Skip to main content

Aligned Nanowire Growth

  • Chapter
  • First Online:
Micro and Nanomanufacturing Volume II

Abstract

With many thousands of different varieties to date, the nanowire (NW) library continues to grow at pace. With the continued and hastened maturity of nanotechnology, significant advances in materials science have allowed for the rational synthesis of a myriad of NW types of unique electronic and optical properties, allowing for the realisation of a wealth of novel devices, whose use is touted to become increasingly central in a number of emerging technologies. Nanowires, structures defined as having diameters between 1 and 100 nm, provide length scales at which a variety of inherent and unique physical effects come to the fore [1], phenomena which are often size suppressed in their bulk counterparts [2–4]. It is these size-dependent effects that have underpinned the growing interest in the growth and fabrication, at ever more commercial scales, of nanoscale structures. Nevertheless, many of the intrinsic properties of such NWs become largely smeared and often entirely lost when they adopt disordered ensembles. Conversely, ordered and aligned NWs have been shown to retain many such properties, alongside proffering various new properties that manifest on the micro- and even macroscale that would hitherto not occur in their disordered counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hornyak GL (2009) Fundamentals of nanotechnology. Taylor & Francis Group, Boca Raton, FL

    Google Scholar 

  2. Nalwa HS (2000) Handbook of nanostructured materials and nanotechnology. Academic Press, New York, NY

    Google Scholar 

  3. Alivisatos P, Barbara PF, Castleman AW, Chang J, Dixon DA, Klein ML, McLendon GL, Miller JS, Ratner MA, Rossky PJ, Stupp SI, Thompson ME (1998) From molecules to materials: current trends and future directions. Adv Mater 10(16):39

    Article  Google Scholar 

  4. Shalaev VM, Moskovits M (1999) Nanostructured materials: clusters, composites, and thin films. American Chemical Society, Washington, DC

    Google Scholar 

  5. Smijs TG, Pavel S (2011) Titanium dioxide and zinc oxide nanoparticles in sunscreens: focus on their safety and effectiveness. Nanotechnol Sci Appl 2011(4):17. Dovepress

    Google Scholar 

  6. Suhr J et al (2005) Viscoelasticity in carbon nanotube composites. Nat Mater 4(2):134–137

    Article  Google Scholar 

  7. Moore GE (1998) Cramming more components onto integrated circuits. Proc IEEE 86(1):4

    Google Scholar 

  8. Ng HT et al (2004) Single crystal nanowire vertical surround-gate field-effect transistor. Nano Lett 4(7):1247–1252

    Article  Google Scholar 

  9. Huang MH et al (2001) Room-temperature ultraviolet nanowire nanolasers. Science 292(5523):1897–1899

    Article  Google Scholar 

  10. Thelander C et al (2006) Nanowire-based one-dimensional electronics. Mater Today 9(10):28–35

    Article  Google Scholar 

  11. Law M et al (2005) Nanowire dye-sensitized solar cells. Nat Mater 4(6):455–459

    Article  Google Scholar 

  12. Sun XW, Wang JX (2008) Fast switching electrochromic display using a viologen-modified Zno nanowire array electrode. Nano Lett 8(7):1884–1889

    Article  Google Scholar 

  13. Patolsky F et al (2004) Electrical detection of single viruses. Proc Natl Acad Sci U S A 101(39):14017–14022

    Article  Google Scholar 

  14. Xia Y et al (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15(5):353–389

    Article  Google Scholar 

  15. Wang ZL (2000) Characterizing the structure and properties of individual wire-like nanoentities. Adv Mater 12(17):1295–1298

    Article  Google Scholar 

  16. De Volder MFL et al (2013) Carbon nanotubes: present and future commercial applications. Science 339(6119):535–539

    Article  Google Scholar 

  17. Schmidt V et al (2009) Silicon nanowires: a review on aspects of their growth and their electrical properties. Adv Mater 21(25–26):2681–2702

    Article  Google Scholar 

  18. Cole MT et al (2014) Ultra-broadband polarisers based on metastable free-standing aligned carbon nanotube membranes. Adv Opt Mater 2(10):929–937

    Article  Google Scholar 

  19. Zhang Q et al (2016) In situ fabrication and investigation of nanostructures and nanodevices with a microscope. Chem Soc Rev 45(9):2694–2713

    Article  Google Scholar 

  20. Ghoshal T et al (2014) Fabrication of ordered, large scale, horizontally-aligned Si nanowire arrays based on an in situ hard mask block copolymer approach. Adv Mater 26(8):1207–1216

    Article  Google Scholar 

  21. Wagner RS, Ellis WC (1964) Vapor-liquid-solid mechanism of single crystal growth. Appl Phys Lett 4(5):89–90

    Article  Google Scholar 

  22. Ho T-W, Hong FC-N (2012) A reliable method to grow vertically-aligned silicon nanowires by a novel ramp-cooling process. Appl Surf Sci 258(20):7989–7996

    Article  Google Scholar 

  23. Hochbaum AI et al (2005) Controlled growth of Si nanowire arrays for device integration. Nano Lett 5(3):457–460

    Article  Google Scholar 

  24. Wacaser BA et al (2009) Growth system, structure, and doping of aluminum-seeded epitaxial silicon nanowires. Nano Lett 9(9):3296–3301

    Article  Google Scholar 

  25. Zhang R-Q, Lifshitz Y, Lee S-T (2003) Oxide-assisted growth of semiconducting nanowires. Adv Mater 15(7–8):635–640

    Article  Google Scholar 

  26. Yan HF et al (2000) Growth of amorphous silicon nanowires via a solid–liquid–solid mechanism. Chem Phys Lett 323(3–4):224–228

