Skip to main content

Tailoring Natural Products with Glycosyltransferases

  • Chapter
  • First Online:
Biotechnology of Natural Products

Abstract

The bioactivity of plant natural products depends on more than just their scaffolds. The physicochemical properties of the natural products are often dramatically changed by tailoring functional groups. Addition of sugar residues (glycons) to small lipophilic molecules (aglycons) is a particularly frequent tailoring mechanism mostly conveyed by nucleoside diphosphate (NDP)-sugar dependent glycosyltransferases (GTs). Glycosylation increases solubility and stability, while also reducing the toxicity of the aglycons. Moreover, the attachment of a sugar may determine the fate of the molecule by controlling its compartmentalization. Above all, glycosylation affects bioactivity and bioavailability. Consequently, glycosides and glucose esters of bioactive natural products have become of utmost importance for the food, feed, cosmetics and pharmaceutical industry. In the past, glycosylation was achieved chemically involving flammable solvents and toxic catalysts, harsh laboratory conditions and the necessity of protecting groups, which eventually resulted in high costs. Nowadays, alternative biotechnological methods are available. Cultivation of whole-cell biocatalysts harboring GTs enables the regio- and stereo-selective production of glycosides and glucose esters at high product titers, while keeping the costs at a minimum. Due to their sedentary life style, plants have to cope with numerous stressors and, because glycosylated natural products play important roles in stress defense, are also rich sources of GTs. This chapter covers the last 10 years of plant GT research, with special emphasis upon new enzymes and glycoside/glucose ester production of plant natural products by whole-cell biocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABA:

Abscisic acid

ABA-GE:

ABA-glucose ester

ABC:

ATP-binding cassette

AG:

Apocarotenoid glycoside

AVI:

Anthocyanin vacuolar inclusion

CAZymes:

Carbohydrate-Active enZymes

CRC:

Colorectal cancer

E. coli :

Escherichia coli

ER:

Endoplasmatic reticulum

GALNT12:

Polypeptide N-acetylgalactosaminyltransferase 12

galU:

Glucose-1-phosphate uridylyltransferase

GST:

Glutathione S-transferase

GT:

Glycosyltransferase

KAH:

Kaurenoic acid 13-hydroxylase

KO:

Kaurine oxidase

LC-MS:

Liquid chromatography mass-spectrometry

MATE:

Multidrug and toxic extrusion

MEP/DOXP:

2-C-methyl-D-erythritol 4-phosphate/1-deoxy-D-xylulose 5-phosphate

MXT:

Mitoxantrole

pgi:

Phosphoglucose isomerase

PSPG box:

Plant secondary product glycosyltransferase box

SG:

Steviol glycoside

ushA:

UDP-glucose hydrolase

zwf:

D-glucose-6-phosphate dehydrogenase

References

  1. André I, Potocki-Véronèse G, Barbe S, Moulis C, Remaud-Siméon M. CAZyme discovery and design for sweet dreams. Curr Opin Chem Biol. 2014;19:17–24. https://doi.org/10.1016/j.cbpa.2013.11.014.

    Article  CAS  Google Scholar 

  2. Huber GW, Chheda JN, Barrett CJ, Dumesic JA. Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates. Science. 2005;308:1446–50. https://doi.org/10.1126/science.1111166.

    Article  CAS  Google Scholar 

  3. Singh S, Phillips GN Jr, Thorson JS. The structural biology of enzymes involved in natural product glycosylation. Nat Prod Rep. 2012;29:1201–37. https://doi.org/10.1039/c2np20039b.

    Article  CAS  Google Scholar 

  4. Schwab W, Fischer TC, Giri A, Wüst M. Potential applications of glucosyltransferases in terpene glucoside production: impacts on the use of aroma and fragrance. Appl Microbiol Biotechnol. 2014;99:165–74. https://doi.org/10.1007/s00253-014-6229-y.

    Article  CAS  Google Scholar 

  5. Desmet T, Soetaert W, Bojarová P, Křen V, Dijkhuizen L, Eastwick-Field V, et al. Enzymatic glycosylation of small molecules: challenging substrates require tailored catalysts. Chem Eur J. 2012;18:10786–801. https://doi.org/10.1002/chem.201103069.

    Article  CAS  Google Scholar 

  6. Wang J, Ma X, Kojima M, Sakakibara H, Hou B. N-Glucosyltransferase UGT76C2 is involved in cytokinin homeostasis and cytokinin response in Arabidopsis thaliana. Plant Cell Physiol. 2011;52:2200–13. https://doi.org/10.1093/pcp/pcr152.

  7. Kopycki J, Wieduwild E, Kohlschmidt J, Brandt W, Stepanova AN, Alonso JM, et al. Kinetic analysis of Arabidopsis glucosyltransferase UGT74B1 illustrates a general mechanism by which enzymes can escape product inhibition. Biochem J. 2013;450:37. https://doi.org/10.1042/BJ20121403.

    Article  CAS  Google Scholar 

  8. Hirade Y, Kotoku N, Terasaka K, Saijo-Hamano Y, Fukumoto A, Mizukami H. Identification and functional analysis of 2-hydroxyflavanone C-glucosyltransferase in soybean (Glycine max). FEBS Lett. 2015;589:1778–86. https://doi.org/10.1016/j.febslet.2015.05.010.

  9. Schwab W, Fischer T, Wüst M. Terpene glucoside production: improved biocatalytic processes using glycosyltransferases. Eng Life Sci. 2015;15:376–86. https://doi.org/10.1002/elsc.201400156.

    Article  CAS  Google Scholar 

  10. Lim E, Higgins GS, Li Y, Bowles DJ. Regioselectivity of glucosylation of caffeic acid by a UDP-glucose:glucosyltransferase is maintained in planta. Biochem J. 2003;373:987–92. https://doi.org/10.1042/BJ20021453.

    Article  CAS  Google Scholar 

  11. Jackson R, Knisley D, McIntosh C, Pfeiffer P. Predicting flavonoid UGT regioselectivity. Adv Bioinforma. 2011:506583. https://doi.org/10.1155/2011/506583.

  12. Graefe EU, Wittig J, Mueller S, Riethling A, Uehleke B, Drewelow B, et al. Pharmacokinetics and bioavailability of quercetin glycosides in humans. J Clin Pharmacol. 2001;41:492–9. https://doi.org/10.1177/00912700122010366.

    Article  CAS  Google Scholar 

  13. Makino T, Shimizu R, Kanemaru M, Suzuki Y, Moriwaki M, Mizukami H. Enzymatically modified isoquercitrin, α-oligoglucosyl quercetin 3-O-glucoside, is absorbed more easily than other quercetin glycosides or aglycone after oral administration in rats. Biol Pharm Bull. 2009;32:2034–40. https://doi.org/10.1248/bpb.32.2034.

    Article  CAS  Google Scholar 

  14. Brochado AR, Matos C, Møller BL, Hansen J, Mortensen UH, Patil KR. Improved vanillin production in baker’s yeast through in silico design. Microb Cell Factories. 2010;9:84. https://doi.org/10.1186/1475-2859-9-84.

    Article  CAS  Google Scholar 

  15. Yang C, Tanaka O. Advances in plant glycosides, chemistry and biology: proceedings of the international symposium on plant glycosides, Aug 12–15, 1997 Kunming, China. 1st edn. Amsterdam/New York: Elsevier; 1999.

    Google Scholar 

  16. Woo H, Kang H, Nguyen TTH, Kim G, Kim Y, Park J, et al. Synthesis and characterization of ampelopsin glucosides using dextransucrase from Leuconostoc mesenteroides B-1299CB4: glucosylation enhancing physicochemical properties. Enzym Microb Technol. 2012;51:311–8. https://doi.org/10.1016/j.enzmictec.2012.07.014.

    Article  CAS  Google Scholar 

  17. Hofer B. Recent developments in the enzymatic O-glycosylation of flavonoids. Appl Microbiol Biotechnol. 2016;100:4269–81. https://doi.org/10.1007/s00253-016-7465-0.

    Google Scholar 

  18. Grotewold E. The science of flavonoids. New York: Springer; 2006.

    Book  Google Scholar 

  19. Lepak A, Gutmann A, Kulmer ST, Nidetzky B. Creating a water-soluble resveratrol-based antioxidant by site-selective enzymatic glucosylation. Chembiochem. 2015;16:1870–4. https://doi.org/10.1002/cbic.201500284.

    Article  CAS  Google Scholar 

  20. Fuggetta M, Mattivi F. The immunomodulating activities of resveratrol glucosides in humans. Recent Pat Food Nutr Agric. 2011;3:81–90.

    Article  CAS  Google Scholar 

  21. Pandey RP, Parajuli P, Shin JY, Lee J, Lee S, Hong Y, et al. Enzymatic biosynthesis of novel resveratrol glucoside and glycoside derivatives. Appl Environ Microbiol. 2014;80:7235–43. https://doi.org/10.1128/AEM.02076-14.

    Article  CAS  Google Scholar 

  22. Chung MJ, Kang A, Lee KM, Oh E, Jun H, Kim S, et al. Water-soluble genistin glycoside isoflavones up-regulate antioxidant metallothionein expression and scavenge free radicals. J Agric Food Chem. 2006;54:3819–26. https://doi.org/10.1021/jf060510y.

    Article  CAS  Google Scholar 

  23. Haskins AH, Su C, Engen A, Salinas VA, Maeda J, Uesaka M, et al. Data for induction of cytotoxic response by natural and novel quercetin glycosides. Data Brief. 2016;6:262–6. https://doi.org/10.1016/j.dib.2015.11.066.

