P. E. (1993). Hypoglycemia begets hypoglycemia in IDDM. Diabetes, 42, 1691–1693.

    Google Scholar 

  • Cryer, P. E. (2001). Hypoglycemia-associated autonomic failure in diabetes. American Journal of Physiology – Endocrinology and Metabolism, 281, E1115–E11121.

    Article  CAS  PubMed  Google Scholar 

  • Cryer, P. E. (2005). Mechanisms of hypoglycemia-associated autonomic failure and its component syndromes in diabetes. Diabetes, 54, 3592–3601.

    Article  CAS  PubMed  Google Scholar 

  • Davis, S. N., Shavers, C., & Costa, F. (2000). Gender-related differences in counterregulatory responses to antecedent hypoglycemia in normal humans. The Journal of Clinical Endocrinology and Metabolism, 85, 2148–2157.

    CAS  PubMed  Google Scholar 

  • de Galan, B. E., Schouwenberg, B. J., Tack, C. J., & Smits, P. (2006). Pathophysiology and management of recurrent hypoglycaemia and hypoglycaemia unawareness in diabetes. The Netherlands Journal of Medicine, 64, 269–279.

    Google Scholar 

  • Debernardi, R., Pierre, K., Lengacher, S., Magistretti, P. J., & Pellerin, L. (2003). Cell-specific expression pattern of monocarboxylate transporters in astrocytes and neurons observed in different mouse brain cortical cell cultures. Journal of Neuroscience Research, 73, 141–155.

    Article  CAS  PubMed  Google Scholar 

  • Fanelli, C., Pampanelli, S., Epifano, L., Rambotti, A. M., Di Vincenzo, A., Modarelli, F., Ciofetta, M., Lepore, M., Annibale, B., & Torlone, E. (1994). Relative roles of insulin, and hypoglycemia on induction of neuroendocrine responses to, symptoms of, and deterioration of cognitive function in hypoglycemia in male and female humans. Diabetologia, 37, 797–807.

    Article  CAS  PubMed  Google Scholar 

  • Giles, E. D., Jackman, M. R., Johnson, G. C., Schedin, P. J., & Houser, J. L. (2010). Effect of the estrous cycle and surgical ovariectomy on energy balance, fuel utilization, and physical activity in lean and obese female rats. American Journal of Physiology – Regulatory, Integrative and Comparative Physiology, 299, R1634–R1642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodman, R. L. (1978). A quantitative analysis of the physiological role of estradiol and progesterone in the control of tonic and surge secretion of luteinizing hormone in the rat. Endocrinology, 102, 142–150.

    Article  CAS  PubMed  Google Scholar 

  • Gruetter, R. (2003). Glycogen: The forgotten cerebral energy store. Journal of Neuroscience Research, 74, 179–183.

    Article  CAS  PubMed  Google Scholar 

  • Gujar, A. D., Ibrahim, B. A., Tamrakar, P., & Briski, K. P. (2014). Hindbrain nutrient status regulates hypothalamic AMPK activity and hypothalamic metabolic neurotransmitter mRNA and protein responses to hypoglycemia. American Journal of Physiology – Regulatory, Integrative and Comparative Physiology, 306, R457–R469.

    Article  CAS  PubMed  Google Scholar 

  • Han, S. M., Namkoong, C., Jang, P. G., Park, I. S., Hong, S. W., Katakami, H., Chun, S., Kim, S. W., Park, J. Y., Lee, K. U., & Kim, M. S. (2005). Hypothalamic AMP-activated protein kinase mediates counter-regulatory responses to hypoglycaemia in rats. Diabetologia, 48, 2170–2178.

    Article  CAS  PubMed  Google Scholar 

  • Hardie, D. G. (2003). Minireview: The AMP-activated protein kinase cascade: The key sensor of cellular energy status. Endocrinology, 144, 5179–5183.

    Article  CAS  PubMed  Google Scholar 

  • Harik, S. I., Busto, R., & Martinez, E. (1982). Norepinephrine regulation of cerebral glycogen utilization during seizures and ischemia. The Journal of Neuroscience, 2, 409–414.

    CAS  PubMed  Google Scholar 

  • Herbison, A. E., & Dyer, D. G. (1991). Effect of luteinizing hormone secretion of GABA receptor modulation in medial preoptic area at the time of proestrous luteinizing hormone surge. Neuroendocrinology, 53, 317–320.