    Article  Google Scholar 

  27. Wang Y et al (2006) Epitaxial growth of silicon nanowires using an aluminium catalyst. Nat Nanotechnol 1(3):186–189

    Article  Google Scholar 

  28. Thongmee S et al (2009) Fabrication and magnetic properties of metallic nanowires via aao templates. J Magnetism Magn Mater 321(18):2712–2716

    Article  Google Scholar 

  29. Cantu-Valle J et al (2015) Mapping the magnetic and crystal structure in cobalt nanowires. J Appl Phys 118(2):024302

    Article  Google Scholar 

  30. Cui F et al (2015) Synthesis of ultrathin copper nanowires using tris(trimethylsilyl)silane for high-performance and low-haze transparent conductors. Nano Lett 15(11):7610–7615

    Article  Google Scholar 

  31. Haehnel V et al (2010) Towards smooth and pure iron nanowires grown by electrodeposition in self-organized alumina membranes. Acta Mater 58(7):2330–2337

    Article  Google Scholar 

  32. Kim J et al (2016) Organic devices based on nickel nanowires transparent electrode. Sci Rep 6:19813

    Article  Google Scholar 

  33. Zach MP, Ng KH, Penner RM (2000) Molybdenum nanowires by electrodeposition. Science 290(5499):2120–2123

    Article  Google Scholar 

  34. Lee JW et al (2010) Single crystalline aluminum nanowires with ideal resistivity. Scr Mater 63(10):1009–1012

    Article  Google Scholar 

  35. Dou R, Derby B (2008) The growth and mechanical properties of gold nanowires. MRS Online Proceedings Library Archive. 1086: pp 1086–U08-01 (6 pages)

    Google Scholar 

  36. Cao Y et al (2006) A technique for controlling the alignment of silver nanowires with an electric field. Nanotechnology 17(9):2378

    Article  Google Scholar 

  37. Chen YJ et al (2007) Controlled growth of zinc nanowires. Mater Lett 61(1):144–147

    Article  Google Scholar 

  38. Djenizian T et al (2008) Electrochemical fabrication of tin nanowires: a short review. C R Chim 11(9):995–1003

    Article  Google Scholar 

  39. Yanson AI, Yanson IK, van Ruitenbeek JM (1999) Observation of shell structure in sodium nanowires. Nature 400(6740):144–146

    Article  Google Scholar 

  40. Li W et al (2007) Magnesium nanowires: enhanced kinetics for hydrogen absorption and desorption. J Am Chem Soc 129(21):6710–6711

    Article  Google Scholar 

  41. Thongmee S et al (2009) Unique nanostructures in nico alloy nanowires. Acta Mater 57(8):2482–2487

    Article  Google Scholar 

  42. Hou H, Hamilton RF (2015) Free-standing niti alloy nanowires fabricated by nanoskiving. Nanoscale 7(32):13373–13378

    Article  Google Scholar 

  43. Kumar S, Saini D (2013) Large-scale synthesis of Au–Ni alloy nanowires using electrochemical deposition. Appl Nanosci 3(2):101–107

    Article  Google Scholar 

  44. Wang CZ et al (2002) Structure and magnetic property of Ni-Cu alloy nanowires electrodeposited into the pores of anodic alumina membranes. J Phys D Appl Phys 35(8):738

    Article  Google Scholar 

  45. Liao Y et al (2016) Composition-tunable ptcu alloy nanowires and electrocatalytic synergy for methanol oxidation reaction. J Phys Chem C 120(19):10476–10484

    Article  Google Scholar 

  46. Kornienko N et al (2015) Solution phase synthesis of indium gallium phosphide alloy nanowires. ACS Nano 9(4):3951–3960

    Article  Google Scholar 

  47. Wang X et al (2016) Preparation and characterization of Y-Fe alloy nanowires by template-assisted electrodeposition from aqueous solution. J Nanopart Res 18(3):1–12

    Article  Google Scholar 

  48. Dawson K, Riordan AO (2011) Towards nanowire (bio) sensors. J Phys Conf Series 307(1):012004

    Article  Google Scholar 

  49. Zhang Y et al (2014) New gold nanostructures for sensor applications: a review. Materials 7(7):5169

    Article  Google Scholar 

  50. Chi S, Farias SL, Cammarata RC (2012) Synthesis of vertically aligned gold nanowire-ferromagnetic metal matrix composites. ECS Trans 41(35):119–122

    Article  Google Scholar 

  51. He J et al (2013) Forest of gold nanowires: a new type of nanocrystal growth. ACS Nano 7(3):2733–2740

    Article  Google Scholar 

  52. Kline TR et al (2006) Template-grown metal nanowires. Inorg Chem 45(19):7555–7565

    Article  Google Scholar 

  53. Liu J et al (2006) Electrochemical fabrication of single-crystalline and polycrystalline au nanowires: the influence of deposition parameters. Nanotechnology 17(8):1922

    Article  Google Scholar 

  54. Reinhardt HM, Bücker K, Hampp NA (2015) Directed assembly of gold nanowires on silicon via reorganization and simultaneous fusion of randomly distributed gold nanoparticles. Opt Express 23(9):11965–11974

    Article  Google Scholar 

  55. Reynes O, Demoustier-Champagne S (2005) Template electrochemical growth of polypyrrole and gold-polypyrrole-gold nanowire arrays. J Electrochem Soc 152(9):D130–D135

