Skip to main content

An Engineering Approach to Bioinformatics and Its Applications

  • Chapter
  • First Online:
Plant Bioinformatics

Abstract

Biological sciences have witnessed a radical paradigm change in the last 70 years. Vast amounts of data and information have become available. However, life processes have complicated patterns due to numerous multidimensional interactions among different components with spatial and temporal variables. We are now looking at biological processes, from a holistic and integrated perspective, as unified systems. With the synergy created by interdisciplinary approaches, researchers are now trying to interpret the patterns of life processes by elucidating structures, networks, dynamics, and interrelations. The development of bioinformatics as an interdisciplinary field has introduced many sophisticated tools and techniques, to organize the information associated with biological molecules and contribute to our understanding of biological processes. On a larger scale, this has led to many practical applications, not only providing greater depth to biological research but also adding other dimensions to engineering applications. This chapter gives a general overview of the novel bioinformatics tools such as sequencing, gene prediction, protein sequencing and structure prediction, microarrays, gene expression, metagenomics, restriction enzymes, and transformation and of some techniques including recombinant DNA technology, synthetic biology, and engineering of systems. Some examples in medical and clinical applications, including pharmacology, pharmacogenomics, and epigenomics; in industrial biotechnology, specifically for the production of novel compounds and enzymes, food and feed sector, chemical feedstocks, and biofuels and materials; and in agriculture are provided, emphasizing the impact of bioinformatics in different sectors for providing solutions to contemporary challenges. This is supplemented with selected examples of some recent patents demonstrating the potential of bioinformatics in large-scale applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Agarwal R, Narayan J (2015) Unraveling the impact of bioinformatics and omics in agriculture. Int J Plant Biol Res 3(2):1039

    Google Scholar 

  • Attwood TK, Gisel A, Eriksson NE, Bongcam-Rudloff E (2011) Concepts, historical milestones and the central place of bioinformatics in modern biology: a European perspective, bioinformatics. In: Mahdavi MA (ed) Trends and methodologies. ISBN: 978–953–307-282-1

    Google Scholar 

  • Avery OT, MacLeod CM, McCarty M (1944) Studies of the chemical nature of the substance inducing transformation of pneumococcal types. Induction of transformation by a desoxyribonucleic acid fraction isolated from Pneumococcus Type III. J Exp Med 79:137–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bansal AK (2005) Bioinformatics in microbial biotechnology- a mini review. Microb Cell Factories 4:19

    Article  Google Scholar 

  • Bao R, Huang L, Andrade J, Tan W, Kibbe WA, Jiang H, Feng G (2014) Review of current methods, applications, and data management for the bioinformatics analysis of whole exome sequencing. Cancer Informat 13(S2):67–82. https://doi.org/10.4137/CIN.S13779

    CAS  Google Scholar 

  • Berglund EC, Kiialainen A, Syvanen AC (2011) Next-generation sequencing technologies and applications for human genetic history and forensics. Investig Genet 2:23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bullis K (2013) Genetically modified bacteria produce 50 percent more fuel. Retrieved from https://www.technologyreview.com

  • Calvert J, Freng RC, Frse JCF, Elfick, A., Freemont, P, … Peterson L (2009) Synthetic biology: scope, applications and implications. Royal Acad Eng ISBN: 1-903496-44-6

    Google Scholar 

  • Choi YJ, Lee J, Jang YS, Lee SY (2014) Metabolic engineering of microorganisms for the production of higher alcohols. MBio 5(5):e01524–e01514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang PL (2005) Clinical bioinformatics. Chang Gung Med J 28:201–211

    PubMed  Google Scholar 

  • Chargaff E (1950) Chemical specificity of nucleic acids and mechanism of their enzymatic degradation. Experientia 6(6):201–209

    Article  PubMed  Google Scholar 

  • Chung H, Kim TY, Lee SY (2012) Recent advances in production of recombinant spider silk proteins. Curr Opin Biotechnol 23:957–964

    Article  CAS  PubMed  Google Scholar 

  • Deveshwar P (2012) Enzymes used in recombinant DNA technology. In: Lesson prepared under MHRD project. National mission on education through ICT, Institute of Lifelong Learning, University of Delhi

    Google Scholar 

  • Elanchezhian R (2012) Application of bioinformatics in agriculture. In: Singh KM, Meena MS (ed) ICT for agricultural development in changing climate, Narendra Publishing House, New Delhi, p 163–179