    Article  Google Scholar 

  24. Yonekura-Sakakibara K, Nakayama T, Yamazaki M, Saito K. Modification and stabilization of anthocyanins. In: Winefield C, Davies K, Gould K, editors. Anthocyanins: biosynthesis, functions, and applications. New York: Springer; 2009. p. 169–90. https://doi.org/10.1007/978-0-387-77335-3_6.

    Google Scholar 

  25. Sasaki N, Nishizaki Y, Ozeki Y, Miyahara T. The role of acyl-glucose in anthocyanin modifications. Molecules. 2014;19:18747–66. https://doi.org/10.3390/molecules191118747.

    Article  CAS  Google Scholar 

  26. Yoshida K, Mori M, Kondo T. Blue flower color development by anthocyanins: from chemical structure to cell physiology. Nat Prod Rep. 2009;26:884–915. https://doi.org/10.1039/b800165k.

    Article  CAS  Google Scholar 

  27. Mäkilä L, Laaksonen O, Alanne A, Kortesniemi M, Kallio H, Yang B. Stability of hydroxycinnamic acid derivatives, flavonol glycosides, and anthocyanins in black currant juice. J Agric Food Chem. 2016;64:4584–98. https://doi.org/10.1021/acs.jafc.6b01005.

    Article  CAS  Google Scholar 

  28. Roscher R, Schwab W, Schreier P. Stability of naturally occurring 2,5-dimethyl-4-hydroxy-3 [2H]-furanone derivatives. Z Lebensm Unters F A. 1997;204:438–41. https://doi.org/10.1007/s002170050109.

    Article  CAS  Google Scholar 

  29. Saslowsky D, Winkel-Shirley B. Localization of flavonoid enzymes in Arabidopsis roots. Plant J. 2001;27:37–48. https://doi.org/10.1046/j.1365-313x.2001.01073.x.

    Article  CAS  Google Scholar 

  30. Grotewold E, Davies K. Trafficking and sequestration of anthocyanins. Nat Prod Commun. 2008;3:1251–8.

    CAS  Google Scholar 

  31. Petrussa E, Braidot E, Zancani M, Peresson C, Bertolini A, Patui S, et al. Plant flavonoids – biosynthesis, transport and involvement in stress responses. Int J Mol Sci. 2013;14:14950–73. https://doi.org/10.3390/ijms140714950.

    Article  CAS  Google Scholar 

  32. Kitamura S, Shikazono N, Tanaka A. TRANSPARENT TESTA 19 is involved in the accumulation of both anthocyanins and proanthocyanidins in Arabidopsis. Plant J. 2004;37:104–14. https://doi.org/10.1046/j.1365-313X.2003.01943.x.

    Article  CAS  Google Scholar 

  33. Conn S, Curtin C, Bézier A, Franco C, Zhang W. Purification, molecular cloning, and characterization of glutathione S-transferases (GSTs) from pigmented Vitis vinifera L. cell suspension cultures as putative anthocyanin transport proteins. J Exp Bot. 2008;59:3621–34. https://doi.org/10.1093/jxb/ern217.

    Article  CAS  Google Scholar 

  34. Sun Y, Li H, Huang J. Arabidopsis TT19 functions as a carrier to transport anthocyanin from the cytosol to tonoplasts. Mol Plant. 2012;5:387–400. https://doi.org/10.1093/mp/ssr110.

    Article  CAS  Google Scholar 

  35. Härtl K, Denton A, Franz-Oberdorf K, Hoffmann T, Spornraft M, Usadel B, et al. Early metabolic and transcriptional variations in fruit of natural white-fruited Fragaria vesca genotypes. Sci Rep. 2017;7:45113. https://doi.org/10.1038/srep45113.

  36. Gomez C, Conejero G, Torregrosa L, Cheynier V, Terrier N, Ageorges A. In vivo grapevine anthocyanin transport involves vesicle-mediated trafficking and the contribution of anthoMATE transporters and GST. Plant J. 2011;67:960–70. https://doi.org/10.1111/j.1365-313X.2011.04648.x.

  37. Poustka F, Irani NG, Feller A, Lu Y, Pourcel L, Frame K, et al. A trafficking pathway for anthocyanins overlaps with the endoplasmic reticulum-to-vacuole protein-sorting route in Arabidopsis and contributes to the formation of vacuolar inclusions. Plant Physiol. 2007;145:1323–35. https://doi.org/10.1104/pp.107.105064.

    Article  CAS  Google Scholar 

  38. Goodman CD, Casati P, Walbot V. A multidrug resistance–associated protein involved in anthocyanin transport in Zea mays. Plant Cell. 2004;16:1812–26. https://doi.org/10.1105/tpc.022574.

    Article  CAS  Google Scholar 

  39. Francisco RM, Regalado A, Ageorges A, Burla BJ, Bassin B, Eisenach C, et al. ABCC1, an ATP binding cassette protein from grape berry, transports anthocyanidin 3-O-glucosides. Plant Cell. 2013;25:1840–54. https://doi.org/10.1105/tpc.112.102152.

    Article  CAS  Google Scholar 

  40. Marinova K, Pourcel L, Weder B, Schwarz M, Barron D, Routaboul J, et al. The Arabidopsis MATE transporter TT12 acts as a vacuolar flavonoid/H+-antiporter active in proanthocyanidin-accumulating cells of the seed coat. Plant Cell. 2007;19:2023–38. https://doi.org/10.1105/tpc.106.046029.

    Article  CAS  Google Scholar 

  41. Gomez C, Terrier N, Torregrosa L, Vialet S, Fournier-Level A, Verriès C, et al. Grapevine MATE-type proteins act as vacuolar H+-dependent acylated anthocyanin transporters. Plant Physiol. 2009;150:402–15. https://doi.org/10.1104/pp.109.135624.

    Article  CAS  Google Scholar 

  42. Zhao J, Huhman D, Shadle G, He X, Sumner LW, Tang Y, et al. MATE2 mediates vacuolar sequestration of flavonoid glycosides and glycoside malonates in Medicago truncatula. Plant Cell. 2011;23:1536–55. https://doi.org/10.1105/tpc.110.080804.

    Article  CAS  Google Scholar 

  43. Burla B, Pfrunder S, Nagy R, Francisco RM, Lee Y, Martinoia E. Vacuolar transport of abscisic acid glucosyl ester is mediated by ATP-binding cassette and proton-antiport mechanisms in Arabidopsis. Plant Physiol. 2013;163:1446–58. https://doi.org/10.1104/pp.113.222547.

    Article  CAS  Google Scholar 

  44. Chanoca A, Kovinich N, Burkel B, Stecha S, Bohorquez-Restrepo A, Ueda T, et al. Anthocyanin vacuolar inclusions form by a microautophagy mechanism. Plant Cell. 2015;27:2545–59. https://doi.org/10.1105/tpc.15.00589.

    Article  CAS  Google Scholar 

  45. Passamonti S, Cocolo A, Braidot E, Petrussa E, Peresson C, Medic N, et al. Characterization of electrogenic bromosulfophthalein transport in carnation petal microsomes and its inhibition by antibodies against bilitranslocase. FEBS J. 2005;272:3282–96. https://doi.org/10.1111/j.1742-4658.2005.04751.x.

    Article  CAS  Google Scholar 

  46. Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR. Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol. 2010;61:651–79.

    Article  CAS  Google Scholar 

  47. Nambara E, Marion-Poll A. Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol. 2005;56:165–85. https://doi.org/10.1146/annurev.arplant.56.032604.144046.

    Article  CAS  Google Scholar 

  48. Xu Z, Kim DH, Hwang I. ABA homeostasis and signaling involving multiple subcellular compartments and multiple receptors. Plant Cell Rep. 2013;32:807–13. https://doi.org/10.1007/s00299-013-1396-3.

    Article  CAS  Google Scholar 

  49. Kushiro T, Okamoto M, Nakabayashi K, Yamagishi K, Kitamura S, Asami T, et al. The Arabidopsis cytochrome P450 CYP707A encodes ABA 8′-hydroxylases: key enzymes in ABA catabolism. EMBO J. 2004;23:1647–56. https://doi.org/10.1038/sj.emboj.7600121.

    Article  CAS  Google Scholar 

  50. Wang P, Liu H, Hua H, Wang L, Song C. A vacuole localized β-glucosidase contributes to drought tolerance in Arabidopsis. Chin Sci Bull. 2011;56:3538–46. https://doi.org/10.1007/s11434-011-4802-7.

    Article  CAS  Google Scholar 

  51. Xu ZY, Lee KH, Dong T, Jeong JC, Jin JB, Kanno Y, et al. A vacuolar beta-glucosidase homolog that possesses glucose-conjugated abscisic acid hydrolyzing activity plays an important role in osmotic stress responses in Arabidopsis. Plant Cell. 2012;24:2184–99. https://doi.org/10.1105/tpc.112.095935.

    Article  CAS  Google Scholar 

  52. Lätari K, Wust F, Hubner M, Schaub P, Beisel KG, Matsubara S, et al. Tissue-specific apocarotenoid glycosylation contributes to carotenoid homeostasis in Arabidopsis leaves. Plant Physiol. 2015;168:1550–62. https://doi.org/10.1104/pp.15.00243.