    Article  Google Scholar 

  56. Shi S et al (2011) Fabrication of periodic metal nanowires with microscale mold by nanoimprint lithography. ACS Appl Mater Interfaces 3(11):4174–4179

    Article  Google Scholar 

  57. Zheng L, Li S, Burke PJ (2004) Self-assembled gold nanowires from nanoparticles: an electronic route towards DNA nanosensors. Proc. SPIE 5515:117–124

    Google Scholar 

  58. Venkatesh R et al (2015) Directed assembly of ultrathin gold nanowires over large area by dielectrophoresis. Langmuir 31(33):9246–9252

    Article  Google Scholar 

  59. Zhang M et al (2013) Controllable growth of gold nanowires and nanoactuators via high-frequency Ac electrodeposition. Electrochem Commun 27:133–136

    Article  Google Scholar 

  60. Lu L et al (2012) Direct synthesis of vertically aligned ZnO nanowires on FTO substrates using a CVD method and the improvement of photovoltaic performance. Nanoscale Res Lett 7(1):1–8

    Article  Google Scholar 

  61. Yang R et al (2007) Silver nanowires prepared by modified AAO template method. Mater Lett 61(3):900–903

    Article  Google Scholar 

  62. Sun Y et al (2002) Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chem Mater 14(11):4736–4745

    Article  Google Scholar 

  63. Sun Y et al (2002) Crystalline silver nanowires by soft solution processing. Nano Lett 2(2):165–168

    Article  Google Scholar 

  64. Sun B et al (2009) Single-crystal silver nanowires: preparation and surface-enhanced raman scattering (sers) property. Mater Lett 63(29):2570–2573

    Article  Google Scholar 

  65. Mohammad A et al (2014) Optical characteristics of vertically aligned arrays of branched silver nanowires. 14th IEEE international conference on nanotechnology, pp 563–566

    Google Scholar 

  66. Malandrino G, Finocchiaro ST, Fragala IL (2004) Silver nanowires by a sonoself-reduction template process. J Mater Chem 14(18):2726–2728

    Article  Google Scholar 

  67. Kazeminezhad I et al (2007) Templated electrodeposition of silver nanowires in a nanoporous polycarbonate membrane from a nonaqueous ionic liquid electrolyte. Appl Phys A 86(3):373–375

    Article  Google Scholar 

  68. Han Y-H (2008) High density silver nanowire arrays using self-ordered anodic aluminum oxide (AAO) membrane. J Korean Ceramic Soc 45(4):191–195

    Article  Google Scholar 

  69. Chun-Nuan Y et al (2004) Growth mechanism of vertically aligned Ag(TCNQ) nanowires. Chin Phys Lett 21(9):1787

    Article  Google Scholar 

  70. Cao Y, He J, Sun J (2009) Fabrication of oriented arrays of porous gold microsheaths using aligned silver nanowires as sacrificial template. Mater Lett 63(1):148–150

    Article  Google Scholar 

  71. Yazawa M et al (1992) Effect of one monolayer of surface gold atoms on the epitaxial growth of inas nanowhiskers. Appl Phys Lett 61(17):2051–2053

    Article  Google Scholar 

  72. Holmes JD et al (2000) Control of thickness and orientation of solution-grown silicon nanowires. Science 287(5457):1471–1473

    Article  Google Scholar 

  73. Nakata M et al (2015) Transfer-free synthesis of highly ordered ge nanowire arrays on glass substrates. Appl Phys Lett 107(13):133102

    Article  Google Scholar 

  74. Duan X et al (2001) Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409(6816):66–69

    Article  Google Scholar 

  75. Lindberg C et al (2016) Silver as seed-particle material for gaas nanowires—dictating crystal phase and growth direction by substrate orientation. Nano Lett 16(4):2181–2188

    Article  Google Scholar 

  76. Zhang G et al (2008) Growth and characterization of gap nanowires on Si substrate. J Appl Phys 103(1):014301

    Article  Google Scholar 

  77. Zhang Y et al (2014) Self-catalyzed ternary core–shell gaasp nanowire arrays grown on patterned Si substrates by molecular beam epitaxy. Nano Lett 14(8):4542–4547

    Article  Google Scholar 

  78. Tateno K et al (2012) VLS growth of alternating InAsP/InP heterostructure nanowires for multiple-quantum-dot structures. Nano Lett 12(6):2888–2893

    Article  Google Scholar 

  79. Kriegner D et al (2013) Structural investigation of gainp nanowires using X-ray diffraction. Thin Solid Films 543:100–105

    Article  Google Scholar 

  80. Tateno K, Zhang G, Nakano H (2008) Growth of GaInAs/AlInAs heterostructure nanowires for long-wavelength photon emission. Nano Lett 8(11):3645–3650

    Article  Google Scholar 

  81. Shindo T et al (2011) GaInAsP/InP lateral-current-injection distributed feedback laser with a-Si surface grating. Opt Express 19(3):1884–1891

    Article  Google Scholar 

  82. Zhang Y, Xu H, Wang Q (2010) Ultrathin single crystal zns nanowires. Chem Commun 46(47):8941–8943

    Article  Google Scholar 

  83. Zhang XT et al (2003) Growth and luminescence of zinc-blende-structured ZnSe nanowires by metal-organic chemical vapor deposition. Appl Phys Lett 83(26):5533–5535