    Google Scholar 

  • Escobar-Zepeda A, Vera-Ponce de Leon A, Sanchez-Flores A (2015) The road to metagenomics: from microbiology to DNA sequencing technologies and bioinformatics. Front Genet 6:348. https://doi.org/10.3389/fgene.2015.00348

    Article  PubMed  PubMed Central  Google Scholar 

  • Foo JL, Ching CB, Chang MW, Leong SSJ (2012) The imminent role of protein engineering in synthetic biology. Biotechnol Adv 30:541–549

    Article  CAS  PubMed  Google Scholar 

  • Gawande K, Rane D (2016) Exploring the applications and potential of bioinformatics. J Comput Eng 8:20–26. e-ISSN: 2278-0661, p-ISSN: 2278-8727

    Google Scholar 

  • Green MR, Sambrook J (2012) Molecular cloning – a laboratory manual, 4th edn. Cold Spring Harbour Laboratory Press, New York

    Google Scholar 

  • Hagen JB (2000) The origins of bioinformatics. Nat Rev Genet 1:231–236

    Article  CAS  PubMed  Google Scholar 

  • Heinemann M, Panke S (2006) Synthetic biology – putting engineering into biology. Bioinformatics 22:2790–2799

    Article  CAS  PubMed  Google Scholar 

  • Hogeweg P (2011) The roots of bioinformatics in theoretical biology. PLoS Comput Biol 7(3):e1002021. https://doi.org/10.1371/journal.pcbi.1002021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irfan U (2016) Engineered bacterium turns carbon dioxide into methane fuel. Retrieved from https://www.scientificamerican.com

  • Kalscheuer R, Stolting T, Steinbuchel A (2006) Microdiesel: Escherichia coli engineered for fuel production. Microbiology 152(pt 9):2529–2536

    Article  CAS  PubMed  Google Scholar 

  • Kahvejian A, Quackenbush J, Thompson JF (2008) What would you do if you could sequence everything? Nat Biotechnol 26(10):1125–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan KH (2010) Gene transfer technologies and their applications: roles in human diseases. Asian J Exp Biol Sci 1(1):208–218

    CAS  Google Scholar 

  • Kodumal SJ, Patel KG, Reld R, Menzella HG, Welch M, Santi DV (2004) Total synthesis of long DNA sequences: synthesis of a contiguous 32-kb polyketide synthase gene cluster. PNAS 101:15573–15578. https://doi.org/10.1073/pnas.0406911101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar SS, Shantkriti S, Muruganandham T, Murugesh E, Rane N, Govindwar SP (2016) Bioinformatics aided microbial approach for bioremediation of wastewater containing textile dyes. Eco Inform 31:112–121

    Article  Google Scholar 

  • Lal A, Seshasayee ASN (2014) The impact of next-generation sequencing technology on bacterial genomics. In: Kulkarni VV et al (eds) A systems theoretic approach to systems and synthetic biology II: analysis and design of cellular systems. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9047-5_2

    Google Scholar 

  • Leisola M, Jokela J, Pastinen O, Turunen O, Schoemaker HE (2009) Industrial use of enzymes. In: Hanninen OOP, Atalay M (eds) Physiology and maintenance. Eolss Publishers Company Limited, Ramsey. ISBN: 978-1-84826-040-5

    Google Scholar 

  • Lesk AM (2008) Introduction to bioinformatics, 3rd edn. Oxford University Press, New York, p 474

    Google Scholar 

  • Li Y (2012) Beyond protein engineering: its applications in synthetic biology. Enzyme Eng 1:e103. https://doi.org/10.4172/eeg.1000e103

    Article  Google Scholar 

  • Limanton-Grevet A, Jullien M (2001) Agrobacterium-mediated transformation of Asparagus officinalis L., molecular and genetic analysis of transgenic plants. Mol Breed 7:141–150

    Article  CAS  Google Scholar 

  • Liu ET (2009) The Human Genome Organisation (HUGO). HUGO J 3:3–4

    Google Scholar 

  • Luscombe NM, Greenbaum D, Gerstein M (2001) What is bioinformatics? A proposed definition and overview of the field. Method Inform Med 40:346–358

    CAS  Google Scholar 

  • Lynch SA, Gill RT (2012) Synthetic biology: new strategies for direct design. Metab Eng 14:205–211

    Article  CAS  PubMed  Google Scholar 

  • Ma H, Chen G (2005) Gene transfer technique. Nat Sci 3(1):25–31

    Google Scholar 

  • Martin VJ, Pitera DJ, Withers ST, Newman JD, Keasling JD (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol 21:796–802

    Article  CAS  PubMed  Google Scholar 

  • Medema MH, Zhao H (2016) Synthetic biology and bioinformatics. Nat Prod Rep 33:913–914

    Article  CAS  PubMed  Google Scholar 

  • Menzella HG, Reid R, Carney JR, Chandran SS, Reisinger SJ, … Santi DV (2005) Combinatorial polyketide biosynthesis by de novo design and rearrangement of modular polyketide synthase genes. Nat Biotechnol 23:1171–1176

    Google Scholar 

  • Miescher F (1869) Letter I; to Wilhelm His; Tqbingen. In: His W et al (eds) Die Histochemischen und Physiologischen Arbeiten von Friedrich Miescher—Aus dem wissenschaftlichen Briefwechsel von F. Miescher, vol 1. F.C.W. Vogel, Leipzig, pp 33–38

    Google Scholar 

  • Pitera DJ, Paddon CJ, Newman JD, Keasling JD (2007) Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli. Metab Eng 9:193–207

    Article  CAS  PubMed  Google Scholar 

  • Pleiss J (2011) Protein design in metabolic engineering and synthetic biology. Curr Opin Biotechnol 22:611–617

    Article  CAS  PubMed  Google Scholar 

  • Reijnders MJMF, van Heck RGA, Lam CMC, Scaife MA, dos Santos VAPM, Smirth AG, Schaap PJ (2014) Green genes: bioinformatics and systems-biology innovations drive algal biotechnology. Trends Biotechnol 32:617–626

    Article  CAS  PubMed  Google Scholar 

  • Rivera AL, Gomez-Lim M, Fernandez F, Loske AM (2012) Physical methods for genetic plant transformation. Phys Life Rev 9:308–345

    Article  PubMed  Google Scholar 

  • Rizzo JM, Buck MJ (2012) Key principles and clinical applications of “next-generation” DNA sequencing. Cancer Prev Res 5(7):887–900. https://doi.org/10.1158/1940-6207.CAPR-11-0432

    Article  CAS  Google Scholar 

  • Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, … Keasling JD (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940–943. https://doi.org/10.1038/nature04640

  • Romer L, Scheibel T (2008) The elaborate structure of spider silk: structure and function of a natural high performance fiber. Prion 2(4):154–161

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosano GL, Ceccarelli EA (2014) Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol 5. https://doi.org/10.3389/fmicb.2014.00172

  • Sanchez-Garcia L, Martin L, Mangues R, Ferrer-Miralles N, Vazquez E, Villaverde A (2016) Recombinant pharmaceuticals from microbial cells: a 2015 update. Microb Cell Factory 15:33. https://doi.org/10.1186/s12934-016-0437-3

    Article  Google Scholar 

  • Schulze A, Downward J (2000) Analysis of gene expression by microarrays: cell biologist’s gold mine or minefield? J Cell Sci 113:4151–4156

    CAS  PubMed  Google Scholar 

  • Sharma RK (2016) A review on new horizons of bioinformatics in next generation sequencing, viral and cancer genomics. Int J Biomed Data Min 5:2. https://doi.org/10.4172/2090-4924.1000122

    Article  Google Scholar 

  • Shen T, van de Stadt SHP, Yeat NC, Lin JCH (2015) Clinical applications of next generation sequencing in cancer: from panels, to exomes, to genomes. Front Genet 6:215. https://doi.org/10.3389/fgene.2015.00215

    Article  PubMed  PubMed Central  Google Scholar 

  • Shrawat AK, Becker D, Lörz H (2007) Agrobacterium tumefaciens-mediated genetic transformation of barley (Hordeum vulgare L). Plant Sci 172:281–290

    Article  CAS  Google Scholar 

  • Singh VK, Singh AK, Chandr R, Kushwaha C (2011) Role of bioinformatics in agriculture and sustainable development. Int J Bioinforma Res 3(2):221–226. ISSN: 0975–3087, E-ISSN: 0975–9115

    Article  Google Scholar 

  • Stein L (2001) Genome annotation: from sequence to biology. Nat Rev Genet 2:493–503

