Skip to main content

Colostrum Proteomics Research: A Complex Fluid with Multiple Physiological Functions

  • Chapter
  • First Online:
Proteomics in Domestic Animals: from Farm to Systems Biology

Abstract

This chapter addresses several aspects related to colostrum, from its synthesis in the mammary gland to the absorption of the colostrum components by the newborn and its effects on the maturation of the immune and digestive system. This chapter also describes the different colostrum fractions, considering high and low abundant proteins. Additionally, the function of those proteins and their role on the passive immune transfer and nutrition in the newborn animal are also included. Finally, it will be described how different proteomics tools have been utilized in order to answer questions about colostrum associated immunology and nutrition in newborn ungulates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Igs:

Immunoglobulins

MS:

Mass spectrometry

MALDI:

Matrix-assisted laser desorption/ionization

TOF:

Time of flight

iTRAQ:

Isobaric tag for relative and absolute quantitation

MFGM:

Milk fat globule membrane

PIT:

Passive immune transfer

TJ:

Tight junctions

FcRn:

Fc receptor of the neonate

IgG:

Immunoglobulin G

SCNT:

Somatic cell nuclear transfer

UPLC:

Ultra performance liquid chromatography

LTQ:

Linear trap quadrupole

SLS:

Small litter size

LLS:

Large litter size

BTF3:

Basic transcription factor 3

MCM3:

Minichromosome maintenance complex component 3

FABPs:

Fatty acid-binding proteins

HSPs:

Heat stress proteins

DIGE:

Difference gel electrophoresis

APP:

Acute-phase proteins

PGF:

Placental growth factor

TNF-α:

Tumor necrosis factor alpha

TNF-β:

Tumor necrosis factor beta

VEGF:

Vascular endothelial growth factor

HAP:

High abundant proteins

LAP:

Low abundant proteins

IGF-1:

Insulin-like growth factor-1

EGF:

Epidermal growth factor-like peptide

2DE:

Two-dimensional electrophoresis

XDH/XO:

Xanthine dehydrogenase/oxidase

C3:

Complement component 3

LBP:

Lipopolysaccharide-binding protein

FN1:

Fibrinectin 1

SAA:

Serum amyloid A

APO:

Apolipoproteins

References

  • Actor JK, Hwang SA, Kruzel ML (2009) Lactoferrin as a natural immune modulator. Curr Pharm Design 15:1956–1973

    Article  CAS  Google Scholar 

  • Al-Busadah KA (2007) Efficacy of feeding bovine and caprine colostrum to neonatal camel. J Anim Vet Adv 6:5–7

    CAS  Google Scholar 

  • Almeida AM, Bassols A, Bendixen E et al (2015) Animal board invited review: advances in proteomics for animal and food sciences. Animal 9:1–17

    Article  CAS  PubMed  Google Scholar 

  • Argüello A, Castro N, Capote J et al (2004) Effect of colostrum administration practices on serum IgG in goat kids. Livest Prod Sci 90:235–239

    Article  Google Scholar 

  • Badolato R, Wang JM, Murphy WJ et al (1994) Serum amyloid-A is a chemoattractant - Induction of migration, adhesion, and tissue infiltration of monocytes and polymorphonuclear leukocytes. J Exp Med 180:203–209

    Article  CAS  PubMed  Google Scholar 

  • Barrington GM, Parish SM (2001) Bovine neonatal immunology. Vet Clin N Am Food Anim Pract 17:463–476

    Article  CAS  Google Scholar 

  • Baumrucker CR, Bruckmaier RM (2014) Colostrogenesis: IgG1 transcytosis mechanisms. J Mammary Gland Biol Neoplasia 19:103–117

    Article  PubMed  Google Scholar 

  • Beddek AJ, Rawson P, Peng L et al (2008) Profiling the metabolic proteome of bovine mammary tissue. Proteomics 8:1502–1515

    Article  CAS  PubMed  Google Scholar 

  • Bendixen E, Danielsen M, Hollung K et al (2011) Farm animal proteomics - a review. J Proteomics 74:282–293

    Article  CAS  PubMed  Google Scholar 

  • Blum JW, Baumrucker CR (2002) Colostral and milk insulin-like growth factors and related substances: mammary gland and neonatal (intestinal and systemic) targets. Domestic Anim Endocrinol 23:101–110