    Article  Google Scholar 

  84. Yan S et al (2011) Novel regrowth mechanism of CdS nanowire in hydrothermal synthesis. New J Chem 35(2):299–302

    Article  Google Scholar 

  85. Wu H et al (2012) Dislocation-driven CdS and CdSe nanowire growth. ACS Nano 6(5):4461–4468

    Article  MathSciNet  Google Scholar 

  86. Cho K-S et al (2005) Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles. J Am Chem Soc 127(19):7140–7147

    Article  Google Scholar 

  87. Finefrock SW et al (2014) Large-scale solution-phase production of Bi2te3 and PbTe nanowires using Te nanowire templates. Nanoscale 6(14):7872–7876

    Article  Google Scholar 

  88. Zettler JK et al (2015) High-temperature growth of GaN nanowires by molecular beam epitaxy: toward the material quality of bulk GaN. Cryst Growth Des 15(8):4104–4109

    Article  Google Scholar 

  89. Young Kim H, Park J, Yang H (2003) Synthesis of silicon nitride nanowires directly from the silicon substrates. Chem Phys Lett 372(1–2):269–274

    Article  Google Scholar 

  90. Kim HY, Park J, Yang H (2003) Direct synthesis of aligned silicon carbide nanowires from the silicon substrates. Chem Commun (2):256–257

    Google Scholar 

  91. Kumar A, Madaria AR, Zhou C (2010) Growth of aligned single-crystalline rutile TiO2 nanowires on arbitrary substrates and their application in dye-sensitized solar cells. J Phys Chem C 114(17):7787–7792

    Article  Google Scholar 

  92. Wang X et al (2014) Aligned epitaxial SnO2 nanowires on sapphire: growth and device applications. Nano Lett 14(6):3014–3022

    Article  Google Scholar 

  93. Jiang X, Herricks T, Xia Y (2002) CuO nanowires can be synthesized by heating copper substrates in air. Nano Lett 2(12):1333–1338

    Article  Google Scholar 

  94. Fanhao Z et al (2004) Large-scale growth of In 2 O 3 nanowires and their optical properties. Nanotechnology 15(5):596

    Article  Google Scholar 

  95. Zhang YF et al (1998) Silicon nanowires prepared by laser ablation at high temperature. Appl Phys Lett 72(15):1835–1837

    Article  Google Scholar 

  96. Wong YY et al (2005) Controlled growth of silicon nanowires synthesized via solid–liquid–solid mechanism. Sci Technol Adv Mater 6(3–4):330–334

    Article  Google Scholar 

  97. Wang C et al (2011) Growth of straight silicon nanowires on amorphous substrates with uniform diameter, length, orientation, and location using nanopatterned host-mediated catalyst. Nano Lett 11(12):5247–5251

    Article  Google Scholar 

  98. Treuting RG, Arnold SM (1957) Orientation habits of metal whiskers. Acta Metall 5(10):598

    Article  Google Scholar 

  99. Pan ZW et al (2001) Temperature-controlled growth of silicon-based nanostructures by thermal evaporation of SiO powders. J Phys Chem B 105(13):2507–2514

    Article  Google Scholar 

  100. Morales AM, Lieber CM (1998) A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279(5348):208–211

    Article  Google Scholar 

  101. Krause A et al (2015) Comparison of silicon nanowire growth on SiO2 and on carbon substrates. ECS Trans 70(1):69–78

    Article  Google Scholar 

  102. Kim J, Ji C, Anderson WA (2004) Silicon nanowire growth at relatively low processing temperature. MRS Online Proceedings Library Archive. 818: p. M11.11.1 (6 pages).

    Google Scholar 

  103. Cheng SL, Chung CH, Lee HC (2007) Fabrication of vertically aligned silicon nanowire arrays and investigation on the formation of the nickel silicide nanowires. Electron Devices and Solid-State Circuits, 2007. EDSSC 2007. IEEE Conference. pp 121–124.

    Google Scholar 

  104. Banerjee D et al (2016) Phonon processes in vertically aligned silicon nanowire arrays produced by low-cost all-solution galvanic displacement method. Appl Phys Lett 108(11):113109

    Article  Google Scholar 

  105. Sandulova AV, Bogoyavlenskii PS, Dronyum MI (1964) Preparation and some properties of whisker and needle-shaped single crystals of germanium, silicon and their solid solutions. Sov Phys Solid State 5:1883

    Google Scholar 

  106. Kennedy T et al (2014) High-performance germanium nanowire-based lithium-ion battery anodes extending over 1000 cycles through in situ formation of a continuous porous network. Nano Lett 14(2):716–723

    Article  Google Scholar 

  107. Wang D et al (2003) Germanium nanowire field-effect transistors with SiO2 and High-κ Hfo2 gate dielectrics. Appl Phys Lett 83(12):2432–2434

    Article  Google Scholar 

  108. Zhang Y et al (2007) An integrated phase change memory cell with Ge nanowire diode for cross-point memory. In 2007 I.E. Symposium on VLSI Technology, 12 Jun, pp 98–99

    Google Scholar 

  109. O'Regan C et al (2014) Recent advances in the growth of germanium nanowires: synthesis, growth dynamics and morphology control. J Mater Chem C 2(1):14–33

    Article  Google Scholar 

  110. He Y et al (2005) Vertically well-aligned ZnO nanowires generated with self-assembling polymers. Mater Chem Phys 94(1):29–33

    Article  Google Scholar 

  111. Yuan Z-Y, Su B-L (2004) Titanium oxide nanotubes, nanofibers and nanowires. Colloids Surf A Physicochem Eng Asp 241(1–3):173–183