    Article  CAS  PubMed  Google Scholar 

  • Sucularlı C, Karaagaoglu E (2013) A glimpse into the applications of bioinformatics in gene expression studies. Acta Med Austriaca 2:78–82

    Google Scholar 

  • Tao L, Wilczek J, Odom JM, Cheng Q (2006) Engineering a beta-carotene ketolase for astaxanthin production. Metab Eng 8:523–531

    Article  CAS  PubMed  Google Scholar 

  • Thampi SM (2009) Bioinformatics. Retrieved from http://www.e-booksdirectory.com/

  • Tizaoui K, Kchouk ME (2012) Genetic approaches for studying transgene inheritance and genetic recombination in three successive generations of transformed tobacco. Genet Mol Biol 35(3):640–649

    Article  PubMed  PubMed Central  Google Scholar 

  • Udayaraja GK (2016) Personal diagnostics using DNA-sequencing. In: Henning C (ed) Software innovations in clinical drug development and safety IGI Global. ISBN 978–1–4666-8727-1

    Google Scholar 

  • Voigt CA (2006) Genetic parts to program bacteria. Curr Opin Biotechnol 17:548–557

    Article  CAS  PubMed  Google Scholar 

  • Watson JD, Crick FHC (1953) A structure for deoxyribose nucleic acid. Nature 171:737–738

    Article  CAS  PubMed  Google Scholar 

  • Welch TJ (2002) Bioinformatics: the role and limitations of patents. Drug Discov Today 7(11):77–82

    Article  Google Scholar 

  • Whittaker PA (2003) What is the relevance of bioinformatics to pharmacology? Trends Pharmacol Sci 24:434–439. https://doi.org/10.1016/S0165-6147(03)00197-4

    Article  CAS  PubMed  Google Scholar 

  • Wilson GG, Wang H, Heiter DF, Lunnen KD (2012) Restriction enzymes in microbiology, biotechnology and biochemistry. Encuentro 93:19–48

    Google Scholar 

  • Wood LD, Parsons DW, Jones S, Lin J, Sjöblom T, Leary RJ, … Vogelstein B (2007) The genomic landscapes of human breast and colorectal cancers. Science 318:1108–1113. https://doi.org/10.1126/science.1145720

  • Wu D, Rice CM, Wang X (2012) Cancer bioinformatics: a new approach to systems clinical medicine. BMC Bioinforma 13:71

    Article  Google Scholar 

  • Wulfkuhle JD, Liotta LA, Petricoin EF (2003) Proteomic applications for the early detection of cancer. Nat Rev 3:267–275

    Article  CAS  Google Scholar 

  • Xia XX, Qian ZG, Ki CS, Park YH, Kaplan DL, Lee SY (2010) Native-sized recombinant spider silk protein produced in metabolically engineered Escherichia coli results in a strong fiber. Proc Natl Acad Sci U S A 107:14059–14063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Gao J, Wang J, Heffernan R, Hanson J, Paliwal K, Zhou Y (2016) Sixty-five years of the long march in protein secondary structure prediction: the final stretch? Brief Bioinform. https://doi.org/10.1093/bib/bbw129

  • Ye SQ (2007) Bioinformatics: a practical approach. Chapman and Hall/CRC, Boca Raton. ISBN 9781584888109 – CAT# C8105

    Google Scholar 

  • Yong Z, Bao-Yu Y, Shi-Yun S (2006) Inheritance and analysis of herbicide-resistant transgenic soybean lines. Acta Genet Sin 33:1105–1111

    Article  Google Scholar 

  • Zhang K, Sawaya MR, Eisenberg DS, Liao JC (2008) Expanding metabolism for biosynthesis of nonnatural alcohols. Proc Natl Acad Sci U S A 105:20653–20658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziemert N, Alanjary M, Weber T (2016) The evolution of genome mining in microbes- a review. Nat Prod Rep 33:988. https://doi.org/10.1039/c6np00025h

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mustafa Çakir from Ege University, EBILTEM-TTO Patent Office, Turkey, for his efforts toward a search of patent databases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fazilet Vardar-Sukan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yilmaz-Temel, H., Vardar-Sukan, F. (2017). An Engineering Approach to Bioinformatics and Its Applications. In: Hakeem, K., Malik, A., Vardar-Sukan, F., Ozturk, M. (eds) Plant Bioinformatics. Springer, Cham. https://doi.org/10.1007/978-3-319-67156-7_18

Download citation

Publish with us

Policies and ethics