    Google Scholar 

  • Herzog, R. I., Chan, O., Yu, S., Dziura, J., McNay, E. C., & Sherwin, R. S. (2008). Effect of acute and recurrent hypoglycemia on changes in brain glycogen concentration. Endocrinology, 149, 1499–1504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hopkins, D. (2004). Exercise-induced and other daytime hypoglycemic events in patients with diabetes: Prevention and treatment. Diabetes Research and Clinical Practice, 65(Suppl 1), S35–S39.

    Article  CAS  PubMed  Google Scholar 

  • Hösli, E., Rühl, W., & Hösli, L. (2000). Histochemical and electrophysiological evidence for estrogen receptors on cultured astrocytes: Colocalization with cholinergic receptors. International Journal of Developmental Neuroscience, 18, 101–111.

    Article  PubMed  Google Scholar 

  • Ibrahim, B. A., & Briski, K. P. (2014). Role of dorsal vagal complex A2 noradrenergic neurons in hindbrain glucoprivic inhibition of the luteinizing hormone surge in the steroid-primed ovariectomized female rat: Effects of 5-thioglucose on A2 functional biomarker and AMPK activity. Neuroscience, 269, 199–214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ibrahim, B. A., & Briski, K. P. (2015). Deferred feeding and body weight responses to short-term interruption of fuel acquisition: Impact of estradiol. Hormone and Metabolic Research, 47, 611–621.

    CAS  PubMed  Google Scholar 

  • Ibrahim, B., Tamrakar, P., Gujar, A., Koshy Cherian, A., & Brisk, K. P. (2013). Caudal fourth ventricular administration of the AMPK activator 5-aminoimiazole-4-carboxamide-riboside regulates glucose and counterregulatory hormone profiles, dorsal vagal complex metabolosensory neuron function, and hypothalamic Fos expression. Journal of Neuroscience Research, 91, 1226–1238.

    Article  CAS  PubMed  Google Scholar 

  • Irwin, R. W., Yao, J., Hamilton, R. T., Cadenas, E., Brinton, R. D., & Nilsen, J. (2008). Progesterone and estrogen regulate oxidative metabolism in brain mitochondria. Endocrinology, 149, 3167–3175.

    Google Scholar 

  • Kahn, B. B., Alquier, T., Carling, D., & Hardie, D. G. (2005). AMP-activated protein kinase: Ancient energy gauge provides clues to modern understanding of metabolism. Cell Metabolism, 1, 15–25.

    Article  CAS  PubMed  Google Scholar 

  • King, A. B., & Clark, D. (2015). Omitting late-night eating may cause hypoglycemia in “well controlled” basal insulin-treated type 2 diabetes. Endocrine Practice, 21, 280–285.

    Article  PubMed  Google Scholar 

  • Kostanyan, A., & Nazaryan, K. (1992). Rat brain glycolysis regulation by estradiol-17 beta. Biochimica et Biophysica Acta, 1133, 301–306.

    Article  CAS  PubMed  Google Scholar 

  • Laming, P. R., Kimelberg, H., Robinson, S., Salm, A., Hawrylak, N., Müller, C., Roots, B., & Ng, K. (2000). Neuronal-glial interactions and behaviour. Neuroscience and Biobehavioral Reviews, 24, 295–340.

    Google Scholar 

  • Li, A. J., Wang, Q., & Ritter, S. (2006). Differential responsiveness of dopamine-beta-hydroxylase gene expression to glucoprivation in different catecholamine cell groups. Endocrinology, 147, 3428–3434.

    Google Scholar 

  • Mitrakou, A., Mokan, M., & Ryan, C. (1993). Influence of plasma glucose rate of decrease on hierarchy of responses to hypoglycemia. Journal of Clinical Endocrinology and Metabolism, 76, 462–465.

    CAS  PubMed  Google Scholar 

  • Mizuno, Y., & Oomura, Y. (1984). Glucose responding neurons in the nucleus tractus solitarius of the rat: In vitro study. Brain Research, 307, 109–116.

    Article  CAS  PubMed  Google Scholar 

  • Mufson, E. J., Cai, W. J., Jaffar, S., Chen, E., Stebbins, G., Sendera, T., & Kordower, J. H. (1999). Estrogen receptor immunoreactivity within subregions of the rat forebrain: Neuronal distribution and association with perikarya containing choline acetyltransferase. Brain Research, 849, 253–274.