    Article  Google Scholar 

  112. Shi J, Wang X (2011) Growth of rutile titanium dioxide nanowires by pulsed chemical vapor deposition. Cryst Growth Des 11(4):949–954

    Article  Google Scholar 

  113. Faruque MK et al (2012) Fabrication, characterization, and mechanism of vertically aligned titanium nitride nanowires. Appl Surf Sci 260:36–41

    Article  Google Scholar 

  114. Wang X et al (2015) Confined-space synthesis of single crystal TiO(2) nanowires in atmospheric vessel at low temperature: a generalized approach. Sci Rep 5:8129

    Article  Google Scholar 

  115. Yin Y, Zhang G, Xia Y (2002) Synthesis and characterization of MgO nanowires through a vapor-phase precursor method. Adv Funct Mater 12(4):293–298

    Article  Google Scholar 

  116. Zhang Y et al (2001) A simple method to synthesize Si3N4 and SiO2 nanowires from Si or Si/SiO2 mixture. J Cryst Growth 233(4):803–808

    Article  Google Scholar 

  117. Xiao Z et al (2006) High-density, aligned SiO2 nanowire arrays: microscopic imaging of the unique growth style and their ultraviolet light emission properties. J Phys Chem B 110(32):15724–15728

    Article  Google Scholar 

  118. Chang C-C et al (2012) Synthesis and growth twinning of Al2O3 nanowires by simple evaporation of Al-Si alloy powder. CrstEngComm 14(3):1117–1121

    Article  Google Scholar 

  119. Dang TTL, Tonezzer M, Nguyen VH (2015) Hydrothermal growth and hydrogen selective sensing of nickel oxide nanowires. J Nanomater 2015:8

    Google Scholar 

  120. Das S et al (2010) Formation of NiO nanowires on the surface of nickel strips. J Alloys Compd 505(1):L19–L21

    Article  Google Scholar 

  121. Lin Y et al (2003) Ordered nickel oxide nanowire arrays and their optical absorption properties. Chem Phys Lett 380(5–6):521–525

    Article  Google Scholar 

  122. Pang H et al (2010) Selective synthesis of nickel oxide nanowires and length effect on their electrochemical properties. Nanoscale 2(6):920–922

    Article  Google Scholar 

  123. Patil RA et al (2013) An efficient methodology for measurement of the average electrical properties of single one-dimensional NiO nanorods. Sci Rep 3:3070

    Article  Google Scholar 

  124. Sekiya K et al (2012) Morphology control of nickel oxide nanowires. Microelectron Eng 98:532–535

    Article  Google Scholar 

  125. Wei ZP et al (2010) A template and catalyst-free metal-etching-oxidation method to synthesize aligned oxide nanowire arrays: NiO as an example. ACS Nano 4(8):4785–4791

    Article  Google Scholar 

  126. Zeng W et al (2012) Facile synthesis of NiO nanowires and their gas sensing performance. Trans Nonferrous Met Soc Chin 22:s100–s104

    Article  Google Scholar 

  127. Bechelany M et al (2007) Synthesis of boron nitride nanotubes by a template-assisted polymer thermolysis process. J Phys Chem C 111(36):13378–13384

    Article  Google Scholar 

  128. Cao L et al (2002) Synthesis of well-aligned boron nanowires and their structural stability under high pressure. J Phys Condens Matter 14(44):11017

    Article  Google Scholar 

  129. Cao LM et al (2001) Well-aligned boron nanowire arrays. Adv Mater 13(22):1701–1704

    Article  Google Scholar 

  130. Deepak FL et al (2002) Boron nitride nanotubes and nanowires. Chem Phys Lett 353(5–6):345–352

    Article  Google Scholar 

  131. Huo KF et al (2002) Synthesis of boron nitride nanowires. Appl Phys Lett 80(19):3611–3613

    Article  Google Scholar 

  132. Kalay S et al (2015) Synthesis of boron nitride nanotubes and their applications. Beilstein J Nanotechnol 6:84–102

    Article  Google Scholar 

  133. Patel RB, Chou T, Iqbal Z (2015) Synthesis of boron nanowires, nanotubes, and nanosheets. J Nanomater 2015:7

    Article  Google Scholar 

  134. Su C-H et al (2015) Self-templating noncatalyzed synthesis of monolithic boron nitride nanowires. RSC Adv 5(92):75810–75816

    Article  Google Scholar 

  135. Zhou J et al (2014) Vertically-aligned BCN nanotube arrays with superior performance in electrochemical capacitors. Sci Rep 4:6083

    Article  Google Scholar 

  136. Zhu Y-C et al (2004) New boron nitride whiskers: showing strong ultraviolet and visible light luminescence. J Phys Chem B 108(20):6193–6196

    Article  Google Scholar 

  137. Polleux J et al (2006) Template-free synthesis and assembly of single-crystalline tungsten oxide nanowires and their gas-sensing properties. Angew Chem 118(2):267–271

    Article  Google Scholar 

  138. An G-H et al (2011) One-pot fabrication of hollow SiO2 nanowires via an electrospinning technique. Mater Lett 65(15–16):2377–2380

    Article  Google Scholar 

  139. Antonio T et al (2010) Scalable flame synthesis of SiO 2 nanowires: dynamics of growth. Nanotechnology 21(46):465604

    Article  Google Scholar 

  140. Zamchiy A, Baranov E, Khmel S (2014) New approach to the growth of SiO2 nanowires using Sn catalyst on Si substrate. physica status solidi (c) 11(9–10):1397–1400

    Article  Google Scholar 

  141. Li Y et al (2011) Growth of SiO 2 nanowires on different substrates using Au as a catalyst. J Semiconduct 32(2):023002