    Article  CAS  Google Scholar 

  53. Bönisch F, Frotscher J, Stanitzek S, Ruhl E, Wust M, Bitz O, et al. A UDP-glucose:monoterpenol glucosyltransferase adds to the chemical diversity of the grapevine metabolome. Plant Physiol. 2014;165:561–81. https://doi.org/10.1104/pp.113.232470.

    Article  CAS  Google Scholar 

  54. Schulenburg K, Feller A, Hoffmann T, Schecker JH, Martens S, Schwab W. Formation of β-glucogallin, the precursor of ellagic acid in strawberry and raspberry. J Exp Bot. 2016;67:2299–308. https://doi.org/10.1093/jxb/erw036.

  55. Khater F, Fournand D, Vialet S, Meudec E, Cheynier V, Terrier N. Identification and functional characterization of cDNAs coding for hydroxybenzoate/hydroxycinnamate glucosyltransferases co-expressed with genes related to proanthocyanidin biosynthesis. J Exp Bot. 2012;63:1201–14. https://doi.org/10.1093/jxb/err340.

    Article  CAS  Google Scholar 

  56. Mittasch J, Böttcher C, Frolova N, Bonn M, Milkowski C. Identification of UGT84A13 as a candidate enzyme for the first committed step of gallotannin biosynthesis in pedunculate oak (Quercus robur). Phytochemistry. 2014;99:44–51. https://doi.org/10.1016/j.phytochem.2013.11.023.

    Article  CAS  Google Scholar 

  57. Ono NN, Qin X, Wilson AE, Li G, Tian L. Two UGT84 family glycosyltransferases catalyze a critical reaction of hydrolyzable tannin biosynthesis in pomegranate (Punica granatum). PLoS One. 2016;11:e0156319. https://doi.org/10.1371/journal.pone.0156319.

    Article  CAS  Google Scholar 

  58. Park HS, Stierle A, Strobel GA. Metabolism of maculosin, a host-specific phytotoxin produced by Alternaria alternata on spotted knapweed (Centaurea maculosa). Phytochemistry. 1993;35:101–6. https://doi.org/10.1016/S0031-9422(00)90516-8.

    Article  Google Scholar 

  59. Poppenberger B, Berthiller F, Lucyshyn D, Sieberer T, Schuhmacher R, Krska R, et al. Detoxification of the Fusarium mycotoxin deoxynivalenol by a UDP-glucosyltransferase from Arabidopsis thaliana. J Biol Chem. 2003;278:47905–14. https://doi.org/10.1074/jbc.M307552200.

    Article  CAS  Google Scholar 

  60. Poppenberger B, Berthiller F, Bachmann H, Lucyshyn D, Peterbauer C, Mitterbauer R, et al. Heterologous expression of Arabidopsis UDP-glucosyltransferases in Saccharomyces cerevisiae for production of zearalenone-4-O-glucoside. Appl Environ Microbiol. 2006;72:4404–10. https://doi.org/10.1128/AEM.02544-05.

    Article  CAS  Google Scholar 

  61. Berthiller F, Crews C, Dall’Asta C, Saeger SD, Haesaert G, Karlovsky P, et al. Masked mycotoxins: a review. Mol Nutr Food Res. 2013;57:165–86. https://doi.org/10.1002/mnfr.201100764.

    Article  CAS  Google Scholar 

  62. Høj P, Pretorius I, Blair R. The Australian wine research institute, Annual Report. Eds; The Australian wine research institute: Adelaide, Australia 2003:7–38.

    Google Scholar 

  63. Kennison KR, Wilkinson KL, Williams HG, Smith JH, Gibberd MR. Smoke-derived taint in wine: effect of postharvest smoke exposure of grapes on the chemical composition and sensory characteristics of wine. J Agric Food Chem. 2007;55:10897–901. https://doi.org/10.1021/jf072509k.

    Article  CAS  Google Scholar 

  64. Hayasaka Y, Baldock GA, Pardon KH, Jeffery DW, Herderich MJ. Investigation into the formation of guaiacol conjugates in berries and leaves of grapevine Vitis vinifera L. Cv. cabernet sauvignon using stable isotope tracers combined with HPLC-MS and MS/MS analysis. J Agric Food Chem. 2010;58:2076–81. https://doi.org/10.1021/jf903732p.

    Article  CAS  Google Scholar 

  65. Hayasaka Y, Dungey KA, Baldock GA, Kennison KR, Wilkinson KL. Identification of a β-D-glucopyranoside precursor to guaiacol in grape juice following grapevine exposure to smoke. Anal Chim Acta. 2010;660:143–8. https://doi.org/10.1016/j.aca.2009.10.039.

  66. Kelly D, Zerihun A, Hayasaka Y, Gibberd M. Winemaking practice affects the extraction of smoke-borne phenols from grapes into wines. Aust J Grape Wine Res. 2014;20:386–93.

    Article  CAS  Google Scholar 

  67. Mayr CM, Parker M, Baldock GA, Black CA, Pardon KH, Williamson PO, et al. Determination of the importance of in-mouth release of volatile phenol glycoconjugates to the flavor of smoke-tainted wines. J Agric Food Chem. 2014;62:2327–36. https://doi.org/10.1021/jf405327s.

    Article  CAS  Google Scholar 

  68. Parker M, Osidacz P, Baldock GA, Hayasaka Y, Black CA, Pardon KH, et al. Contribution of several volatile phenols and their glycoconjugates to smoke-related sensory properties of red wine. J Agric Food Chem. 2012;60:2629–37. https://doi.org/10.1021/jf2040548.

    Article  CAS  Google Scholar 

  69. Hellfritsch C, Brockhoff A, Stähler F, Meyerhof W, Hofmann T. Human psychometric and taste receptor responses to steviol glycosides. J Agric Food Chem. 2012;60:6782–93. https://doi.org/10.1021/jf301297n.

    Article  CAS  Google Scholar 

  70. Wang Y, Chen L, Li Y, Li Y, Yan M, Chen K, et al. Efficient enzymatic production of rebaudioside A from stevioside. Biosci Biotechnol Biochem. 2016;80:67–73. https://doi.org/10.1080/09168451.2015.1072457.

    CAS  Google Scholar 

  71. Olsson K, Carlsen S, Semmler A, Simón E, Mikkelsen MD, Møller BL. Microbial production of next-generation stevia sweeteners. Microb Cell Factories. 2016;15:207. https://doi.org/10.1186/s12934-016-0609-1.

    Article  Google Scholar 

  72. Yang Y, Huang S, Han Y, Yuan H, Gu C, Zhao Y. Base substitution mutations in uridinediphosphate-dependent glycosyltransferase 76G1 gene of Stevia rebaudiana causes the low levels of rebaudioside A: mutations in UGT76G1, a key gene of steviol glycosides synthesis. Plant Physiol Biochem. 2014;80:220–5. https://doi.org/10.1016/j.plaphy.2014.04.005.

  73. Madhav H, Bhasker S, Chinnamma M. Functional and structural variation of uridine diphosphate glycosyltransferase (UGT) gene of Stevia rebaudiana–UGTSr involved in the synthesis of rebaudioside A. Plant Physiol Biochem. 2013;63:245–53. https://doi.org/10.1016/j.plaphy.2012.11.029.

    Article  CAS  Google Scholar 

  74. Li Y, Li Y, Wang Y, Chen L, Yan M, Chen K, et al. Production of rebaudioside A from stevioside catalyzed by the engineered Saccharomyces cerevisiae. Appl Biochem Biotechnol. 2016;178:1586–98. https://doi.org/10.1007/s12010-015-1969-4.

    Article  CAS  Google Scholar 

  75. Demchenko AV. General aspects of the glycosidic bond formation. In: Demchenko AV, editor. Handbook of chemical glycosylation: advances in stereoselectivity and therapeutic relevance. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2008. p. 1–27.

    Chapter  Google Scholar 

  76. Koenigs W, Knorr E. Ueber einige Derivate des Traubenzuckers und der Galactose. Ber Dtsch Chem Ges. 1901;34:957–81. https://doi.org/10.1002/cber.190103401162.

    Article  Google Scholar 

  77. Křen V, Thiem J. Glycosylation employing bio-systems: from enzymes to whole cells. Chem Soc Rev. 1997;26:463–73. https://doi.org/10.1039/CS9972600463.

    Article  Google Scholar 

  78. Lim E. Plant glycosyltransferases: their potential as novel biocatalysts. Chem Eur J. 2005;11:5486–94. https://doi.org/10.1002/chem.200500115.

    Article  CAS  Google Scholar 

  79. Sinnott ML. Catalytic mechanism of enzymic glycosyl transfer. Chem Rev. 1990;90:1171–202. https://doi.org/10.1021/cr00105a006.

    Article  CAS  Google Scholar 

  80. Campbell JA, Davies GJ, Bulone V, Henrissat B. A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities. Biochem J. 1997;326:929–39.

    Article  CAS  Google Scholar 

  81. Coutinho PM, Deleury E, Davies GJ, Henrissat B. An evolving hierarchical family classification for glycosyltransferases. J Mol Biol. 2003;328:307–17. https://doi.org/10.1016/S0022-2836(03)00307-3.

    Article  CAS  Google Scholar 

  82. Lairson LL, Henrissat B, Davies GJ, Withers SG. Glycosyltransferases: structures, functions, and mechanisms. Annu Rev Biochem. 2008;77:521–55. https://doi.org/10.1146/annurev.biochem.76.061005.092322.