    Article  CAS  Google Scholar 

  • Blum JW, Baumrucker CR (2008) Insulin-like growth factors (IGFs), IGF binding proteins, and other endocrine factors in milk: role in the newborn. Adv Exp Med Biol 606:397–422

    Article  CAS  PubMed  Google Scholar 

  • Blum JW, Hammon H (2000) Colostrum effects on the gastrointestinal tract, and on nutritional, endocrine and metabolic parameters in neonatal calves. Livest Prod Sci 66:151–159

    Article  Google Scholar 

  • Boyd JW (1972) The relationship between serum immune globulin deficiency and disease in calves: a farm survey. Vet Rec 90:645–649

    Article  CAS  PubMed  Google Scholar 

  • Braun JP, Tainturier D, Bezille P et al (1983) Transfer of Ggt from mother colostrum to serum in newborn goats and foals as compared to calves. Clin Biochem 16:A29–A29

    Google Scholar 

  • Brignole TJ, Stott GH (1979) Colostrum feeding after closure, a protection for agammaglobulinemic and hypogammaglobulinemic calves. J Dairy Sci 62:93–93

    Google Scholar 

  • Bullen JJ, Rogers HJ, Leigh L (1972) Iron-binding proteins in milk and resistance to Escherichia coli infection in infants. Br Med J 1:69–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castro N, Capote J, Bruckmaier RM et al (2011) Management effects on colostrogenesis in small ruminants: a review. J Appl Anim Res 39:85–93

    Article  Google Scholar 

  • Cebo C (2012) Milk fat globule membrane proteomics: a ‘snapshot’ of mammary epithelial cell biology. Food Technol Biotechnol 50:306–314

    CAS  Google Scholar 

  • Chan TF, Tsai YC, Wu CH et al (2011) The positive correlation between cord serum retinol-binding protein 4 concentrations and fetal growth. Gynecol Obstet Invest 72:98–102

    Article  CAS  PubMed  Google Scholar 

  • Chmurzynska A (2006) The multigene family of fatty acid-binding proteins (FABPs): function, structure and polymorphism. J Appl Genetics 47:39–48

    Article  Google Scholar 

  • Clare DA, Swaisgood HE (2000) Bioactive milk peptides: a prospectus. J Dairy Sci 83:1187–1195

    Article  CAS  PubMed  Google Scholar 

  • Cugno G, Parreira JR, Ferlizza E et al (2016) The goat (Capra hircus) mammary gland mitochondrial proteome: a study on the effect of weight loss using Blue-Native PAGE and two-dimensional gel electrophoresis. PLoS One 11:e0151599

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Danielsen M, Pedersen LJ, Bendixen E (2011) An in vivo characterization of colostrum protein uptake in porcine gut during early lactation. J Proteomics 74:101–109

    Article  CAS  PubMed  Google Scholar 

  • Davies CR, Morris JS, Griffiths MR et al (2006) Proteomic analysis of the mouse mammary gland is a powerful tool to identify novel proteins that are differentially expressed during mammary development. Proteomics 6:5694–5704

    Article  CAS  PubMed  Google Scholar 

  • De Maio A (1999) Heat shock proteins: facts, thoughts, and dreams. Shock 11:1–12

    Article  PubMed  Google Scholar 

  • Declerck I, Dewulf J, Sarrazin S et al (2016) Long-term effects of colostrum intake in piglet mortality and performance. J Anim Sci 94:1633–1643

    Article  CAS  PubMed  Google Scholar 

  • Desrivieres S, Prinz T, Laria NCP et al (2003) Comparative proteomic analysis of proliferating and functionally differentiated mammary epithelial cells. Mol Cell Proteomics 2:1039–1054

    Article  CAS  PubMed  Google Scholar 

  • Ebrahim F, Shankaranarayanan JS, Kanwar JR et al (2014) Identification of unprecedented anticancer properties of high molecular weight biomacromolecular complex containing bovine lactoferrin (HMW-bLf). PLoS One 9:e106568

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Elfstrand L, Lindmark-Mansson H, Paulsson M et al (2002) Immunoglobulins, growth factors and growth hormone in bovine colostrum and the effects of processing. Int Dairy J 12:879–887