    Article  Google Scholar 

  142. Yu-Chiao L, Wen-Tai L (2005) Growth of SiO 2 nanowires without a catalyst via carbothermal reduction of CuO powders. Nanotechnology 16(9):1648

    Article  Google Scholar 

  143. Mihailovic D (2009) Inorganic molecular wires: physical and functional properties of transition metal chalco-halide polymers. Prog Mater Sci 54(3):309–350

    Article  Google Scholar 

  144. Daniel V et al (2004) Air-stable monodispersed Mo 6 S 3 I 6 nanowires. Nanotechnology 15(5):635

    Article  Google Scholar 

  145. Potel M et al (1980) New pseudo-one-dimensional metals: M2Mo6Se6 (M = Na, in, K, Ti), M2Mo6S6 (M = K, Rb, Cs), M2Mo6Te6 (M = in, Ti). J Solid State Chem 35(2):286–290

    Article  Google Scholar 

  146. Remskar M et al (2010) The Mos2 nanotubes with defect-controlled electric properties. Nanoscale Res Lett 6(1):1–6

    Google Scholar 

  147. Dvorsek D et al (2007) Growth and field emission properties of vertically aligned molybdenum–sulfur–iodine nanowires on molybdenum and quartz substrates. J Appl Phys 102(11):114308

    Article  Google Scholar 

  148. Messer B, Song JH, Yang P (2000) Microchannel networks for nanowire patterning. J Am Chem Soc 122(41):10232–10233

    Article  Google Scholar 

  149. Wu Y et al (2002) Inorganic semiconductor nanowires: rational growth, assembly, and novel properties. Chemistry A 8(6):1260–1268

    Google Scholar 

  150. Chen H et al (2010) Controlled growth and modification of vertically-aligned carbon nanotubes for multifunctional applications. Mater Sci Eng R Rep 70(3–6):63–91

    Article  Google Scholar 

  151. Patole SP et al (2008) Alignment and wall control of ultra long carbon nanotubes in water assisted chemical vapour deposition. J Phys D Appl Phys 41(15):155311

    Article  Google Scholar 

  152. Chhowalla M et al (2001) Field emission from short and stubby vertically aligned carbon nanotubes. Appl Phys Lett 79(13):2079–2081

    Article  Google Scholar 

  153. Shang NG et al (2010) High-rate low-temperature growth of vertically aligned carbon nanotubes. Nanotechnology 21(50):505604

    Article  Google Scholar 

  154. Ago H et al (2011) Ultrahigh-vacuum-assisted control of metal nanoparticles for horizontally aligned single-walled carbon nanotubes with extraordinary uniform diameters. J Phys Chem C 115(27):13247–13253

    Article  Google Scholar 

  155. Almaqwashi AA et al (2011) Variable-force microscopy for advanced characterization of horizontally aligned carbon nanotubes. Nanotechnology 22(27):275717

    Article  Google Scholar 

  156. Cui R et al (2010) Comparison between copper and iron as catalyst for chemical vapor deposition of horizontally aligned ultralong single-walled carbon nanotubes on silicon substrates. J Phys Chem C 114(37):15547–15552

    Article  Google Scholar 

  157. Ding L et al (2009) Selective growth of well-aligned semiconducting single-walled carbon nanotubes. Nano Lett 9(2):800–805

    Article  Google Scholar 

  158. Ding L, Yuan D, Liu J (2008) Growth of high-density parallel arrays of long single-walled carbon nanotubes on quartz substrates. J Am Chem Soc 130(16):5428–5429

    Article  Google Scholar 

  159. Hong SW, Banks T, Rogers JA (2010) Improved density in aligned arrays of single-walled carbon nanotubes by sequential chemical vapor deposition on quartz. Adv Mater 22(16):1826–1830

    Article  Google Scholar 

  160. Huang L et al (2006) Cobalt ultrathin film catalyzed ethanol chemical vapor deposition of single-walled carbon nanotubes. J Phys Chem B 110(23):11103–11109

    Article  Google Scholar 

  161. Huang S et al (2004) Growth mechanism of oriented long single walled carbon nanotubes using “fast-heating”chemical vapor deposition process. Nano Lett 4(6):1025–1028

    Article  Google Scholar 

  162. Inoue T et al. High density growth of horizontally aligned single-walled carbon nanotubes on quartz by variation of incubation time. http://www.photon.t.u-tokyo.ac.jp/~maruyama/papers/12/DenseHA.pdf

  163. Ismach A, Kantorovich D, Joselevich E (2005) Carbon nanotube graphoepitaxy: highly oriented growth by faceted nanosteps. J Am Chem Soc 127(33):11554–11555

    Article  Google Scholar 

  164. Kang SJ et al (2007) High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nat Nanotechnol 2(4):230–236

    Article  Google Scholar 

  165. Kocabas C et al (2005) Guided growth of large-scale, horizontally aligned arrays of single-walled carbon nanotubes and their use in thin-film transistors. Small 1(11):1110–1116

    Article  Google Scholar 

  166. Ozel T et al (2009) Nonuniform compressive strain in horizontally aligned single-walled carbon nanotubes grown on single crystal quartz. ACS Nano 3(8):2217–2224

    Article  Google Scholar 

  167. Reina A et al (2007) Growth mechanism of long and horizontally aligned carbon nanotubes by chemical vapor deposition. J Phys Chem C 111(20):7292–7297