    Article  CAS  PubMed  Google Scholar 

  • Nedungadi, T. P., & Briski, K. P. (2012). Site-specific effects of intracranial estradiol administration on recurrent insulin-induced hypoglycemia in ovariectomized female rats. Neuroendocrinology, 96, 311–323.

    Article  CAS  PubMed  Google Scholar 

  • Nedungadi, T. P., Golemen, W. L., Paranjape, S. A., Kale, A. Y., & Briski, K. P. (2006). Effects of estradiol on glycemic and CNS neuronal activational responses to recurrent insulin-in-duced hypoglycemia in the ovariectomized female rat. Neuroendocrinology, 84, 235–243.

    Article  CAS  PubMed  Google Scholar 

  • Nehlig, A., Wittendorp-Rechenmann, E., & Lam, C. D. (2004). Selective uptake of [14C]2-deoxyglucose by neurons and astrocytes: High-resolution microautoradiographic imaging by cellular 14C-trajectography combined with immunohistochemistry. Journal of Cerebral Blood Flow and Metabolism, 24, 1004–1014.

    Article  CAS  PubMed  Google Scholar 

  • Nilsen, J., Irwin, R. W., Gallaher, T. K., & Brinton, R. D. (2007). Estradiol in vivo regulation of brain mitochondrial proteome. The Journal of Neuroscience, 27, 14069–14077.

    Google Scholar 

  • Obel, L. F., Müller, M. S., Walls, A. B., Sickmann, H. M., Bak, L. K., Waagepetarsen, H. S., & Schousboe, A. (2012). Brain glycogen – new perspectives on its metabolic function and regulation at the subcellular level. Frontiers in Neuroenergetics, 4, 15–28.

    Article  Google Scholar 

  • Ohkura, S., Tanaka, T., Nagatani, S., Bucholtz, D. C., Tsukamura, H., Maeda, K., & Foster, D. L. (2000). Central, but not peripheral, glucose-sensing mechanisms mediate glucoprivic suppression of pulsatile luteinizing hormone secretion in the sheep. Endocrinology, 141, 4472–4480.

    Article  CAS  PubMed  Google Scholar 

  • Osterlund, M., Kuiper, G. G., Gustafsson, J. A., & Hurd, Y. L. (1998). Differential distribution and regulation of estrogen receptor-alpha and -beta mRNA within the female rat brain. Brain Research Molecular Brain Research, 54, 175–180.

    Article  CAS  PubMed  Google Scholar 

  • Oz, G., Kumar, A., Rao, J. P., Kodl, C. T., Chow, L., Eberly, L. E., & Seaquist, E. R. (2009). Human brain glycogen metabolism during and after hypoglycemia. Diabetes, 58, 1978–1985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paranpape, S. A., & Briski, K. P. (2005). Recurrent insulin-induced hypoglycemia causes site-specific patterns of habituation or amplification of CNS neuronal genomic activation. Neuroscience, 130, 957–970.

    Article  Google Scholar 

  • Patil, G. D., & Briski, K. P. (2005). Lactate is a critical ‘sensed’ variable in caudal hindbrain monitoring of CNS metabolic stasis. American Journal of Physiology – Regulatory, Integrative and Comparative Physiology, 289, R1777–R1786.

    Article  CAS  PubMed  Google Scholar 

  • Pellerin, L. (2003). Lactate as a pivotal element in neuron-glia metabolic cooperation. Neurochemistry International, 43, 331–338.

    Article  CAS  PubMed  Google Scholar 

  • Pellerin, L., & Magistretti P. J. (1994). Glutamate uptake into astrocytes stimulates aerobic glycolysis: A mechanism coupling neuronal activity to glucose utilization. Proceedings of the National Academy of Sciences of the United States of America, 91, 10625–10629.

    Google Scholar 

  • Pellerin, L., Stolz, M., Sorg, O., Martin, J. L., Deschepper, C. F., & Magistretti, P. J. (1997). Regulation of energy metabolism by neurotransmitters in astrocytes in primary culture and in an immortalized cell line. Glia, 21, 74–83.

    Article  CAS  PubMed  Google Scholar 

  • Pierre, K., Pellerin, L., Debernardi, R., Riederer, B. M., & Magistretti, P. J. (2000). Cell-specific localization of monocarboxylate transporters, MCT1 and MCT2, in the adult mouse brain revealed by double immunohistochemical labeling and confocal microscopy. Neuroscience, 100, 617–627.