    Article  CAS  Google Scholar 

  • El-Zahar K, Sitohy M, Choiset Y et al (2004) Antimicrobial activity of ovine whey protein and their peptic hydrolysates. Milchwissenschaft 59:653–656

    CAS  Google Scholar 

  • Erhard MH, Luft C, Remler HP et al (2001) Assessment of colostral transfer and systemic availability of immunoglobulin G in new-born foals using a newly developed enzyme-linked immunosorbent assay (ELISA) system. J Anim Physiol Anim Nutr 85:164–173

    Article  CAS  Google Scholar 

  • Farmer C (2013) Review: Mammary development in swine: effects of hormonal status, nutrition and management. Can J Anim Sci 93:1–7

    Article  CAS  Google Scholar 

  • Ford C, Chevalier S (1995) DNA-Replication - ALMOST licensed. Curr Biol 5:1009–1012

    Article  CAS  PubMed  Google Scholar 

  • Gevaert K, Vandekerckhove J (2011) Gel-free proteomics methods and protocols. Humana Press, New York, NY

    Book  Google Scholar 

  • Guilloteau P, Huerou-Luron IL, Chayvialle JA et al (1997) Gut regulatory peptides in young cattle and sheep. Zentralbl Veterinarmed A 44:1–23

    Article  CAS  PubMed  Google Scholar 

  • Hadorn U, Hammon H, Bruckmaier RM et al (1997) Delaying colostrum intake by one day has important effects on metabolic traits and on gastrointestinal and metabolic hormones in neonatal calves. J Nutr 127:2011–2023

    CAS  PubMed  Google Scholar 

  • Harris P, Johannessen KM, Smolenski G et al (2010) Characterisation of the anti-microbial activity of bovine milk ribonuclease4 and ribonuclease5 (angiogenin). Int Dairy J 20:400–407

    Article  CAS  Google Scholar 

  • Hernández-Castellano LE, Almeida AM, Castro N et al (2014a) The colostrum proteome, ruminant nutrition and immunity: a review. Curr Protein Pept Sci 15:64–74

    Article  PubMed  CAS  Google Scholar 

  • Hernández-Castellano LE, Almeida A, Ventosa M et al (2014b) The effect of colostrum intake on blood plasma proteome profile in newborn lambs: low abundance proteins. BMC Vet Res 10:85

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hernández-Castellano LE, Morales-delaNuez A, Sanchez-Macias D et al (2015a) The effect of colostrum source (goat vs. sheep) and timing of the first colostrum feeding (2h vs. 14h after birth) on body weight and immune status of artificially reared newborn lambs. J Dairy Sci 98:204–210

    Article  PubMed  CAS  Google Scholar 

  • Hernández-Castellano LE, Arguello A, Almeida AM et al (2015b) Colostrum protein uptake in neonatal lambs examined by descriptive and quantitative liquid chromatography-tandem mass spectrometry. J Dairy Sci 98:135–147

    Article  PubMed  CAS  Google Scholar 

  • Hernández-Castellano LE, Suarez-Trujillo A, Martell-Jaizme D et al (2015c) The effect of colostrum period management on BW and immune system in lambs: from birth to weaning. Animal 9:1672–1679

    Article  PubMed  CAS  Google Scholar 

  • Hernández-Castellano LE, Almeida AM, Renaut J et al (2016a) A proteomics study of colostrum and milk from the two major small ruminant dairy breeds from the Canary Islands: a bovine milk comparison perspective. J Dairy Res 83:366–374

    Article  PubMed  CAS  Google Scholar 

  • Hernández-Castellano LE, Ferreira AM, Nanni P et al (2016b) The goat (Capra hircus) mammary gland secretory tissue proteome as influenced by weight loss: a study using label free proteomics. J Proteomics 145:60–69

    Article  PubMed  CAS  Google Scholar 

  • Hernandez-Ledesma B, Recio I, Amigo L (2008) Beta-lactoglobulin as source of bioactive peptides. Amino Acids 35:257–265

    Article  CAS  PubMed  Google Scholar 

  • Herosimczyk A, Lepczynski A, Ozgo M et al (2013) Blood plasma protein and lipid profile changes in calves during the first week of life. Pol J Vet Sci 16:425–434