    Article  CAS  Google Scholar 

  83. Ekstrom A, Taujale R, McGinn N, Yin Y. PlantCAZyme: a database for plant carbohydrate-active enzymes. Database (Oxford). 2014. https://doi.org/10.1093/database/bau079.

  84. Mackenzie PI, Rogers A, Treloar J, Jorgensen BR, Miners JO, Meech R. Identification of UDP glycosyltransferase 3A1 as a UDP N-acetylglucosaminyltransferase. J Biol Chem. 2008;283:36205–10. https://doi.org/10.1074/jbc.M807961200.

  85. Shibuya M, Nishimura K, Yasuyama N, Ebizuka Y. Identification and characterization of glycosyltransferases involved in the biosynthesis of soyasaponin I in Glycine max. FEBS Lett. 2010;584:2258–64. https://doi.org/10.1016/j.febslet.2010.03.037.

    Article  CAS  Google Scholar 

  86. Han SH, Kim BG, Yoon JA, Chong Y, Ahn J. Synthesis of flavonoid O-pentosides by Escherichia coli through engineering of nucleotide sugar pathways and glycosyltransferase. Appl Environ Microbiol. 2014;80:2754–62. https://doi.org/10.1128/AEM.03797-13.

    Article  CAS  Google Scholar 

  87. Montefiori M, Espley RV, Stevenson D, Cooney J, Datson PM, Saiz A, et al. Identification and characterisation of F3GT1 and F3GGT1, two glycosyltransferases responsible for anthocyanin biosynthesis in red-fleshed kiwifruit (Actinidia chinensis). Plant J. 2011;65:106–18. https://doi.org/10.1111/j.1365-313X.2010.04409.x.

    Article  CAS  Google Scholar 

  88. Unligil UM, Zhou S, Yuwaraj S, Sarkar M, Schachter H, Rini JM. X-ray crystal structure of rabbit N-acetylglucosaminyltransferase I: catalytic mechanism and a new protein superfamily. EMBO J. 2000;19:5269–80. https://doi.org/10.1093/emboj/19.20.5269.

    Article  CAS  Google Scholar 

  89. Hiromoto T, Honjo E, Tamada T, Noda N, Kazuma K, Suzuki M, et al. Crystal structure of UDP-glucose:anthocyanidin 3-O-glucosyltransferase from Clitoria ternatea. J Synchrotron Radiat. 2013;20:894–8. https://doi.org/10.1107/S0909049513020712.

    Article  CAS  Google Scholar 

  90. Lizak C, Gerber S, Numao S, Aebi M, Locher KP. X-ray structure of a bacterial oligosaccharyltransferase. Nature. 2011;474:350–5. https://doi.org/10.1038/nature10151.

    Article  CAS  Google Scholar 

  91. Zhang H, Zhu F, Yang T, Ding L, Zhou M, Li J, et al. The highly conserved domain of unknown function 1792 has a distinct glycosyltransferase fold. Nat Commun. 2014;5:4339. https://doi.org/10.1038/ncomms5339.

    CAS  Google Scholar 

  92. Liang D, Liu J, Wu H, Wang B, Zhu H, Qiao J. Glycosyltransferases: mechanisms and applications in natural product development. Chem Soc Rev. 2015;44:8350–74. https://doi.org/10.1039/c5cs00600g.

    Article  CAS  Google Scholar 

  93. Busch C, Hofmann F, Selzer J, Munro S, Jeckel D, Aktories K. A common motif of eukaryotic glycosyltransferases is essential for the enzyme activity of large clostridial cytotoxins. J Biol Chem. 1998;273:19566–72. https://doi.org/10.1074/jbc.273.31.19566.

    Article  CAS  Google Scholar 

  94. Charnock SJ, Davies GJ. Structure of the nucleotide-diphospho-sugar transferase, SpsA from Bacillus subtilis, in native and nucleotide-complexed forms. Biochemistry. 1999;38:6380–5. https://doi.org/10.1021/bi990270y.

    Article  CAS  Google Scholar 

  95. Vrielink A, Rüger W, Driessen HP, Freemont PS. Crystal structure of the DNA modifying enzyme beta-glucosyltransferase in the presence and absence of the substrate uridine diphosphoglucose. EMBO J. 1994;13:3413–22.

    CAS  Google Scholar 

  96. Morera S, Lariviere L, Kurzeck J, Aschke-Sonnenborn U, Freemont PS, Janin J, et al. High resolution crystal structures of T4 phage β-glucosyltransferase: induced fit and effect of substrate and metal binding. J Mol Biol. 2001;311:569–77. https://doi.org/10.1006/jmbi.2001.4905.

  97. Lovering AL, de Castro LH, Liza H, Lim D, Strynadka NCJ. Structural insight into the transglycosylation step of bacterial cell-wall biosynthesis. Science. 2007;315:1402–5. https://doi.org/10.1126/science.1136611.

    Article  CAS  Google Scholar 

  98. Yuan Y, Barrett D, Zhang Y, Kahne D, Sliz P, Walker S. Crystal structure of a peptidoglycan glycosyltransferase suggests a model for processive glycan chain synthesis. Proc Natl Acad Sci U S A. 2007;104:5348–53. https://doi.org/10.1073/pnas.0701160104.

    Article  CAS  Google Scholar 

  99. Igura M, Maita N, Kamishikiryo J, Yamada M, Obita T, Maenaka K, et al. Structure-guided identification of a new catalytic motif of oligosaccharyltransferase. EMBO J. 2008;27:234–43. https://doi.org/10.1038/sj.emboj.7601940.

    Article  CAS  Google Scholar 

  100. Bowles D, Lim E, Poppenberger B, Vaistij FE. Glycosyltransferases of lipophilic small molecules. Annu Rev Plant Biol. 2006;57:567–97. https://doi.org/10.1146/annurev.arplant.57.032905.105429.

    Article  CAS  Google Scholar 

  101. Gachon CMM, Langlois-Meurinne M, Saindrenan P. Plant secondary metabolism glycosyltransferases: the emerging functional analysis. Trends Plant Sci. 2005;10:542–9. https://doi.org/10.1016/j.tplants.2005.09.007.

    Article  CAS  Google Scholar 

  102. Hans J, Brandt W, Vogt T. Site-directed mutagenesis and protein 3D-homology modelling suggest a catalytic mechanism for UDP-glucose-dependent betanidin 5-O-glucosyltransferase from Dorotheanthus bellidiformis. Plant J. 2004;39:319–33. https://doi.org/10.1111/j.1365-313X.2004.02133.x.

    Article  CAS  Google Scholar 

  103. Kubo A, Arai Y, Nagashima S, Yoshikawa T. Alteration of sugar donor specificities of plant glycosyltransferases by a single point mutation. Arch Biochem Biophys. 2004;429:198–203. https://doi.org/10.1016/j.abb.2004.06.021.

    Article  CAS  Google Scholar 

  104. Dixon RA, Achnine L, Kota P, Liu C, Reddy MSS, Wang L. The phenylpropanoid pathway and plant defence-a genomics perspective. Mol Plant Pathol. 2002;3:371–90. https://doi.org/10.1046/j.1364-3703.2002.00131.x.

    Article  CAS  Google Scholar 

  105. Umezawa T. The cinnamate/monolignol pathway. Phytochem Rev. 2010;9:1–17. https://doi.org/10.1007/s11101-009-9155-3.

    Article  CAS  Google Scholar 

  106. Mandal SM, Chakraborty D, Dey S. Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant Signal Behav. 2010;5:359–68. https://doi.org/10.4161/psb.5.4.10871.

    Article  CAS  Google Scholar 

  107. Ferrer J, Austin MB, Stewart C Jr, Noel JP. Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant Physiol Biochem. 2008;46:356–70. https://doi.org/10.1016/j.plaphy.2007.12.009.

    Article  CAS  Google Scholar 

  108. Castelluccio C, Paganga G, Melikian N, Paul Bolwell G, Pridham J, Sampson J, et al. Antioxidant potential of intermediates in phenylpropanoid metabolism in higher plants. FEBS Lett. 1995;368:188–92. https://doi.org/10.1016/0014-5793(95)00639-Q.

    Article  CAS  Google Scholar 

  109. Barber MS, McConnell VS, DeCaux BS. Antimicrobial intermediates of the general phenylpropanoid and lignin specific pathways. Phytochemistry. 2000;54:53–6. https://doi.org/10.1016/S0031-9422(00)00038-8.

    Article  CAS  Google Scholar 

  110. Bruyere C, Genovese S, Lallemand B, Ionescu-Motatu A, Curini M, Kiss R, et al. Growth inhibitory activities of oxyprenylated and non-prenylated naturally occurring phenylpropanoids in cancer cell lines. Bioorg Med Chem Lett. 2011;21:4174–9. https://doi.org/10.1016/j.bmcl.2011.05.089.

    Article  CAS  Google Scholar 

  111. Lunkenbein S, Bellido M, Aharoni A, Salentijn EMJ, Kaldenhoff R, Coiner HA, et al. Cinnamate metabolism in ripening fruit. Characterization of a UDP-glucose:cinnamate glucosyltransferase from strawberry. Plant Physiol. 2006;140:1047–58. https://doi.org/10.1104/pp.105.074955.

    Article  CAS  Google Scholar 

  112. Cui L, Yao S, Dai X, Yin Q, Liu Y, Jiang X, et al. Identification of UDP-glycosyltransferases involved in the biosynthesis of astringent taste compounds in tea (Camellia sinensis). J Exp Bot. 2016;67:2285–97. https://doi.org/10.1093/jxb/erw053.