    Article  CAS  PubMed  Google Scholar 

  • Raju, B., McGregor, V. P., & Cryer, P. E. (2003). Cortisol elevations comparable to those that occur during hypoglycemia do not cause hypoglycemia-associated autonomic failure. Diabetes, 52, 2083–2089.

    Article  CAS  PubMed  Google Scholar 

  • Rinaman, L. (2011). Hindbrain noradrenergic A2 neurons: Diverse roles in autonomic, endocrine, cognitive, and behavioral functions. American Journal of Physiology – Regulatory, Integrative and Comparative Physiology, 300, R222–R235.

    Article  CAS  PubMed  Google Scholar 

  • Ronnett, G. V., Ramamurthy, S., Kleman, A. M., Landree, L. E., & Aja, S. (2009). AMPK in the brain: Its roles in energy balance and neuroprotection. Journal of Neurochemistry, 109, 17–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Routh, V. H., Hao, L., Santiago, A. M., Sheng, Z., & Zhou, C. (2014). Hypothalamic glucose sensing: Making ends meet. Frontiers in Systems Neuroscience, 8, 236. https://doi.org/10.3389/fnsys.2014.00236.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanders, N. M., Figlewicz, D. P., Taborsky, G. J., Jr., Wilkinson, C. W., Daumen, W., & Levin, B. E. (2006). Feeding and neuroendocrine responses after recurrent insulin-induced hypoglycemia. Physiology & Behavior, 87, 700–706.

    Article  CAS  Google Scholar 

  • Santiago, J. V., Clarke, W. L., & Shah, S. D. (1980). Epinephrine, norepinephrine, glucagon and growth hormone release in association with physiologic decrements in the plasma glucose concentration in normal and diabetic man. The Journal of Clinical Endocrinology and Metabolism, 51, 877–883.

    Article  CAS  PubMed  Google Scholar 

  • Seale, J. V., Wood, S. A., Atkinson, H. C., Harbuz, M. S., & Lightman, S. L. (2004). Gonadal steroid replacement reverses gonadectomy-induced changes in the corticosterone pulse profile and stress-induced hypothalamic-pituitary-adrenal axis activity of male and female rats. Journal of Neuroendocrinology, 16, 989–998.

    Google Scholar 

  • Shrestha, P. K., & Briski, K. P. (2015). Hindbrain lactate regulates preoptic gonadotropin-releasing hormone (GnRH) neuron GnRH-I protein but not AMPK responses to hypoglycemia in the steroid-primed ovariectomized female rat. Neuroscience, 298, 467–474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shrestha, P. K., Tamrakar, P., Ibrahima, B. A., & Briski, K. P. (2014). Hindbrain medulla catecholamine cell group involvement in lactate-sensitive hypoglycemia-associated patterns of hypothalamic norepinephrine and epinephrine activity. Neuroscience, 278, 20–30.

    Article  CAS  PubMed  Google Scholar 

  • Shughrue, P. J., Lane, M. V., & Merchenthaler, I. (1997). Comparative distribution of estrogen receptor-alpha and beta mRNA in the rat central nervous system. The Journal of Comparative Neurology, 388, 507–525.

    Article  CAS  PubMed  Google Scholar 

  • Spence, R. D., Wisdom, A. J., Cao, Y., Hill, H. M., Mongerson, C. R., Stapornkul, B., Itoh, N., Sofroniew, M. V., & Voskuhl, R. R. (2013). Estrogen mediates neuroprotection and anti-inflammatory effects during EAE through ERα signaling on astrocytes but not through ERβ signaling on astrocytes or neurons. The Journal of Neuroscience, 33, 10924–10933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stobart, J. L., & Anderson, C. M. (2013). Multifunctional role of astrocytes as gatekeepers of neuronal energy supply. Frontiers in Cellular Neuroscience, 7, 38. https://doi.org/10.3389/fncel.2013.00038.

  • Suh, S. W., Bergher, J. P., Anderson, C. M., Treadway, J. L., Fosgerau, K., & Swanson, R. A. (2007). Astrocyte glycogen sustains neuronal activity during hypoglycemia: Studies with the glycogen phosphorylase inhibitor CP-316,819([R-R*,S*]-5-chloro-N-[2-hdroxy-3-(methoxymethylamino)-3-oxo-1-(phenylmethyl) propyl]-1H-indole-2-carboxamide). The Journal of Pharmacology and Experimental Therapeutics, 321, 45–50.