    CAS  PubMed  Google Scholar 

  • Hesselager MO, Codrea MC, Sun Z et al (2016) The pig peptide atlas: a resource for systems biology in animal production and biomedicine. Proteomics 16:634–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horsley SW, Knight SJ, Nixon J et al (1998) Del(18p) shown to be a cryptic translocation using a multiprobe FISH assay for subtelomeric chromosome rearrangements. J Med Genet 35:722–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jena MK, Janjanam J, Naru J et al (2015) DIGE based proteome analysis of mammary gland tissue in water buffalo (Bubalus bubalis): lactating vis-a-vis heifer. J Proteomics 119:100–111

    Article  CAS  PubMed  Google Scholar 

  • Kanai Y, Miura K, Uehara T et al (1993) Natural occurrence of nuc in the sera of autoimmune-prone Mrl Lpr mice. Biochem Biophys Res Commun 196:729–736

    Article  CAS  PubMed  Google Scholar 

  • Keenan TW, Dylewski DP (1995) Intracellular origin of milk lipid globules and the nature and structure of the milk lipid globule membrane. In: Advanced dairy chemistry. Lipids, vol 2. Chapman & Hall, New York, pp 89–130

    Google Scholar 

  • Kelly D, King TP, McFadyen M et al (1993) Effect of preclosure colostrum intake on the development of the intestinal epithelium of artificially reared piglets. Biol Neonate 64:235–244

    Article  CAS  PubMed  Google Scholar 

  • Kirby DR, Bradbury S (1965) The hemo-chorial mouse placenta. Anat Rec 152:279–281

    Article  CAS  PubMed  Google Scholar 

  • Klobasa F, Werhahn E, Butler JE (1987) Composition of sow milk during lactation. J Anim Sci 64:1458–1466

    Article  CAS  PubMed  Google Scholar 

  • Kolb E, Kaskous S (2003) Constituents of the colostrum and the milk of goats and their significance for the health of kids (a review). Tierarztl Umschau 58:140–146

    Google Scholar 

  • Koldovsky O (1980) Hormones in milk. Life Sci 26:1833–1836

    Article  CAS  PubMed  Google Scholar 

  • Koldovsky O (1989) Search for role of milk-borne biologically active peptides for the suckling. J Nutr 119:1543–1551

    Article  CAS  PubMed  Google Scholar 

  • Korhonen H, Pihlanto A (2007) Technological options for the production of health-promoting proteins and peptides derived from milk and colostrum. Curr Pharm Design 13:829–843

    Article  CAS  Google Scholar 

  • Kubota T, Miyauchi M, Miura K et al (1998) Upregulation of nucleobindin expression in human-activated lymphocytes and non-Hodgkin’s lymphoma. Pathol Int 48:22–28

    Article  CAS  PubMed  Google Scholar 

  • Kuhns DB, Nelson EL, Alvord WG et al (2001) Fibrinogen induces IL-8 synthesis in human neutrophils stimulated with formyl-methionyl-leucyl-phenylalanine or leukotriene B(4). J Immunol 167:2869–2878

    Article  CAS  PubMed  Google Scholar 

  • Kurosaki M, Zanotta S, Calzi ML et al (1996) Expression of xanthine oxidoreductase in mouse mammary epithelium during pregnancy and lactation: regulation of gene expression by glucocorticoids and prolactin. Biochem J 319:801–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lappas M, Hiden U, Desoye G et al (2011) The role of oxidative stress in the pathophysiology of gestational diabetes mellitus. Antioxid Redox Signal 15:3061–3100

    Article  CAS  PubMed  Google Scholar 

  • Le A, Barton LD, Sanders JT et al (2011) Exploration of bovine milk proteome in colostral and mature whey using an ion-exchange approach. J Proteome Res 10:692–704

    Article  CAS  PubMed  Google Scholar 

  • Lee DG, Nam J, Kim SW et al (2015) Proteomic analysis of reproduction proteins involved in litter size from porcine placenta. Biosci Biotech Bioch 79:1414–1421

    Article  CAS  Google Scholar 

  • Leece JG (1973) Effect of dietary regimen on cessation of uptake of macromolecules by piglet intestinal epithelium (closure) and transport to the blood. J Nutr 103:751–756

    Article  CAS  PubMed  Google Scholar 

  • Lerias JR, Hernández-Castellano LE, Suárez-Trujillo A et al (2014) The mammary gland in small ruminants: major morphological and functional events underlying milk production—a review. J Dairy Res 81:304–318

    Article  CAS  PubMed  Google Scholar 

  • Lopez C (2011) Milk fat globules enveloped by their biological membrane: unique colloidal assemblies with a specific composition and structure. Curr Opin Colloid Interface Sci 16:391–404

    Article  CAS  Google Scholar 

  • Lu J, Liu L, Pang XY et al (2016) Comparative proteomics of milk fat globule membrane in goat colostrum and mature milk. Food Chem 209:10–16

    Article  CAS  PubMed  Google Scholar 

  • Mahley RW, Innerarity TL, Rall SC et al (1984) Plasma-lipoproteins - Apolipoprotein Structure and gunction. J Lipid Res 25:1277–1294

    CAS  PubMed  Google Scholar 

  • Marnila P, Korhonen H (2011) Milk | colostrum. In: Fuquay FW, Fox PF, McSweeney PLH (eds) Encyclopedia of dairy sciences, 2nd edn. Academic Press, San Diego, pp 591–597

    Chapter  Google Scholar 

  • Mather IH (2000) A review and proposed nomenclature for major proteins of the milk-fat globule membrane. J Dairy Sci 83:203–247

    Article  CAS  PubMed  Google Scholar 

  • Moore M, Tyler JW, Chigerwe M et al (2005) Effect of delayed colostrum collection on colostral IgG concentration in dairy cows. J Am Vet Med Assoc 226:1375–1377

    Article  PubMed  Google Scholar 

  • Moretti DB, Pauletti P, Kindlein L et al (2010) Enteric cell proliferation in newborn lambs fed bovine and ovine colostrum. Livest Sci 127:262–266

    Article  Google Scholar 

  • Moretti DB, Nordi WM, Lima AL et al (2014) Enteric, hepatic and muscle tissue development of goat kids fed with lyophilized bovine colostrum. J Anim Physiol Anim Nutr 98:201–208

    Article  CAS  Google Scholar 

  • Murata M, Wakabayashi H, Yamauchi K et al (2013) Identification of milk proteins enhancing the antimicrobial activity of lactoferrin and lactoferricin. J Dairy Sci 96:4891–4898

    Article  CAS  PubMed  Google Scholar 

  • Nagatomo T, Ohga S, Takada H et al (2004) Microarray analysis of human milk cells: persistent high expression of osteopontin during the lactation period. Clin Exp Immunol 138:47–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen TV, Yuan L, Azevedo MSP et al (2007) Transfer of maternal cytokines to suckling piglets: in vivo and in vitro models with implications for immunomodulation of neonatal immunity. Vet Immunol Immunopathol 117:236–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nissen A, Bendixen E, Ingvartsen KL et al (2012) In-depth analysis of low abundant proteins in bovine colostrum using different fractionation techniques. Proteomics 12:2866–2878

    Article  CAS  PubMed  Google Scholar 

  • Nowak R, Poindron P (2006) From birth to colostrum: early steps leading to lamb survival. Reprod Nutr Dev 46:431–446

    Article  PubMed  Google Scholar 

  • Ontsouka CE, Bruckmaier RM, Blum JW (2003) Fractionized milk composition during removal of colostrum and mature milk. J Dairy Sci 86:2005–2011

    Article  CAS  PubMed  Google Scholar 

  • Osada T, Watanabe G, Kondo S et al (2001) Male reproductive defects caused by puromycin-sensitive aminopeptidase deficiency in mice. Mol Endocrinol 15:960–971

    Article  CAS  PubMed  Google Scholar 

  • Padua MB, Kowalski AA, Canas MY et al (2010) The molecular phylogeny of uterine serpins and its relationship to evolution of placentation. Faseb J 24:526–537

    Article  CAS  PubMed  Google Scholar 

  • Pakkanen R, Aalto J (1997) Growth factors and antimicrobial factors of bovine colostrum. Int Dairy J 7:285–297

    Article  CAS  Google Scholar 

  • Parks DA, Granger DN (1986) Xanthine-Oxidase - Biochemistry, distribution and Physiology. Acta Physiol Scand 126:87–99

    Google Scholar 

  • Penchev-Georgiev I (2008) Effect of colostrum insulin-like growth factors on growth and development of neonatal calves. Bulg J Vet Med 11:75–88

    Google Scholar 

  • Peterson JA, Patton S, Hamosh M (1998) Glycoproteins of the human milk fat globule in the protection of the breast-fed infant against infections. Biol Neonate 74:143–162

    Article  CAS  PubMed  Google Scholar 

  • Pihlanto-Leppala A, Marnila P, Hubert L et al (1999) The effect of alpha-lactalbumin and beta-lactoglobulin hydrolysates on the metabolic activity of Escherichia coli JM103. J Appl Microbiol 87:540–545

    Article  CAS  PubMed  Google Scholar 

  • Porter P (1973) Studies of porcine secretory IgA and its component chains in relation to intestinal absorption of colostral immunoglobulins by the neonatal pig. Immunology 24:173–176

    Google Scholar 

  • Prystowsky H (1958) Fetal blood studies.9. Some aspects of oxygen transfer across the hemochorial placenta of the human in postmature pregnancy. Obstet Gynecol 12:164–167

    CAS  PubMed  Google Scholar 

  • Purup S, Vestergaard M, OPedersen L et al (2007) Biological activity of bovine milk on proliferation of human intestinal cells. J Dairy Res 74:58–65

    Article  CAS  PubMed  Google Scholar 

  • Reinhardt TA, Lippolis JD (2008) Developmental changes in the milk fat globule membrane proteome during the transition from colostrum to milk. J Dairy Sci 91:2307–2318

    Article  CAS  PubMed  Google Scholar 

  • Renckens R, Roelofs JJTH, Florquin S et al (2006) Urokinase-type plasminogen activator receptor plays a role in neutrophil migration during lipopolysaccharide-induced peritoneal inflammation but not during Escherichia coli-induced peritonitis. J Infect Dis 193:522–530

    Article  CAS  PubMed  Google Scholar 

  • Sasaki M, Davis CL, Larson BL (1976) Production and turnover of IgG1 and IgG2 immunoglobulins in the bovine around oarturition1. J Dairy Sci 59:2046–2055

    Article  CAS  PubMed  Google Scholar 

  • Scammel AW (2001) Production and uses of colostrum. Aust J Dairy Technol 56:74–82

    Google Scholar 

  • Schroten H, Hanisch FG, Plogmann R et al (1992) Inhibition of adhesion of S-fimbriated Escherichia coli to buccal epithelial cells by human milk fat globule membrane components - a novel aspect of the protective function of mucins in the nonimmunoglobulin fraction. Infect Immun 60:2893–2899

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scoot A, Owen BD, Agar JL (1972) Influence of orally administered porcine immunoglobulins on survival and performance of newborn colostrum-deprived pigs. J Anim Sci 35:1201–1205

    Article  CAS  PubMed  Google Scholar 

  • Senda A, Fukuda K, Ishii T et al (2011) Changes in the bovine whey proteome during the early lactation period. Anim Sci J 82:698–706

    Article  CAS  PubMed  Google Scholar 

  • Sgarbieri VC (2004) Propriedades fisiológicas-funcionais das proteínas do soro de leite. Revista de Nutrição 17:397–409

    Article  CAS  Google Scholar 

  • Shahriar F, Ngeleka M, Gordon JR et al (2006) Identification by mass spectroscopy of F4ac-fimbrial-binding proteins in porcine milk and characterization of lactadherin as an inhibitor of F4ac-positive Escherichia coli attachment to intestinal villi in vitro. Dev Comp Immunol 30:723–734

    Article  CAS  PubMed  Google Scholar 

  • Silanikove N, Shapiro F, Shamay A et al (2005) Role of xanthine oxidase, lactoperoxidase, and NO in the innate immune system of mammary secretion during active involution in dairy cows: manipulation with casein hydrolyzates. Free Radic Biol Med 38:1139–1151

    Article  CAS  PubMed  Google Scholar 

  • Silva SV, Malcata FX (2005) Caseins as source of bioactive peptides. Int Dairy J 15:1–15

    Article  CAS  Google Scholar 

  • Smith GW, Foster DM (2007) Short communication: absorption of protein and immunoglobulin G in calves fed a colostrum replacer. J Dairy Sci 90:2905–2908

    Article  CAS  PubMed  Google Scholar 

  • Smolenski G, Haines S, Kwan FYS et al (2007) Characterisation of host defence proteins in milk using a proteomic approach. J Proteome Res 6:207–215

    Article  CAS  PubMed  Google Scholar 

  • Stan S, Delvin E, Lambert M et al (2003) Apo A-IV: an update on regulation and physiologic functions. Biochim Biophys Acta 1631:177–187

    Article  CAS  PubMed  Google Scholar 

  • Standal T, Borset M, Sundan A (2004) Role of osteopontin in adhesion, migration, cell survival and bone remodeling. Exp Oncol 26:179–184

    CAS  PubMed  Google Scholar 

  • Stelwagen K, Carpenter E, Haigh B et al (2009) Immune components of bovine colostrum and milk. J Anim Sci 87:3–9

    Article  CAS  PubMed  Google Scholar 

  • Talbot NC, Powell AM, Caperna TJ et al (2010) Proteomic analysis of the major cellular proteins of bovine trophectoderm cell lines derived from IVP, parthenogenetic and nuclear transfer embryos: reduced expression of annexins I and II in nuclear transfer-derived cell lines. Anim Reprod Sci 120:187–202

    Article  CAS  PubMed  Google Scholar 

  • Theil PK, Hurley WL (2016) The protein component of sow colostrum and milk. In: Milk proteins - from structure to biological properties and health aspects. InTech, Rijeka, Croatia, pp 183–198

    Google Scholar 

  • Tiaden AN, Breiden M, Mirsaidi A et al (2012) Human serine protease HTRA1 positively regulates osteogenesis of human bone marrow-derived mesenchymal stem cells and mineralization of differentiating bone-forming cells through the modulation of extracellular matrix protein. Stem Cells 30:2271–2282

    Article  CAS  PubMed  Google Scholar 

  • Tyler JW, Hancock DD, Thorne JG et al (1999) Partitioning the mortality risk associated with inadequate passive transfer of colostral immunoglobulins in dairy calves. J Vet Intern Med 13:335–337

    Article  CAS  PubMed  Google Scholar 

  • Vaerman JP, Arbuckle JB, Heremans JF (1970) Immunoglobulin A in the pig. II. Sow’s colostral and milk IgA: quantitative studies and molecular size estimation. Int Arch Allergy Immunol 39:323–333

    Article  CAS  Google Scholar 

  • Westermeier R, Naven T (2002) Expression proteomics. In: Proteomics in practice. Wiley-VCH Verlag GmbH, Weinheim, pp 11–160

    Google Scholar 

  • Wooding P, Burton G (2008) Synepitheliochorial placentation: ruminants (ewe and cow). In: Comparative placentation: structures, functions and evolution. Springer, Berlin, pp 133–167.

    Google Scholar 

  • Wooding FB, Flint AP, Heap RB et al (1986) Control of binucleate cell migration in the placenta of sheep and goats. J Reprod Fertil 76:499–512

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Badolato R, Murphy WJ et al (1995) A novel biologic function of serum amyloid A. Induction of T lymphocyte migration and adhesion. J Immunol 155:1184–1190

    CAS  PubMed  Google Scholar 

  • Yang M, Zou Y, Wu ZH et al (2015) Colostrum quality affects immune system establishment and intestinal development of neonatal calves. J Dairy Sci 98:7153–7163

    Article  CAS  PubMed  Google Scholar 

  • Yang M, Cong M, Peng XM et al (2016) Quantitative proteomic analysis of milk fat globule membrane (MFGM) proteins in human and bovine colostrum and mature milk samples through iTRAQ labeling. Food Funct 7:2438–2450

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Boeren S, Hageman JA et al (2015) Bovine milk proteome in the first 9 days: protein interactions in maturation of the immune and digestive system of the newborn. PLoS One 10:e0116710

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zimecki M, Kruzel ML (2007) Milk-derived proteins and peptides of potential therapeutic and nutritive value. J Exp Ther Oncol 6:89–106

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo E. Hernández-Castellano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hernández-Castellano, L.E., Baumrucker, C.R., Gross, J., Wellnitz, O., Bruckmaier, R.M. (2018). Colostrum Proteomics Research: A Complex Fluid with Multiple Physiological Functions. In: de Almeida, A., Eckersall, D., Miller, I. (eds) Proteomics in Domestic Animals: from Farm to Systems Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-69682-9_8

Download citation

Publish with us

Policies and ethics