    Article  Google Scholar 

  168. Shadmi N et al (2015) Guided growth of horizontal single-wall carbon nanotubes on M-plane sapphire. J Phys Chem C 119(15):8382–8387

    Article  Google Scholar 

  169. Yu Q et al (2006) Mechanism of horizontally aligned growth of single-wall carbon nanotubes on R-plane sapphire. J Phys Chem B 110(45):22676–22680

    Article  Google Scholar 

  170. Yuan D et al (2008) Horizontally aligned single-walled carbon nanotube on quartz from a large variety of metal catalysts. Nano Lett 8(8):2576–2579

    Article  Google Scholar 

  171. Zhou W et al (2006) Copper catalyzing growth of single-walled carbon nanotubes on substrates. Nano Lett 6(12):2987–2990

    Article  Google Scholar 

  172. AuBuchon JF et al (2006) Electric-field-guided growth of carbon nanotubes during DC plasma-enhanced CVD. Chem Vap Deposition 12(6):370–374

    Article  Google Scholar 

  173. Chai Y, Xiao Z, Chan PCH (2009) Fabrication and characterization of horizontally aligned carbon nanotubes for interconnect application. 2009 59th electronic components and technology conference, San Diego, CA, May 2009. pp 1465–1469

    Google Scholar 

  174. Chai Y, Xiao Z, Chan PCH (2010) Horizontally aligned carbon nanotube bundles for interconnect application: diameter-dependent contact resistance and mean free path. Nanotechnology 21(23):235705

    Article  Google Scholar 

  175. Hayashi Y et al (2010) Direct growth of horizontally aligned carbon nanotubes between electrodes and its application to field-effect transistors. 2010 3rd international nanoelectronics conference (INEC). pp 215–216

    Google Scholar 

  176. Joselevich E, Lieber CM (2002) Vectorial growth of metallic and semiconducting single-wall carbon nanotubes. Nano Lett 2(10):1137–1141

    Article  Google Scholar 

  177. Jung SM, Jung HY, Suh JS (2007) Horizontally aligned carbon nanotube field emitters having a long term stability. Carbon 45(15):2917–2921

    Article  Google Scholar 

  178. Jung SM, Jung HY, Suh JS (2008) Horizontally aligned carbon nanotube field emitters fabricated on ITO glass substrates. Carbon 46(14):1973–1977

    Article  Google Scholar 

  179. Law JBK, Koo CK, Thong JTL (2007) Horizontally directed growth of carbon nanotubes utilizing self-generated electric field from plasma induced surface charging. Appl Phys Lett 91(24):243108

    Article  Google Scholar 

  180. Ural A, Li Y, Dai H (2002) Electric-field-aligned growth of single-walled carbon nanotubes on surfaces. Appl Phys Lett 81(18):3464–3466

    Article  Google Scholar 

  181. Zhang Y et al (2001) Electric-field-directed growth of aligned single-walled carbon nanotubes. Appl Phys Lett 79(19):3155–3157

    Article  Google Scholar 

  182. Ago H et al (2006) Synthesis of horizontally-aligned single-walled carbon nanotubes with controllable density on sapphire surface and polarized raman spectroscopy. Chem Phys Lett 421(4–6):399–403

    Article  Google Scholar 

  183. Hong BH et al (2005) Quasi-continuous growth of ultralong carbon nanotube arrays. J Am Chem Soc 127(44):15336–15337

    Article  Google Scholar 

  184. Hsu CM et al (2002) Growth of the large area horizontally-aligned carbon nanotubes by ECR-CVD. Thin Solid Films 420–421:225–229

    Article  Google Scholar 

  185. Huang S, Cai X, Liu J (2003) Growth of millimeter-long and horizontally aligned single-walled carbon nanotubes on flat substrates. J Am Chem Soc 125(19):5636–5637

    Article  Google Scholar 

  186. Jin Z et al (2007) Ultralow feeding gas flow guiding growth of large-scale horizontally aligned single-walled carbon nanotube arrays. Nano Lett 7(7):2073–2079

    Article  Google Scholar 

  187. Li L et al (2012) Electrochemical growth of gold nanoparticles on horizontally aligned carbon nanotubes: a new platform for ultrasensitive DNA sensing. Biosens Bioelectron 33(1):279–283

    Article  MathSciNet  Google Scholar 

  188. Liu H et al (2009) The controlled growth of horizontally aligned single-walled carbon nanotube arrays by a gas flow process. Nanotechnology 20(34):345604

    Article  Google Scholar 

  189. Liu Y et al (2009) Flexible orientation control of ultralong single-walled carbon nanotubes by gas flow. Nanotechnology 20(18):185601

    Article  Google Scholar 

  190. Xie H et al (2016) Preloading catalysts in the reactor for repeated growth of horizontally aligned carbon nanotube arrays. Carbon 98:157–161

    Article  Google Scholar 

  191. Dayeh SA, Picraux ST (2010) Direct observation of nanoscale size effects in ge semiconductor nanowire growth. Nano Lett 10(10):4032–4039

    Article  Google Scholar 

  192. Qi H et al (2012) Growth of vertically aligned ZnO nanowire arrays using bilayered metal catalysts. J Nanomater 2012:7

    Google Scholar 

  193. Fengmei G et al (2008) Aligned ultra-long single-crystalline Α—Si 3 N 4 nanowires. Nanotechnology 19(10):105602

    Article  Google Scholar 

  194. Woodruff JH et al (2007) Vertically oriented germanium nanowires grown from gold colloids on silicon substrates and subsequent gold removal. Nano Lett 7(6):1637–1642