    Article  CAS  Google Scholar 

  113. Lin J, Huang X, Li Q, Cao Y, Bao Y, Meng X, et al. UDP-glycosyltransferase 72B1 catalyzes the glucose conjugation of monolignols and is essential for the normal cell wall lignification in Arabidopsis thaliana. Plant J. 2016;n/a. https://doi.org/10.1111/tpj.13229.

  114. Wang Y, Wang W, Jin S, Wang J, Wang B, Hou B. Over-expression of a putative poplar glycosyltransferase gene, PtGT1, in tobacco increases lignin content and causes early flowering. J Exp Bot. 2012;63:2799–808. https://doi.org/10.1093/jxb/ers001.

    Article  CAS  Google Scholar 

  115. Le Roy J, Huss B, Creach A, Hawkins S, Neutelings G. Glycosylation is a major regulator of phenylpropanoid availability and biological activity in plants. Front Plant Sci. 2016;7:132. https://doi.org/10.3389/fpls.2016.00735.

    Google Scholar 

  116. Chong J, Baltz R, Schmitt C, Beffa R, Fritig B, Saindrenan P. Downregulation of a pathogen-responsive tobacco UDP-glc:phenylpropanoid glucosyltransferase reduces scopoletin glucoside accumulation, enhances oxidative stress, and weakens virus resistance. Plant Cell. 2002;14:1093–107. https://doi.org/10.1105/tpc.010436.

    Article  CAS  Google Scholar 

  117. Kanoh H, Kawauchi M, Kuroyanagi M, Arima T. Molecular cloning and characterization of coumarin glucosyltransferase in hairy roots of Pharbitis nil (Ipomoea nil). Plant Biotechnol. 2014;31:21–8. https://doi.org/10.5511/plantbiotechnology.13.1203a.

    Article  CAS  Google Scholar 

  118. Griesser M, Hoffmann T, Bellido ML, Rosati C, Fink B, Kurtzer R, et al. Redirection of flavonoid biosynthesis through the down-regulation of an anthocyanidin glucosyltransferase in ripening strawberry fruit. Plant Physiol. 2008;146:1528–39. https://doi.org/10.1104/pp.107.114280.

    Article  CAS  Google Scholar 

  119. He F, Chen W, Yu K, Ji X, Duan C, Reeves MJ, et al. Molecular and biochemical characterization of the UDP-glucose: anthocyanin 5-O-glucosyltransferase from Vitis amurensis. Phytochemistry. 2015;117:363–72. https://doi.org/10.1016/j.phytochem.2015.06.023.

    Article  CAS  Google Scholar 

  120. Jánváry L, Hoffmann T, Pfeiffer J, Hausmann L, Töpfer R, Fischer TC, et al. A double mutation in the anthocyanin 5-O-glucosyltransferase gene disrupts enzymatic activity in Vitis vinifera L. J Agric Food Chem. 2009;57:3512–8. https://doi.org/10.1021/jf900146a.

    Article  CAS  Google Scholar 

  121. Wang L, Han W, Xie C, Hou J, Fang Q, Gu J, et al. Comparing the acceptor promiscuity of a Rosa hybrida glucosyltransferase RhGT1 and an engineered microbial glucosyltransferase OleDPSA toward a small flavonoid library. Carbohydr Res. 2013;368:73–7. https://doi.org/10.1016/j.carres.2012.12.012.

    Article  CAS  Google Scholar 

  122. Gosch C, Halbwirth H, Stich K. Phloridzin: biosynthesis, distribution and physiological relevance in plants. Phytochemistry. 2010;71:838–43. https://doi.org/10.1016/j.phytochem.2010.03.003.

    Article  CAS  Google Scholar 

  123. Gosch C, Halbwirth H, Schneider B, Hölscher D, Stich K. Cloning and heterologous expression of glycosyltransferases from Malus x domestica and Pyrus communis, which convert phloretin to phloretin 2′-O-glucoside (phloridzin). Plant Sci. 2010;178:299–306. https://doi.org/10.1016/j.plantsci.2009.12.009.

    Article  CAS  Google Scholar 

  124. Zhang T, Liang J, Wang P, Xu Y, Wang Y, Wei X, et al. Purification and characterization of a novel phloretin-2′-O-glycosyltransferase favoring phloridzin biosynthesis. Sci Rep. 2016;6:35274. https://doi.org/10.1038/srep35274.

    Article  CAS  Google Scholar 

  125. Jugdé H, Nguy D, Moller I, Cooney JM, Atkinson RG. Isolation and characterization of a novel glycosyltransferase that converts phloretin to phlorizin, a potent antioxidant in apple. FEBS J. 2008;275:3804–14. https://doi.org/10.1111/j.1742-4658.2008.06526.x.

    Article  CAS  Google Scholar 

  126. Gutmann A, Bungaruang L, Weber H, Leypold M, Breinbauer R, Nidetzky B. Towards the synthesis of glycosylated dihydrochalcone natural products using glycosyltransferase-catalysed cascade reactions. Green Chem. 2014;16:4417–25. https://doi.org/10.1039/C4GC00960F.

    Article  CAS  Google Scholar 

  127. Yahyaa M, Davidovich-Rikanati R, Eyal Y, Sheachter A, Marzouk S, Lewinsohn E, et al. Identification and characterization of UDP-glucose: phloretin 4′-O-glycosyltransferase from Malus x domestica Borkh. Phytochemistry. 2016;130:47–55. https://doi.org/10.1016/j.phytochem.2016.06.004.

    Article  CAS  Google Scholar 

  128. Song C, Ring L, Hoffmann T, Huang F, Slovin JP, Schwab W. Acylphloroglucinol biosynthesis in strawberry fruit. Plant Physiol. 2015. https://doi.org/10.1104/pp.15.00794.

  129. Song C, Zhao S, Hong X, Liu J, Schulenburg K, Schwab W. A UDP-glucosyltransferase functions in both acylphloroglucinol glucoside and anthocyanin biosynthesis in strawberry (Fragaria × ananassa). Plant J. 2016;85:730–42. https://doi.org/10.1111/tpj.13140.

    Article  CAS  Google Scholar 

  130. Song C, Hong X, Zhao S, Liu J, Schulenburg K, Huang F, et al. Glucosylation of 4-hydroxy-2,5-dimethyl-3(2H)-furanone, the key strawberry flavor compound in strawberry fruit. Plant Physiol. 2016;171:139–51. https://doi.org/10.1104/pp.16.00226.

    Article  CAS  Google Scholar 

  131. Kiselev KV, Aleynova OA, Grigorchuk VP, Dubrovina AS. Stilbene accumulation and expression of stilbene biosynthesis pathway genes in wild grapevine Vitis amurensis Rupr. Planta. 2016:1–9. https://doi.org/10.1007/s00425-016-2598-z.

  132. Mozafari M, Nekooeian AA, Mashghoolozekr E, Panjeshahin MR. The cardioprotective effects of resveratrol in rats with simultaneous type 2 diabetes and renal hypertension. Nat Prod Commun. 2015;10:335–8.

    Google Scholar 

  133. Ozaki S, Imai H, Iwakiri T, Sato T, Shimoda K, Nakayama T, et al. Regioselective glucosidation of trans-resveratrol in Escherichia coli expressing glucosyltransferase from Phytolacca americana. Biotechnol Lett. 2012;34:475–81. https://doi.org/10.1007/s10529-011-0784-4.

    Article  CAS  Google Scholar 

  134. Hall D, de Luca V. Mesocarp localization of a bi-functional resveratrol/hydroxycinnamic acid glucosyltransferase of concord grape (Vitis labrusca). Plant J. 2007;49:579–91. https://doi.org/10.1111/j.1365-313X.2006.02987.x.

    Article  CAS  Google Scholar 

  135. Kaminaga Y, Sahin FP, Mizukami H. Molecular cloning and characterization of a glucosyltransferase catalyzing glucosylation of curcumin in cultured Catharanthus roseus cells. FEBS Lett. 2004;567:197–202. https://doi.org/10.1016/j.febslet.2004.04.056.

    Article  CAS  Google Scholar 

  136. Oguchi Y, Masada S, Kondo T, Terasaka K, Mizukami H. Purification and characterization of UDP-glucose: curcumin glucoside 1,6-glucosyltransferase from Catharanthus roseus cell suspension cultures. Plant Cell Physiol. 2007;48:1635–43. https://doi.org/10.1093/pcp/pcm138.

    Article  CAS  Google Scholar 

  137. Schwab W, Davidovich-Rikanati R, Lewinsohn E. Biosynthesis of plant-derived flavor compounds. Plant J. 2008;54:712–32. https://doi.org/10.1111/j.1365-313X.2008.03446.x.

    Article  CAS  Google Scholar 

  138. Gershenzon J, Dudareva N. The function of terpene natural products in the natural world. Nat Chem Biol. 2007;3:408–14. https://doi.org/10.1038/nchembio.2007.5.

    Article  CAS  Google Scholar 

  139. Chen W, Viljoen AM. Geraniol — a review of a commercially important fragrance material. S Afr J Bot. 2010;76:643–51. https://doi.org/10.1016/j.sajb.2010.05.008.

    Article  CAS  Google Scholar 

  140. Bönisch F, Frotscher J, Stanitzek S, Ruhl E, Wust M, Bitz O, et al. Activity-based profiling of a physiologic aglycone library reveals sugar acceptor promiscuity of family 1 UDP-glucosyltransferases from grape. Plant Physiol. 2014;166:23–39. https://doi.org/10.1104/pp.114.242578.

    Article  CAS  Google Scholar 

  141. Yauk Y, Ged C, Wang MY, Matich AJ, Tessarotto L, Cooney JM, et al. Manipulation of flavour and aroma compound sequestration and release using a glycosyltransferase with specificity for terpene alcohols. Plant J. 2014;80:317–30. https://doi.org/10.1111/tpj.12634.

    Article  CAS  Google Scholar 

  142. Ohgami S, Ono E, Horikawa M, Murata J, Totsuka K, Toyonaga H, et al. Volatile glycosylation in tea plants: sequential glycosylations for the biosynthesis of aroma β-primeverosides are catalyzed by two Camellia sinensis glycosyltransferases. Plant Physiol. 2015;168:464–77. https://doi.org/10.1104/pp.15.00403.

    Article  CAS  Google Scholar 

  143. Dong T, Hwang I. Contribution of ABA UDP-glucosyltransferases in coordination of ABA biosynthesis and catabolism for ABA homeostasis. Plant Signal Behav. 2014;9:e28888. https://doi.org/10.4161/psb.28888.

    Article  CAS  Google Scholar 

  144. Poppenberger B, Fujioka S, Soeno K, George GL, Vaistij FE, Hiranuma S, et al. The UGT73C5 of Arabidopsis thaliana glucosylates brassinosteroids. Proc Natl Acad Sci U S A. 2005;102:15253–8. https://doi.org/10.1073/pnas.0504279102.

    Article  CAS  Google Scholar 

  145. Husar S, Berthiller F, Fujioka S, Rozhon W, Khan M, Kalaivanan F, et al. Overexpression of the UGT73C6 alters brassinosteroid glucoside formation in Arabidopsis thaliana. BMC Plant Biol. 2011;11:51. https://doi.org/10.1186/1471-2229-11-51.

    Article  CAS  Google Scholar 

  146. Kudo T, Makita N, Kojima M, Tokunaga H, Sakakibara H. Cytokinin activity of cis-zeatin and phenotypic alterations induced by overexpression of putative cis-zeatin-O-glucosyltransferase in rice. Plant Physiol. 2012;160:319–31. https://doi.org/10.1104/pp.112.196733.

    Article  CAS  Google Scholar 

  147. Tognetti VB, van Aken O, Morreel K, Vandenbroucke K, van de Cotte B, de Clercq I, et al. Perturbation of indole-3-butyric acid homeostasis by the UDP-glucosyltransferase UGT74E2 modulates Arabidopsis architecture and water stress tolerance. Plant Cell. 2010;22:2660–79. https://doi.org/10.1105/tpc.109.071316.

    Article  CAS  Google Scholar 

  148. Liu Z, Yan J, Li D, Luo Q, Yan Q, Liu Z, et al. UDP-glucosyltransferase71C5, a major glucosyltransferase, mediates abscisic acid homeostasis in Arabidopsis. Plant Physiol. 2015;167:1659–70. https://doi.org/10.1104/pp.15.00053.

    Article  CAS  Google Scholar 

  149. Suzuki H, Hayase H, Nakayama A, Yamaguchi I, Asami T, Nakajima M. Identification and characterization of an Ipomoea nil glucosyltransferase which metabolizes some phytohormones. Biochem Biophys Res Commun. 2007;361:980–6. https://doi.org/10.1016/j.bbrc.2007.07.147.

    Article  CAS  Google Scholar 

  150. Noguchi A, Kunikane S, Homma H, Liu W, Sekiya T, Hosoya M, et al. Identification of an inducible glucosyltransferase from Phytolacca americana L. cells that are capable of glucosylating capsaicin. Plant Biotechnol. 2009;26:285–92. https://doi.org/10.5511/plantbiotechnology.26.285.

    Article  CAS  Google Scholar 

  151. Dick R, Rattei T, Haslbeck M, Schwab W, Gierl A, Frey M. Comparative analysis of benzoxazinoid biosynthesis in monocots and dicots: independent recruitment of stabilization and activation functions. Plant Cell. 2012;24:915–28. https://doi.org/10.1105/tpc.112.096461.

    Article  CAS  Google Scholar 

  152. Sue M, Nakamura C, Nomura T. Dispersed benzoxazinone gene cluster: molecular characterization and chromosomal localization of glucosyltransferase and glucosidase genes in wheat and rye. Plant Physiol. 2011;157:985–97. https://doi.org/10.1104/pp.111.182378.

    Article  CAS  Google Scholar 

  153. Schwab W. Natural 4-hydroxy-2,5-dimethyl-3(2H)-furanone (Furaneol(R)). Molecules. 2013;18:6936–51. https://doi.org/10.3390/molecules18066936.

    Article  CAS  Google Scholar 

  154. Gandia-Herrero F, Lorenz A, Larson T, Graham IA, Bowles DJ, Rylott EL, et al. Detoxification of the explosive 2,4,6-trinitrotoluene in Arabidopsis: discovery of bifunctional O- and C-glucosyltransferases. Plant J. 2008;56:963–74. https://doi.org/10.1111/j.1365-313X.2008.03653.x.

    Article  CAS  Google Scholar 

  155. Brazier-Hicks M, Evans KM, Gershater MC, Puschmann H, Steel PG, Edwards R. The C-glycosylation of flavonoids in cereals. J Biol Chem. 2009;284:17926–34. https://doi.org/10.1074/jbc.M109.009258.

    Article  CAS  Google Scholar 

  156. Landmann C, Fink B, Schwab W. FaGT2: a multifunctional enzyme from strawberry (Fragaria × ananassa) fruits involved in the metabolism of natural and xenobiotic compounds. Planta. 2007;226:417–28. https://doi.org/10.1007/s00425-007-0492-4.

  157. Yu B, Sun J, Yang X. Assembly of naturally occurring glycosides, evolved tactics, and glycosylation methods. Acc Chem Res. 2012;45:1227–36. https://doi.org/10.1021/ar200296m.

    Article  CAS  Google Scholar 

  158. Grynkiewicz G, Szeja W. Synthetic glycosides and glycoconjugates of low molecular weight natural products. Curr Pharm Des. 2016;22:1592–627.

    Article  CAS  Google Scholar 

  159. Thibodeaux CJ, Melançon CE, Liu H. Natural-product sugar biosynthesis and enzymatic glycodiversification. Angew Chem Int Ed. 2008;47:9814–59. https://doi.org/10.1002/anie.200801204.

    Article  CAS  Google Scholar 

  160. Masada S, Kawase Y, Nagatoshi M, Oguchi Y, Terasaka K, Mizukami H. An efficient chemoenzymatic production of small molecule glucosides with in situ UDP-glucose recycling. FEBS Lett. 2007;581:2562–6. https://doi.org/10.1016/j.febslet.2007.04.074.

    Article  CAS  Google Scholar 

  161. Terasaka K, Mizutani Y, Nagatsu A, Mizukami H. In situ UDP-glucose regeneration unravels diverse functions of plant secondary product glycosyltransferases. FEBS Lett. 2012;586:4344–50. https://doi.org/10.1016/j.febslet.2012.10.045.

    Article  CAS  Google Scholar 

  162. Huang FC, Hinkelmann J, Hermenau A, Schwab W. Enhanced production of β-glucosides by in-situ UDP-glucose regeneration. J Biotechnol. 2016;224:35–44. https://doi.org/10.1016/j.jbiotec.2016.02.022.

  163. de Bruyn F, van Brempt M, Maertens J, van Bellegem W, Duchi D, de Mey M. Metabolic engineering of Escherichia coli into a versatile glycosylation platform: production of bio-active quercetin glycosides. Microb Cell Factories. 2015;14:138. https://doi.org/10.1186/s12934-015-0326-1.

    Article  CAS  Google Scholar 

  164. Wang H, Yang Y, Lin L, Zhou W, Liu M, Cheng K, et al. Engineering Saccharomyces cerevisiae with the deletion of endogenous glucosidases for the production of flavonoid glucosides. Microb Cell Factories. 2016;15:134. https://doi.org/10.1186/s12934-016-0535-2.

    Article  Google Scholar 

  165. Rivas F, Parra A, Martinez A, Garcia-Granados A. Enzymatic glycosylation of terpenoids. Phytochem Rev. 2013;12:327–39. https://doi.org/10.1007/s11101-013-9301-9.

    Article  CAS  Google Scholar 

  166. Caputi L, Lim E, Bowles DJ. Discovery of new biocatalysts for the glycosylation of terpenoid scaffolds. Chem Eur J. 2008;14:6656–62. https://doi.org/10.1002/chem.200800548.

    Article  CAS  Google Scholar 

  167. Lim CG, Wong L, Bhan N, Dvora H, Xu P, Venkiteswaran S, et al. Development of a recombinant Escherichia coli strain for overproduction of the plant pigment anthocyanin. Appl Environ Microbiol. 2015;81:6276–84. https://doi.org/10.1128/AEM.01448-15.

    Article  CAS  Google Scholar 

  168. Thuan NH, Park JW, Sohng JK. Toward the production of flavone-7-O-β-D-glucopyranosides using Arabidopsis glycosyltransferase in Escherichia coli. Process Biochem. 2013;48:1744–8. https://doi.org/10.1016/j.procbio.2013.07.005.

    Article  CAS  Google Scholar 

  169. Kim SY, Lee HR, Park K, Kim B, Ahn J. Metabolic engineering of Escherichia coli for the biosynthesis of flavonoid-O-glucuronides and flavonoid-O-galactoside. Appl Microbiol Biotechnol. 2015;99:2233–42. https://doi.org/10.1007/s00253-014-6282-6.

    Article  CAS  Google Scholar 

  170. Pandey RP, Malla S, Simkhada D, Kim B, Sohng JK. Production of 3-O-xylosyl quercetin in Escherichia coli. Appl Microbiol Biotechnol. 2013;97:1889–901. https://doi.org/10.1007/s00253-012-4438-9.

    Article  CAS  Google Scholar 

  171. Pei J, Dong P, Wu T, Zhao L, Fang X, Cao F, et al. Metabolic engineering of Escherichia coli for astragalin biosynthesis. J Agric Food Chem. 2016;64:7966–72. https://doi.org/10.1021/acs.jafc.6b03447.

    Article  CAS  Google Scholar 

  172. Kim B, Kim HJ, Ahn J. Production of bioactive flavonol rhamnosides by expression of plant genes in Escherichia coli. J Agric Food Chem. 2012;60:11143–8. https://doi.org/10.1021/jf302123c.

    Article  CAS  Google Scholar 

  173. Yoon J, Kim B, Lee WJ, Lim Y, Chong Y, Ahn J. Production of a novel quercetin glycoside through metabolic engineering of Escherichia coli. Appl Environ Microbiol. 2012;78:4256–62. https://doi.org/10.1128/AEM.00275-12.

    Article  CAS  Google Scholar 

  174. Kim B, Sung SH, Ahn J. Biological synthesis of quercetin 3-O-N-acetylglucosamine conjugate using engineered Escherichia coli expressing UGT78D2. Appl Microbiol Biotechnol. 2012;93:2447–53. https://doi.org/10.1007/s00253-011-3747-8.

  175. Malla S, Pandey RP, Kim B, Sohng JK. Regiospecific modifications of naringenin for astragalin production in Escherichia coli. Biotechnol Bioeng. 2013;110:2525–35. https://doi.org/10.1002/bit.24919.

    Article  CAS  Google Scholar 

  176. Yan Y, Li Z, Koffas MAG. High-yield anthocyanin biosynthesis in engineered Escherichia coli. Biotechnol Bioeng. 2008;100:126–40. https://doi.org/10.1002/bit.21721.

    Article  CAS  Google Scholar 

  177. Werner SR, Morgan JA. Expression of a Dianthus flavonoid glucosyltransferase in Saccharomyces cerevisiae for whole-cell biocatalysis. J Biotechnol. 2009;142:233–41. https://doi.org/10.1016/j.jbiotec.2009.05.008.

    Article  CAS  Google Scholar 

  178. Ito T, Fujimoto S, Shimosaka M, Taguchi G. Production of C-glucosides of flavonoids and related compounds by Escherichia coli expressing buckwheat C-glucosyltransferase. Plant Biotechnol. 2014;advpub. doi:https://doi.org/10.5511/plantbiotechnology.14.1016a.

  179. Yan Y, Chemler J, Huang L, Martens S, Koffas MAG. Metabolic engineering of anthocyanin biosynthesis in Escherichia coli. Appl Environ Microbiol. 2005;71:3617–23. https://doi.org/10.1128/AEM.71.7.3617-3623.2005.

    Article  CAS  Google Scholar 

  180. Drăgan C, Buchheit D, Bischoff D, Ebner T, Bureik M. Glucuronide production by whole-cell biotransformation using genetically engineered fission yeast Schizosaccharomyces pombe. Drug Metab Dispos. 2010;38:509. https://doi.org/10.1124/dmd.109.030965.

    Article  CAS  Google Scholar 

  181. Hansen EH, Møller BL, Kock GR, Bünner CM, Kristensen C, Jensen OR, et al. De novo biosynthesis of vanillin in fission yeast (Schizosaccharomyces pombe) and baker’s yeast (Saccharomyces cerevisiae). Appl Environ Microbiol. 2009;75:2765–74. https://doi.org/10.1128/AEM.02681-08.

    Article  CAS  Google Scholar 

  182. Xue F, Guo H, Hu Y, Liu R, Huang L, Lv H, et al. Expression of codon-optimized plant glycosyltransferase UGT72B14 in Escherichia coli enhances salidroside production. Biomed Res Int. 2016:9845927. https://doi.org/10.1155/2016/9845927.

  183. Parajuli P, Pandey RP, Trang NTH, Chaudhary AK, Sohng JK. Synthetic sugar cassettes for the efficient production of flavonol glycosides in Escherichia coli. Microb Cell Factories. 2015;14:76. https://doi.org/10.1186/s12934-015-0261-1.

    Article  CAS  Google Scholar 

  184. Wei W, Wang P, Wei Y, Liu Q, Yang C, Zhao G, et al. Characterization of Panax ginseng UDP-glycosyltransferases catalyzing protopanaxatriol and biosyntheses of bioactive ginsenosides F1 and Rh1 in metabolically engineered yeasts. Mol Plant. 2015;8:1412–24. https://doi.org/10.1016/j.molp.2015.05.010.

    Article  CAS  Google Scholar 

  185. Wang P, Wei Y, Fan Y, Liu Q, Wei W, Yang C, et al. Production of bioactive ginsenosides Rh2 and Rg3 by metabolically engineered yeasts. Metab Eng. 2015;29:97–105. https://doi.org/10.1016/j.ymben.2015.03.003.

    Article  CAS  Google Scholar 

  186. de Bruyn F, de Paepe B, Maertens J, Beauprez J, de Cocker P, Mincke S, et al. Development of an in vivo glucosylation platform by coupling production to growth: production of phenolic glucosides by a glycosyltransferase of Vitis vinifera. Biotechnol Bioeng. 2015;112:1594–603. https://doi.org/10.1002/bit.25570.

    Article  CAS  Google Scholar 

  187. Pandey RP, Li TF, Kim E, Yamaguchi T, Park YI, Kim JS, et al. Enzymatic synthesis of novel phloretin glucosides. Appl Environ Microbiol. 2013;79:3516–21. https://doi.org/10.1128/AEM.00409-13.

    Article  CAS  Google Scholar 

  188. Pandey RP, Parajuli P, Koirala N, Lee JH, Park YI, Sohng JK. Glucosylation of isoflavonoids in engineered Escherichia coli. Mol Cells. 2014;37:172–7. 10.14348/molcells.2014.2348.

    Article  CAS  Google Scholar 

  189. Straathof AJJ, Panke S, Schmid A. The production of fine chemicals by biotransformations. Curr Opin Biotechnol. 2002;13:548–56. https://doi.org/10.1016/S0958-1669(02)00360-9.

    Article  CAS  Google Scholar 

  190. Takors R. Scale-up of microbial processes: impacts, tools and open questions. J Biotechnol. 2012;160:3–9. https://doi.org/10.1016/j.jbiotec.2011.12.010.

    Article  CAS  Google Scholar 

  191. Rosano GL, Ceccarelli EA. Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol. 2014;5:172. https://doi.org/10.3389/fmicb.2014.00172.

    Google Scholar 

  192. Kim BG, Yang SM, Kim SY, Cha MN, Ahn J. Biosynthesis and production of glycosylated flavonoids in Escherichia coli: current state and perspectives. Appl Microbiol Biotechnol. 2015;99:2979–88. https://doi.org/10.1007/s00253-015-6504-6.

    Article  CAS  Google Scholar 

  193. Katsuragi H, Shimoda K, Kubota N, Nakajima N, Hamada H, Hamada H. Biotransformation of cinnamic acid, p-coumaric acid, caffeic acid, and ferulic acid by plant cell cultures of Eucalyptus perriniana. Biosci Biotechnol Biochem. 2010;74:1920–4. https://doi.org/10.1271/bbb.100335.

    Article  CAS  Google Scholar 

  194. Shimoda K, Harada T, Hamada H, Nakajima N, Hamada H. Biotransformation of raspberry ketone and zingerone by cultured cells of Phytolacca americana. Phytochemistry. 2007;68:487–92. https://doi.org/10.1016/j.phytochem.2006.11.030.

    Article  CAS  Google Scholar 

  195. Kwon S, Shimoda K, Hamada H, Ishihara K, Masuoka N. High production of β-thujaplicin glycosides by immobilized plant cells of Nicotiana tabacum. Acta Biol Hung. 2008;59:347–55. https://doi.org/10.1556/ABiol.59.2008.3.8.

    Article  CAS  Google Scholar 

  196. Jones JA, Koffas, M. A. G. Optimizing metabolic pathways for the improved production of natural products, chap. 8. In: Sarah E. O’Connor, editor. Methods in enzymology: synthetic biology and metabolic engineering in plants and microbes part A: metabolism in microbes. Academic; 2016. p. 179–193. doi:https://doi.org/10.1016/bs.mie.2016.02.010.

  197. Williams GJ, Zhang C, Thorson JS. Expanding the promiscuity of a natural-product glycosyltransferase by directed evolution. Nat Chem Biol. 2007;3:657–62. https://doi.org/10.1038/nchembio.2007.28.

    Article  CAS  Google Scholar 

  198. Brazier-Hicks M, Offen WA, Gershater MC, Revett TJ, Lim E, Bowles DJ, et al. Characterization and engineering of the bifunctional N- and O-glucosyltransferase involved in xenobiotic metabolism in plants. Proc Natl Acad Sci U S A. 2007;104:20238–43. https://doi.org/10.1073/pnas.0706421104.

    Article  CAS  Google Scholar 

  199. Choi SH, Ryu M, Yoon YJ, Kim D, Lee EY. Glycosylation of various flavonoids by recombinant oleandomycin glycosyltransferase from Streptomyces antibioticus in batch and repeated batch modes. Biotechnol Lett. 2012;34:499–505. https://doi.org/10.1007/s10529-011-0789-z.

    Article  CAS  Google Scholar 

  200. Leonard E, Yan Y, Fowler ZL, Li Z, Lim C, Lim K, et al. Strain improvement of recombinant Escherichia coli for efficient production of plant flavonoids. Mol Pharm. 2008;5:257–65. https://doi.org/10.1021/mp7001472.

    Article  CAS  Google Scholar 

  201. Rowan DD. Volatile metabolites. Meta. 2011;1:41–63.

    CAS  Google Scholar 

  202. Marks LE, Veldhuizen MG, Shepard TG, Shavit AY. Detecting gustatory–olfactory flavor mixtures: models of probability summation. Chem Senses. 2012;37:263–77. https://doi.org/10.1093/chemse/bjr103.

    Article  CAS  Google Scholar 

  203. Dunkel A, Steinhaus M, Kotthoff M, Nowak B, Krautwurst D, Schieberle P, et al. Nature’s chemical signatures in human olfaction: a foodborne perspective for future biotechnology. Angew Chem Int Ed. 2014;53:7124–43. https://doi.org/10.1002/anie.201309508.

    Article  CAS  Google Scholar 

  204. Caputi L, Aprea E. Use of terpenoids as natural flavouring compounds in food industry. Recent Pat Food Nutr Agric. 2011;3:9–16. https://doi.org/10.1016/j.tibtech.2005.02.003.

    Article  CAS  Google Scholar 

  205. Geuns JMC. Stevioside. Phytochemistry. 2003;64:913–21. https://doi.org/10.1016/S0031-9422(03)00426-6.

    Article  CAS  Google Scholar 

  206. Richman A, Swanson A, Humphrey T, Chapman R, McGarvey B, Pocs R, et al. Functional genomics uncovers three glucosyltransferases involved in the synthesis of the major sweet glucosides of Stevia rebaudiana. Plant J. 2005;41:56–67. https://doi.org/10.1111/j.1365-313X.2004.02275.x.

    Article  CAS  Google Scholar 

  207. Shibata H, Sonoke S, Ochiai H, Nishihashi H, Yamada M. Glucosylation of steviol and steviol-glucosides in extracts from Stevia rebaudiana Bertoni. Plant Physiol. 1991;95:152–6. https://doi.org/10.1104/pp.95.1.152.

    Article  CAS  Google Scholar 

  208. Shibata H, Sawa Y, Oka T, Sonoke S, Kim KK, Yoshioka M. Steviol and steviol-glycoside: glucosyltransferase activities in Stevia rebaudiana Bertoni – purification and partial characterization. Arch Biochem Biophys. 1995;321:390–6. https://doi.org/10.1006/abbi.1995.1409.

    Article  CAS  Google Scholar 

  209. Karim MR, Hashinaga F. Preparation and properties of immobilized pummelo limonoid glucosyltransferase. Process Biochem. 2002;38:809–14. https://doi.org/10.1016/S0032-9592(02)00233-9.

    Article  CAS  Google Scholar 

  210. Ikemoto T, Okabe B, Mimura K, Kitahara T. Formation of fragrance materials from odourless glycosidically-bound volatiles by skin microflora (part 1). Flavour Fragr J. 2002;17:452–5. https://doi.org/10.1002/ffj.1127.

    Article  CAS  Google Scholar 

  211. Ikemoto T, Mimura K, Kitahara T. Formation of fragrant materials from odourless glycosidically-bound volatiles on skin microflora (part 2). Flavour Fragr J. 2003;18:45–7. https://doi.org/10.1002/ffj.1150.

    Article  CAS  Google Scholar 

  212. Veitch NC, Grayer RJ. Flavonoids and their glycosides, including anthocyanins. Nat Prod Rep. 2011;28:1626–95.

    Article  CAS  Google Scholar 

  213. Harborne JB, Williams CA. Advances in flavonoid research since 1992. Phytochemistry. 2000;55:481–504. https://doi.org/10.1016/S0031-9422(00)00235-1.

    Article  CAS  Google Scholar 

  214. Pietta P. Flavonoids as antioxidants. J Nat Prod. 2000;63:1035–42. https://doi.org/10.1021/np9904509.

    Article  CAS  Google Scholar 

  215. Bungaruang L, Gutmann A, Nidetzky B. Leloir glycosyltransferases and natural product glycosylation: biocatalytic synthesis of the C-glucoside nothofagin, a major antioxidant of redbush herbal tea. Adv Synth Catal. 2013;355:2757–63. https://doi.org/10.1002/adsc.201300251.

    Article  CAS  Google Scholar 

  216. Krafczyk N, Glomb MA. Characterization of phenolic compounds in rooibos tea. J Agric Food Chem. 2008;56:3368–76. https://doi.org/10.1021/jf703701n.

    Article  CAS  Google Scholar 

  217. Gantt RW, Goff RD, Williams GJ, Thorson JS. Probing the aglycon promiscuity of an engineered glycosyltransferase. Angew Chem Int Ed. 2008;47:8889–92. https://doi.org/10.1002/anie.200803508.

    Article  CAS  Google Scholar 

  218. Jiang M, Zhang H, Park S, Li Y, Pfeifer BA. Deoxysugar pathway interchange for erythromycin analogues heterologously produced through Escherichia coli. Metab Eng. 2013;20:92–100. https://doi.org/10.1016/j.ymben.2013.09.005.

    Article  CAS  Google Scholar 

  219. Fu X, Albermann C, Jiang J, Liao J, Zhang C, Thorson JS. Antibiotic optimization via in vitro glycorandomization. Nat Biotech. 2003;21:1467–9. https://doi.org/10.1038/nbt909.

    Article  CAS  Google Scholar 

  220. Weiss RB. Mitoxantrone: its development and role in clinical practice. Oncology (Williston Park). 1989;3:135–41. discussion 141–3, 147–8

    CAS  Google Scholar 

  221. van der Graaf WTA, de Vries EG. Mitoxantrone: bluebeard for malignancies. Anti-Cancer Drugs. 1990;1(2):109–25.

    Article  Google Scholar 

  222. Verdrengh M, Isaksson O, Tarkowski A. Topoisomerase II inhibitors, irrespective of their chemical composition, ameliorate experimental arthritis. Rheumatology. 2005;44:183–6. https://doi.org/10.1093/rheumatology/keh444.

    Article  CAS  Google Scholar 

  223. Wehenkel A, Fernandez P, Bellinzoni M, Catherinot V, Barilone N, Labesse G, et al. The structure of PknB in complex with mitoxantrone, an ATP-competitive inhibitor, suggests a mode of protein kinase regulation in mycobacteria. FEBS Lett. 2006;580:3018–22. https://doi.org/10.1016/j.febslet.2006.04.046.

    Article  CAS  Google Scholar 

  224. Cavalletti E, Crippa L, Mainardi P, Oggioni N, Cavagnoli R, Bellini O, et al. Pixantrone (BBR 2778) has reduced cardiotoxic potential in mice pretreated with doxorubicin: comparative studies against doxorubicin and mitoxantrone. Investig New Drugs. 2007;25:187–95. https://doi.org/10.1007/s10637-007-9037-8.

    Article  CAS  Google Scholar 

  225. Evison BJ, Mansour OC, Menta E, Phillips DR, Cutts SM. Pixantrone can be activated by formaldehyde to generate a potent DNA adduct forming agent. Nucleic Acids Res. 2007;35:3581–9. https://doi.org/10.1093/nar/gkm285.

    Article  CAS  Google Scholar 

  226. Fulbright JM, Huh W, Anderson P, Chandra J. Can anthracycline therapy for pediatric malignancies be less cardiotoxic? Curr Oncol Rep. 2010;12:411–9. https://doi.org/10.1007/s11912-010-0129-9.

    Article  Google Scholar 

  227. Quirós LM, Carbajo RJ, Salas JA. Inversion of the anomeric configuration of the transferred sugar during inactivation of the macrolide antibiotic oleandomycin catalyzed by a macrolide glycosyltransferase. FEBS Lett. 2000;476:186–9. https://doi.org/10.1016/S0014-5793(00)01721-X.

    Article  Google Scholar 

  228. Zhou M, Thorson JS. Asymmetric enzymatic glycosylation of mitoxantrone. Org Lett. 2011;13:2786–8. https://doi.org/10.1021/ol200977u.

    Article  CAS  Google Scholar 

  229. Härle J, Bechthold A. The power of glycosyltransferases to generate bioactive natural compounds, chap. 12. In: Hopwood DA, editor. Methods in enzymology : complex enzymes in microbial natural product biosynthesis, part A: overview articles and peptides, vol. 458. Amsterdam: Academic; 2009. p. 309–33. https://doi.org/10.1016/S0076-6879(09)04812-5.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilfried Schwab .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Härtl, K., McGraphery, K., Rüdiger, J., Schwab, W. (2018). Tailoring Natural Products with Glycosyltransferases. In: Schwab, W., Lange, B., Wüst, M. (eds) Biotechnology of Natural Products. Springer, Cham. https://doi.org/10.1007/978-3-319-67903-7_9

Download citation

Publish with us

Policies and ethics