    Article  CAS  PubMed  Google Scholar 

  • Tamrakar, P., & Briski, K. P. (2017). Impact of recurrent hypoglycemic stress on metabolic signaling in dorsal vagal complex neurons: Modulation by estradiol. Acta Neurobiologiae Experimentalis, 77, 31–44.

    Google Scholar 

  • Tamrakar, P., Ibrahim, B. A., Gujar, A. K., & Briski, K. P. (2015a). Estrogen regulates energy metabolic pathway and upstream AMPK kinase and phosphatase enzyme expression in dorsal vagal complex metabolo-sensory neurons during glucostasis and hypoglycemia. Journal of Neuroscience Research, 93, 321–332.

    Article  CAS  PubMed  Google Scholar 

  • Tamrakar, P., Shrestha, P. K., & Briski, K. P. (2015b). Dorsomedial hindbrain catecholamine regulation of hypothalamic astrocyte glycogen metabolic enzyme protein expression: Impact of estradiol. Neuroscience, 292, 34–45.

    Article  CAS  PubMed  Google Scholar 

  • ter Haar, M. B. (1972). Circadian and estrual rhythms in food intake in the rat. Hormones and Behavior, 3, 219–225.

    Google Scholar 

  • Vavaiya, K. V., & Briski, K. P. (2007). Caudal hindbrain lactate infusion alters glucokinase, SUR1, and neuronal substrate fuel transporter gene expression in the dorsal vagal complex, lateral hypothalamic area, and ventromedial nucleus hypothalamus of hypoglycemic male rats. Brain Research, 1176, 62–70.

    Article  CAS  PubMed  Google Scholar 

  • Vavaiya, K. V., & Briski, K. P. (2008). Effects of caudal hindbrain lactate infusion on insulin-induced hypoglycemia and neuronal substrate transporter glucokinase and sulfonylurea receptor-1 gene expression in the ovariectomized female rat dorsal vagal complex: Impact of estradiol. Journal of Neuroscience Research, 86, 694–701.

    Article  CAS  PubMed  Google Scholar 

  • Wade, G. N., & Jones, J. E. (2004). Neuroendocrinology of nutritional infertility. American Journal of Physiology – Regulatory, Integrative and Comparative Physiology, 287, R1227–R1296.

    Google Scholar 

  • White, N. H., Skor, D., Cryer, P. E., Bier, D. M., Levandoski, L., & Santiago, J. V. (1983). Identification of type 1 diabetic patients at increased risk for hypoglycemia during intensive therapy. The New England Journal of Medicine, 308, 485–491.

    Article  CAS  PubMed  Google Scholar 

  • Wise, P. M., Rance, N., & Barraclough, C. A. (1981). Effects of estradiol and progesterone on catecholamine turn-over rates in discrete hypothalamic regions in ovariectomized rats. Endocrinology, 108, 2186–2193.

    Article  CAS  PubMed  Google Scholar 

  • Wyss, M. T., Jolivet, R., Buck, A., Magistretti, P. J., & Weber, B. (2011). In vivo evidence for lactate as a neuronal energy source. The Journal of Neuroscience, 31, 7477–7485.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, W., Czyzyk, D., Paranjape, S. A., Zhou, L., Horblitt, A., Szabo, G., Seashore, M. R., & Sherwin, R. (2010). Glucose prevents the fall in ventromedial hypothalamic GABA that is required for full activation of glucose counterregulatory responses during hypoglycemia. American Journal of Physiology – Endocrinology and Metabolism, 298, E971–E977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen P. Briski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Briski, K.P., Alhamami, H.N., Alshamrani, A., Mandal, S.K., Shakya, M., Ibrahim, M.H.H. (2017). Sex Differences and Role of Estradiol in Hypoglycemia-Associated Counter-Regulation. In: Mauvais-Jarvis, F. (eds) Sex and Gender Factors Affecting Metabolic Homeostasis, Diabetes and Obesity. Advances in Experimental Medicine and Biology, vol 1043. Springer, Cham. https://doi.org/10.1007/978-3-319-70178-3_17

Download citation

Publish with us

Policies and ethics