    Article  Google Scholar 

  195. Toko K et al (2015) Vertically aligned Ge nanowires on flexible plastic films synthesized by (111)-oriented Ge seeded vapor–liquid–solid growth. ACS Appl Mater Interfaces 7(32):18120–18124

    Article  Google Scholar 

  196. Sierra-Sastre Y et al (2008) Vertical growth of Ge nanowires from biotemplated Au nanoparticle catalysts. J Am Chem Soc 130(32):10488–10489

    Article  Google Scholar 

  197. O’Regan C et al (2013) Engineering the growth of germanium nanowires by tuning the supersaturation of Au/Ge binary alloy catalysts. Chem Mater 25(15):3096–3104

    Article  Google Scholar 

  198. Li CB et al (2008) Controlled Ge nanowires growth on patterned Au catalyst substrate. 2008 I.E. silicon nanoelectronics workshop, pp 1–2

    Google Scholar 

  199. Leu PW et al (2008) Oxide-encapsulated vertical germanium nanowire structures and their DC transport properties. Nanotechnology 19(48):485705

    Article  Google Scholar 

  200. Kawamura Y et al (2012) Direct-gap photoluminescence from germanium nanowires. Physical Review B 86(3):035306

    Article  Google Scholar 

  201. Liangbing H, Hecht DS, Grüner G (2009) Infrared transparent carbon nanotube thin films. Appl Phys Lett 94(8):081103. (3 pp)

    Article  Google Scholar 

  202. Adhikari H et al (2006) Germanium nanowire epitaxy: shape and orientation control. Nano Lett 6(2):318–323

    Article  Google Scholar 

  203. Geng C et al (2004) Well-aligned ZnO nanowire arrays fabricated on silicon substrates. Adv Funct Mater 14(6):589–594

    Article  Google Scholar 

  204. Jamali Sheini F et al (2010) Low temperature growth of aligned ZnO nanowires and their application as field emission cathodes. Mater Chem Phys 120(2–3):691–696

    Article  Google Scholar 

  205. Ji L-W et al (2009) Effect of seed layer on the growth of well-aligned ZnO nanowires. J Phys Chem Solid 70(10):1359–1362

    Article  Google Scholar 

  206. Liu F et al (2005) Well-aligned zinc oxide nanorods and nanowires prepared without catalyst. J Cryst Growth 274(1–2):126–131

    Article  Google Scholar 

  207. Tak Y, Yong K (2005) Controlled growth of well-aligned ZnO nanorod array using a novel solution method. J Phys Chem B 109(41):19263–19269

    Article  Google Scholar 

  208. Unalan HE et al (2008) Rapid synthesis of aligned zinc oxide nanowires. Nanotechnology 19(25):255608

    Article  Google Scholar 

  209. Xu S et al (2008) Patterned growth of vertically aligned ZnO nanowire arrays on inorganic substrates at low temperature without catalyst. J Am Chem Soc 130(45):14958–14959

    Article  Google Scholar 

  210. Zeng Y-J et al (2005) Well-aligned ZnO nanowires grown on Si substrate via metal–organic chemical vapor deposition. Appl Surf Sci 250(1–4):280–283

    Article  Google Scholar 

  211. Zhitao H et al (2013) Controlled growth of well-aligned ZnO nanowire arrays using the improved hydrothermal method. J Semiconduct 34(6):063002

    Article  Google Scholar 

  212. Lin W et al (2009) Vertically aligned carbon nanotubes on copper substrates for applications as thermal interface materials: from synthesis to assembly. 2009 59th electronic components and technology conference, pp 441–447

    Google Scholar 

  213. Qi HJ et al (2003) Determination of mechanical properties of carbon nanotubes and vertically aligned carbon nanotube forests using nanoindentation. J Mech Phys Solids 51(11–12):2213–2237

    Article  Google Scholar 

  214. Qu L, Du F, Dai L (2008) Preferential syntheses of semiconducting vertically aligned single-walled carbon nanotubes for direct use in FETs. Nano Lett 8(9):2682–2687

    Article  Google Scholar 

  215. Ren ZF et al (1998) Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 282(5391):1105–1107

    Article  Google Scholar 

  216. Shahzad MI et al (2013) Growth of vertically aligned multiwall carbon nanotubes columns. J Phys Conf Ser 439(1):012008

    Article  Google Scholar 

  217. Van Hooijdonk E et al (2013) Functionalization of vertically aligned carbon nanotubes. Beilstein J Nanotechnol 4:129–152

    Article  Google Scholar 

  218. Yu M et al (2009) High density, vertically-aligned carbon nanotube membranes. Nano Lett 9(1):225–229

    Article  Google Scholar 

  219. Zhu H et al (2001) Hydrogen adsorption in bundles of well-aligned carbon nanotubes at room temperature. Appl Surf Sci 178(1–4):50–55

    Article  Google Scholar 

  220. Remškar DVM et al (2004) Air-stable monodispersed Mo 6 S 3 I 6 nanowires. Nanotechnology 15(5):635

    Article  Google Scholar 

  221. Zhang Z et al (2015) Ultrathin inorganic molecular nanowire based on polyoxometalates. Nat Commun 6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. T. Cole .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cientanni, V., Milne, W.I., Cole, M.T. (2018). Aligned Nanowire Growth. In: Jackson, M., Ahmed, W. (eds) Micro and Nanomanufacturing Volume II. Springer, Cham. https://doi.org/10.1007/978-3-319-67132-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67132-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67130-7

  • Online ISBN: 978-3-319-67132-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics